©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Stateful Function-as-a-Service at
the Edge

Carlo Puliafito
University of Pisa

Claudio Cicconetti

[IT-CNR

Marco Conti
[IT-CNR

Enzo Mingozzi
University of Pisa

Andrea Passarella

[IT-CNR

Abstract—In Faa$S, an application is decomposed into functions. When functions are stateful,
they typically need to remotely access the state, via an external service. On the one hand, this
approach makes function instances equivalent to one another, which provides great resource
efficiency. On the other hand, accessing a remote state causes increased delays and network
traffic, which makes FaaS less attractive to edge computing systems. We propose to generalize
Faa$S by allowing functions to alternate between remote-state and local-state phases, depending
on internal and external conditions, and dedicating a container with persistent memory to
functions when in a local-state phase. We present initial results showing that this simple yet
powerful pattern allows to better utilize the available resources, which are scarce on edge nodes,
while significantly reducing tail latencies, which is key to enable new applications based on
real-time Machine Learning (ML), e.g., in smart vehicles and smart factory scenarios.

B MONOLITHIC application design has
shown its downsides in terms of scalability,
maintainability, and agility. The current trend is
to decompose complex applications into small
pieces of code called microservices, each focus-
ing on a specific aspect of the overall application.
Microservices are typically instantiated within
lightweight environments, e.g., containers. Func-
tion as a Service (FaaS) leverages microservices
(which in FaaS are called functions) as a starting
point to build enhanced cloud computing systems
[1]. FaaS indeed abstracts the operational logic
away from function developers, such that they do
not need to care about function deployment, scal-

© 2021 IEEE

ing, and lifecycle management. Besides, functions
run according to an event-based pattern, and users
only pay for what they actually use, with fine
granularity.

In this context, consecutive invocations of a
function from the same client can be independent
from one another or, more often, can form a
session with an associated state that must persist
across multiple invocations until the session ends
[2]. With traditional FaaS for cloud computing
systems, functions typically need to remotely
access this state at each invocation, via an external
service such as a database: we refer to these func-
tions as remote-state functions. This is depicted

Computer

in the top-left image of Figure 1, whose notation
will be explained in the next section. Following
this approach, different instances of the same
remote-state function are equivalent to one an-
other, as they do not retain any state locally (state
is download at each invocation, updated, and
uploaded again to the external service). Therefore,
FaaS providers can optimize their infrastructure,
transparently to the users, as (i) different users can
share the same function instance, (ii) consecutive
invocations from the same user can be forwarded
to different function instances, and (iii) resources
allocated to inactive instances can be freed after
a short period of idle time. The first company to
propose a FaaS platform was Amazon with AWS
Lambda. Since then, all the top cloud vendors
announced their FaaS solutions, e.g., Microsoft
Azure Functions, Google Cloud Run, IBM Cloud
Functions, and Cloudflare Workers. Open-source
platforms, to be executed on private compute
infrastructures, are also available, such as Apache
OpenWhisk, OpenFaaS, Kubeless, and Knative.
Further information on the most prominent FaaS
platforms can be found in [3].

Although it was initially designed for cloud
environments, FaaS is gradually drawing interest
as a viable option for edge computing, as well
[4]. Edge computing extends the cloud toward the
edge of the network, hosting cloud-like services
in close proximity to the end users, e.g., on
cellular base stations [S]. This proximity leads to
many advantages, the most important of which
is the reduced latency, which is essential to a
vast number of emerging applications, such as
real-time Internet of Things (IoT), mobile Vir-
tual Reality (VR)/Augmented Reality (AR), and
connected vehicle applications [6], [7]. Big IT
companies have started investing in FaaS for edge
computing, extending their FaaS platforms toward
the edge of the network, for example Amazon IoT
Greengrass, Microsoft Azure IoT Edge, and IBM
Edge Functions.

Notwithstanding these recent efforts toward
FaaS for edge computing, there is still hesitation
to widely adopt this novel paradigm. This is due
to the cloud-oriented design of FaaS, which does
not always suit the distinguishing characteristics
of edge applications. The most important design
assumption of FaaS that is violated by its ex-
pansion toward the edge is that functions access

2021

a remote state. In cloud-only environments, this
approach affects performance only slightly be-
cause both function instances and session state
are hosted by servers that are physically located
in the same data center. However, when function
instances run at the edge (as shown in the center-
left image of Figure 1), accessing a remote state
may cause significant service latency and network
traffic, at risk of nullifying edge computing ad-
vantages.

To overcome the above limitation, local-state
functions are coming into the picture [8]. As
depicted in the bottom-left image of Figure 1,
these functions keep the state locally. On the one
hand, local-state functions avoid the delays and
traffic caused by accessing state from an external
storage service. However, on the other hand,
they do not experience the same cost-efficiency
and flexibility of remote-state functions. Local-
state instances are indeed not equivalent to one
another, as each is dedicated to a specific user
or application session, for which it provides data
access in a private and persistent manner. Besides,
local-state function instances are not triggered on
demand; instead, they are long-running to retain
state across invocations. The following are exam-
ples of local-state functions in commercial FaaS
platforms: (i) Microsoft entity functions [9]; (ii)
Cloudflare durable objects [10]; and (iii) Amazon
long-lived functions [11].

Today, the choice on whether a given func-
tion should follow a remote-state vs. local-state
pattern is made at design time, and migrating
from one pattern to another in production can
be very expensive, since it involves changing the
set of employed services (adapting to new Appli-
cation Programming Interfaces (APIs), switching
contracts, using a different Software Development
Kit (SDK)). What is worse, during development
the programmer may not even know whether the
logic of the code they are implementing will be
executed at the edge or in the cloud, so making
an informed choice could be just impossible.

In this work, we advocate that such a di-
chotomy between remote-state and local-state
should not exist, but rather a function in a FaaS
environment should be able to adapt dynami-
cally, i.e.,, changing its behavior from remote-
state to local-state and vice versa, depending on
both internal and external factors. This approach

cloud remote-state

X

client

Ak Data center *

edge remote-state

=

client

edge local-state S\k

client

remote-state
FaaS invocation

el ;

local-state
i —
— FaaS invocation

APoint of access Broker i €j

Edge nodej [Remote-state container () Remote state (___J(5) Local-state container

Figure 1. Remote-state vs. local-state FaaS invocations at the edge.

would relieve the developer from the risk of
making an uninformed decision. Besides, it would
let the FaaS provider carry out run-time optimiza-
tions, e.g., to increase resource efficiency. Finally,
it would benefit applications with requirements
that dynamically change over time.

We first present our proposal at a high level.
To showcase the potential advantages of dynam-
ically changing the nature of functions in a FaaS
environment, we then report initial results explor-
ing the main trade-offs involved in this approach.
Next, we describe two practical use cases of
business interest that can benefit from our idea.
We then report the essential related work in the
field. Finally, we conclude the paper and outline
the further research directions originating from
our proposition.

STATEFUL FAAS AT THE EDGE

We illustrate our proposal within a system
model that abstracts the specific and technical
details of a real edge system, which consists of
the following elements:

e clients, wishing to invoke functions A; of a
given type (or application) ¢: consecutive in-
vocations of a function from the same client

are called a session, which has an associated
state that is expected to persist until the session
ends;

e brokers, representing entry points of the system
for the clients, i.e., the latter invoke their
functions on the broker, which then delegates
the actual execution of the function to a worker
(i.e., a container) in the edge network of
matching type;

e workers, handling function invocations and
hosted by containers. Remote-state containers
are instances of remote-state functions, and
therefore rely on an external service, possibly
located in the cloud, to access the session state.
On the other hand, local-state functions get
instantiated in local-state containers, which are
associated to a specific session and keep any
state required locally.

Edge nodes may host any combination of
workers and brokers. In this work, we indicate the
remote-state function of type k as A\, whereas
local-state function of type k is A,. The con-
sidered system works in mixed remote-state +
local-state conditions. This can be true both from
the point of view of different functions of type

Computer

h # k and for the same function k. The right
image of Figure 1 depicts an example of such a
mixed behavior. Function)\, is invoked by four
different clients cq,...,c4. For clients ¢; and
Co, Aj is instantiated in remote-state containers.
These instances of)\ are indistinguishable from
one another, and in fact can be scaled up and
down (also to zero instances) by the underlying
container orchestration mechanism. The brokers
need only to know the locations of all (or a
subset) of the containers and can then implement
all sorts of decentralized load balancing as dis-
cussed in [12]. For instance, the invocation from
¢, is forwarded to the)\, instance hosted on e;.
However, the next invocation could be equally
forwarded to the instance on e,. This gives the
system flexibility in resource scheduling. Yet, this
solution has two main disadvantages: (i) the re-
sponse time also includes the time required for the
function instance to synchronize the state on the
external service; (ii) network traffic is generated
as a consequence of state synchronization.

On the other hand, clients c3 and c4 use local-
state containers \{* and \{*, respectively. Local-
state containers are more bandwidth-efficient and
do not incur in the same latency associated to
remote-state containers, as explained above. How-
ever, they do not enjoy the same orchestration
flexibility, either. Rather than maintaining a pool
of shared containers sufficient to serve the current
number of active clients, one local-state instance
must exist in the edge network for each session.
For illustration purposes, in the example we as-
sume without loss of generality that every client
has exactly one session. Therefore, when a broker
receives a function invocation, it must forward it
to the container specific to that client. Also, if the
platform wants to move a local-state container to
another edge node, a live migration is required
to transfer the state, as well as the image: this
has a cost in terms of network traffic and creates
a period while the container is unavailable (i.e.,
downtime).

The example above shows the limitations of a
system where functions are statically instantiated
as either remote-state or local-state. Any of the
two patterns presents some drawbacks, indeed.
The main contribution of this work is proposing
a paradigm where functions are able to adapt dy-

2021

namically to unpredictably changing conditions,
by changing behavior from remote-state to local-
state and vice versa.

To support this paradigm, the most natural
way would be that the developer of a function
A, provides two versions (i.e., container images)
with the same application logic: a remote-state
version A, and a local-state version). Besides,
the developer of the function is expected to imple-
ment some means to download the state locally
from the external service in use and to upload
a local state to the external service intended to
be used (which is true also in traditional FaaS
systems). The details on the application internals,
such as the programming language it uses or
which external services are used (and how), do
not need to be disclosed to the FaaS platform.

We believe that this dynamic transition from
remote-state to local-state, and vice versa, may be
useful (and therefore be triggered) for two main
purposes. One is to allow the service provider
to perform run-time optimizations, e.g., increase
resource efficiency. We refer to this type of transi-
tion as network-triggered transition, since it is
activated by the platform. Alternatively, another
purpose is to accommodate applications having
requirements that dynamically change over time.
In this case, we talk about application-triggered
transition, as it is the application to request it.

Figure 2 presents the possible sequence di-
agrams of the transitions of a worker. Specifi-
cally, transitions to local-state are shown on the
left, whereas transitions to remote-state are de-
picted on the right. In a similar way, application-
triggered transitions are at the top in figure, while
network-triggered transitions are at the bottom.
As shown, application-triggered and network-
triggered transitions work in the same way, a part
from the initial triggering event, which is different
in the two cases.

Let us start with a transition from remote-
state to local-state behavior. Initially, client c
uses remote-state instances of function \j. Then,
after checking available resources, the system
orchestrator sets up a local-state container \§ and
assigns it to client c. When \§ starts, it first
downloads the session state of client ¢ from the
external service (where it has been previously
uploaded by the remote-state instance, as per its
normal working) and stores it locally. It then

PV —

Application-triggered

e

R m—

application request

OPTIONAL
at le

Figure 2. Sequence diagram of transition of a worker from remote-state to local-state (left) or local-state to
remote-state (right), as triggered by the application (top) or by the network (bottom).

notifies the system orchestrator, which therefore
informs the broker to update the record for client
c. As a result, any future function invocation of
client c is forwarded to A{ by the broker. The
remote-state instance of function \j that was used
by c in its last invocation can be either deleted or
remains active for other clients.

For what concerns transition to remote-state
(see Figure 2 on the right), the starting point is
that any invocation from client c is forwarded by
the broker to the dedicated instance . When
the triggering event for the transition is fired,
the system orchestrator requires 5\2 to upload the
session state to the external service. When this
is done, the system orchestrator might decide to
create a new instance of remote-state function
A, or use the ones that already exist, if any.
The system orchestrator then tears down \{ and
notifies the broker to update the record for client
c. Any future invocation from c can be forwarded
by the broker to any remote-state instance of
function Aj.

In the next section we show, with the help
of a simple analytical model, that the benefits of
breaking the dichotomy remote-state/local-state

can be significant.

EVALUATION

In this section, we report the results obtained
with a simple analytical model, with the purpose
of showing the significant advantages that can
be expected by applying the proposed approach
and highlighting key open research directions
accordingly.

We consider two scenarios. In the first sce-
nario, a number of independent clients, with same
characteristics, issue function invocations towards
a pool of identical containers at the edge. To keep
the model simple, both the inter-time between
consecutive invocations and the function execu-
tion time are distributed exponentially: when a
function is treated as local-state, then its dedi-
cated container takes on average 1s to execute
the function; on the other hand, remote-state
functions require on average 3 s to be dispatched
by the container, because of the overhead to copy
back and forth the application state as discussed
previously.

We assume that the number of containers
provisioned is fixed and equal to 40 and that

Computer

50 clients —#
70 clients —®
90 clients ‘
35| 1l0clients 4
]
C} |
>
g 3dgg.
3 i AR S
® : 1 284
- ng®eg A . |
& g _%ee,
e 25f Tag %0e,, 4
g L Cago08
Tug L
ot
5 by 1
g
ua -
| P
15
0 5 10 15 20 25 30 35 40

Number of local-state containers

Figure 3. Average latency vs. number of containers
assigned to local-state functions, for 50, 70, 90, and
110 clients. The arrows point to the minimum of each
curve.

clients perform 4.5 function calls per minute.
Even in this simple scenario, the service provider
has one degree of freedom that it can use to
optimize the system performance: by employing
the network-triggered transition pattern (as in the
bottom of Figure 2) it can force some of the
functions to be treated as either remote-state or
local-state. A question the service provider might
ask is: how many containers should be dedicated
to local-state functions at any time, provided that
there are not enough for all the active ones?

Intuitively, there is the following trade-off: the
higher the number of local-state functions, which
enjoy a smaller delay due to i) lack of competition
at container level and ii) the local availability of
the state, the lower the containers available for
shared used by the remote-state clients, which
will suffer from increasing scarcity of resources.
The trade-off is shown in a quantitative manner
in Figure 3, which plots the average latency
(considering both the local-state and the remote-
state functions, weighted on their respective car-
dinalities) as the number of local-state containers
increases: after an initial period where dedicating
containers to local-state functions is beneficial,
a minimum is reached after which the average
delay increases again sharply until the system
becomes quickly unstable, i.e., the service queues
grow indefinitely. Such a behavior happens irre-
spective of the number of clients, but is more
pronounced with a higher population. The results
strongly suggest two key properties. First, a dy-
namic management allowing to switch between

2021

local- and remote-state functions can lead to very
significant performance advantages over static
configurations, and configuring the system at the
optimal operating point is fundamental. Second,
the optimal operating point varies significantly as
a function of the involved parameters (number of
clients, in this specific example), and thus trivial
optimization approaches may not be sufficient.
Both properties indicate that the role of an or-
chestrator taking non-trivial run-time decisions is
crucial to achieving optimal performance.

In the second scenario, we consider the case of
application-triggered transitions (as in the top of
Figure 2): the client applications decide by them-
selves whether they would prefer their functions
to be served local-state or they can accept being
treated as remote-state with no penalty for the
user. We model the transitions between the need
of being served in a local- vs. remote-state man-
ner as a two-state Markov chain, with different
combinations of the transition probabilities such
that the percentage of time a client application
requests its function to be served as local-state is
20%, 30%, and 40%. We then asked ourselves the
following question, again from the point of view
of the service provider: given a number of clients,
how many containers should be provisioned to
make sure that the system is stable (i.e., buffers
do not grow indefinitely) and the probability that
a given client requesting its function to be local-

|| | Local-state 20%
|| Local-state 30% i

Local-state 40%
09 | ° 1

08t |14 1
07 |
AAA

A A A
WAANAL A
WO

Minimum number of containers needed per client

0.6 . WAL A
v fk',!..,.‘. AL, RN
05 ﬁﬁh‘f”"““fffuf%a~f~f~a~a~a~e~$
04 ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 920 100

Number of clients

Figure 4. Minimum number of containers per client
required to guarantee that no more than 1% of the
functions requesting to be served as local-state are
served instead as remote-state, with increasing num-
ber of clients. We also varied the percentage of time
a function requests to be served as local-state (20%,
30%, and 40%).

state is treated as remote-state instead (due to a
shortage of containers) is small enough (e.g., less
than 1%)?

The answer is plotted in Figure 4 for a variable
number of clients. The plot shows the minimum
number of containers that are required to match
the service provider conditions per client. For in-
stance, with 10 clients and for client applications
requesting local-state 20% of the time, the plot
tells us that we need at least 0.7 containers/client,
i.e., 7 containers. These results can thus be used
to provision the number of containers, in accor-
dance with the Service Level Agreements (SLAs)
and other system constraints. It is interesting to
note that, as the number of clients increases, all
the curve stabilize around constant values (20%:
0.47; 30%: 0.55; 40%: 0.64), which depend on the
transition rates of the applications between local
and remote states, as well as the other load char-
acteristics. Therefore, such an analysis, extended
to take into account more realistic conditions and
the real characteristics of the target deployment,
could provide simple but precious rules for the
provisioning of a stateful FaaS system at the
edge (in this scenario, for example with 20%
local-state, the rule would be: make sure that the
number of containers is at least half the number
of clients).

USE CASES

Our vision of FaaS for edge computing can
empower emerging use cases in a resource-
efficient and performing way. The applications
that most benefit from our solution are state-
ful ones having requirements that dynamically
change over time. When the application has strict
requirements (e.g., latency), maintaining the state
locally should be preferred. However, this re-
quires the container to be a dedicated and long-
running resource, resulting in a non-negligible
cost. As a result, when application requirements
are looser, it may be more convenient to access
a remote (e.g., cloud-hosted) state and let more
users share the same container. This second ap-
proach is more resource- and cost-efficient but de-
grades performance due to high latency, queuing,
and increased network traffic. In what follows, we
briefly describe some use cases that present the
above dynamic characteristics and may therefore
take advantage of our idea.

Smart vehicles

Autonomous vehicles and Advanced Driver-
Assistance Systems (ADAS) are gaining momen-
tum as a way to enhance safety and reduce traffic
congestion. Our use case takes inspiration from
[13] and is depicted in Figure 5. Let us suppose
that a driver takes her blue car to travel back
home from the office, and that the car uses FaaS
with a function that is in charge of assisting the
driver. During regular driving, ADAS limits to
speed control and steering of the vehicle, which
have loose latency and throughput requirements
— 1000 ms and 0.2 Mbps, respectively [14] —
and the function runs as remote-state A\j. As
shown in the left side of Figure 5, the first invo-
cation of the function is forwarded to a container
running on edge node 1 (step 1). The invocation is
queued because the container has been previously
invoked by the yellow car (step 2). When the
blue car can be served, the A, container retrieves
the session state from a remote storage (steps 3
and 4), computes the response (step 5), forwards
it to the user’s car (step 6), and updates the
remote storage with the new session state (step
7). In step 8, Ay is again invoked. However,
this time, a container running on edge node 2
is invoked. As illustrated, the \; container has to
access the remote storage again to read and write
the session state. When the user reaches home,
as illustrated in the right side of Figure 5, the
function enters the autonomous parking routines,
which have tighter requirements — 10 ms and
100 Mbps, respectively [14]. As a result, the
function changes from remote-state to local-state:
as the logic is invoked in step 1, the session state
is retrieved from the remote storage to instantiate
the function as a local-state container \{’, and all
the next invocations of the function are forwarded
to the same instance and do not need any access
to the remote storage (e.g., steps 6-8).

Smart factory

This use case is based on [15] and [16]. In a
smart factory, a robotic arm periodically sends
information on its operation (e.g., positioning,
temperature of the CPU, temperature of the case)
to a monitoring service. Under normal condi-
tions, the monitoring service can be a remote-
state function invoked on demand. This allows
more robotic arms in the manufacturing plant to

Computer

Cloud

Edge

Device

pnoig

abp3

801A9(]

Figure 5. On the left, remote-state containers run a regular driving logic; on the right, a local-state container

runs an autonomous parking logic.

share the same container, thus saving resources.
However, when the monitoring service predicts
an abnormal functioning, the sampling frequency
at the robotic arm increases, and the monitoring
service is deployed as a local-state container ded-
icated to the malfunctioning arm. This is indeed
necessary for prompt reactions, e.g., emergency
stops, that avoid damages to the arm and people
in the vicinity. We nonetheless highlight that the
remaining (faultless) robotic arms can continue
to invoke the monitoring service using (shared)
remote-state containers. This use case, as well
as the previous one, shows how our approach
could meet dynamically changing requirements of
applications, while providing resource efficiency.
For instance, recalling insights from the previous
section, the service provider can provision a total
number of containers that is lower than the num-
ber of robotic arms and still meet the dynamic
requirements of each of them.

RELATED WORK

Some scientific papers have addressed already
the problem of state handling in FaaS. In [17],
authors present a prototype implementation of
a FaaS platform for edge computing based on
Apache OpenWhisk. They propose local-state

2021

functions, such that each instance keeps its state
locally and is associated with a unique session
token that distinguishes it from other instances.
In [18], authors propose Skippy, a container
scheduling system that optimizes the placement
of remote-state functions in the cloud-edge con-
tinuum based on (potentially) conflicting aspects
such as: (i) location of edge storage nodes that are
accessed by functions; (ii) location of container
base image registries; (iii) hardware capabilities
of edge nodes; (iv) location of node (either edge
or cloud). Cloudburst [19] is a solution designed
for cloud data centers, with the main goal of im-
proving performance of storage access by remote-
state functions. Authors assume a composition
of functions that share a state and make up
a complex application. A centralized key-value
store is shared among the functions. However,
accessing this store involves high latency. There-
fore, Cloudburst introduces a data cache on each
compute node, which is accessible by all and
only the function instances running on that node.
These works show that there is a growing interest
on the topic of stateful functions in FaaS, but none
of them have considered that a single function
could dynamically adapt its nature, remote-state
or local-state, depending on the environment,

10

which is our key value proposition.

CONCLUSIONS

In this paper, we have considered the execu-
tion of stateful functions at the edge, which is an
emerging necessity especially for real-time IoT
applications. We have defined a generic model
where functions can execute either in a stateful
container dedicated to the given application in-
stance (local-state functions), or in a pool of state-
less containers with the need to access the state
of the application instance in a remote facility
(remote-state functions). We have illustrated two
example use cases, i.e., smart vehicles and smart
factory, to show that the system under study has
potential impact on applications of high economic
and social impact. Using a simple model we have
then shown that there are interesting performance
trade-offs, in terms of (e.g.) the application la-
tency and the amount of resources used.

Our contribution is merely intended to raise
awareness on the potential of unleashing depen-
dence from the state at design/development stage.
Such an approach shows significant potential in
terms of performance improvements over static
designs and opens several research challenges on
how to optimize the system operation (maximiz-
ing clients’ revenue under constrained resources?
minimizing the system costs under minimum tar-
get application performance?) by executing the
remote-state <> local-state transition depending
on the internal status of the application (training
vs. inference for a continual learning ML ap-
plication; regular operation vs. alarm condition
for a monitoring system, etc.) and the edge run-
time environment (load of edge nodes and their
amount of memory/storage available; instanta-
neous network traffic in the edge; amount of
outbound traffic; function response times, etc.).

Acknowledgements

This work was partially supported by the
European Commission (Horizon 2020) in the
framework of the project "Multimodal Extreme
Scale Data Analytics for Smart Cities Environ-
ments (MARVEL)” under Grant Agreement no.
957337, and by the Italian Ministry of Education
and Research (MIUR) in the framework of the
CrossLab project (Departments of Excellence).

B REFERENCES

1.

10.

11.

E. van Eyk, J. Grohmann, S. Eismann, A. Bauer, L. Ver-
sluis, L. Toader, N. Schmitt, N. Herbst, C. L. Abad,
and A. losup, “The SPEC-RG reference architecture for
FaaS: From microservices and containers to serverless
platforms,” IEEE Internet Computing, vol. 23, no. 6, pp.
7-18, Nov. 2019.

S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger,
J. Grohmann, N. Herbst, C. Abad, and A. losup, “The
State of Serverless Applications: Collection, Character-
ization, and Community Consensus,” [EEE Transactions
on Software Engineering, vol. 5589, no. c, pp. 1-1,
2021.

V. Yussupov, J. Soldani, U. Breitenbcher, A. Brogi,
and F. Leymann, “Faasten your decisions: A classifica-
tion framework and technology review of function-as-
a-service platforms,” Elsevier Journal of Systems and
Software, vol. 175, May 2021.

R. Xie, Q. Tang, S. Qiao, H. Zhu, F. R. Yu, and T. Huang,
“When serverless computing meets edge computing:
Architecture, challenges, and open issues,” IEEE Wire-
less Communications, vol. 28, no. 5, pp. 126—133, Jul.
2021.

W. Z. Khan, E. Ahmed, S. Hakak, |. Yaqoob, and
A. Ahmed, “Edge computing: A survey,” Elsevier Future
Generation Computer Systems, vol. 97, pp. 219-235,
Aug. 2019.

S. Misra and S. Bera, “Soft-VAN: Mobility-aware task of-
floading in Software-Defined Vehicular Network,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 2, pp.
2071-2078, Feb. 2020.

M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi,
P. Sbarski, D. Taibi, M. Assuncao, S. S. Gill, R. K. Gaire,
and S. Dustdar, “Serverless Edge Computing: Vision
and Challenges,” in Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2021), 2021.

P. G. Lopez, A. Slominski, M. Behrendt, and B. Metzler,
“Serverless Predictions: 2021-2030,” pp. 1-7, 2021.
[Online]. Available: http://arxiv.org/abs/2104.03075
Microsoft, “Entity functions,” Dec. 2019, last
accessed: June 24th, 2021. [Online]. Available: https:
//docs.microsoft.com/en-us/azure/azure-functions/
durable/durable-functions-entities ?tabs=csharp
Cloudflare, “Durable objects,” Sep. 2020, last accessed:
June 24th, 2021. [Online]. Available: https://developers.
cloudflare.com/workers/runtime-apis/durable-objects
Amazon, “Run Lambda functions on the AWS IloT
Greengrass core,” Mar. 2019, last accessed: June 24th,

2021. [Online]. Available: https://docs.aws.amazon.

Computer

http://arxiv.org/abs/2104.03075
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp
https://developers.cloudflare.com/workers/runtime-apis/durable-objects
https://developers.cloudflare.com/workers/runtime-apis/durable-objects
https://docs.aws.amazon.com/greengrass/v1/developerguide/lambda-functions.html#lambda-lifecycle

com/greengrass/vi/developerguide/lambda-functions.
html#lambda-lifecycle

12. C. Cicconetti, M. Conti, and A. Passarella, “A Decentral-
ized Framework for Serverless Edge Computing in the
Internet of Things,” IEEE Transactions on Network and
Service Management, vol. 18, no. 2, pp. 2166—2180,
2020.

13. W. Wachenfeld, H. Winner, J. C. Jerdes, B. Lenz,
M. Maurer, S. Beiker, E. Fraedrich, and T. Winkle, “Use
cases for autonomous driving,” in Autonomous driving,
M. Maurer, J. C. Jerdes, B. Lenz, and H. Winner, Eds.
Springer, May 2016, ch. 2, pp. 9-37.

14. Huawei, “5G Opening up new business
opportunities,” Tech. Rep., Aug. 2016, last
accessed: June 3rd, 2021. [Online]. Available:

https://www.huawei.com/minisite/hwmbbf16/insights/
5g_opening_up_new_business_opportunities_en.pdf

15. M. Kohler, “Industry 4.0: Predictive mainte-
nance use cases in detail” Sep. 2020, last
accessed: June 3rd, 2021. [Online]. Avail-

able: https://blog.bosch-si.com/industry40/industry-4-
0-predictive-maintenance-use-cases-in-detail/

16. F. E.R. Cesen, L. Csikor, C. Recalde, C. E. Rothenberg,
and G. Pongracz, “Towards low latency industrial robot
control in programmable data planes,” in IEEE 6th Con-
ference on Network Softwarization (NetSoft), Jul. 2020,
pp. 165-169.

17. L. Baresi and D. Filgueira Mendona, “Towards a server-
less platform for edge computing,” in IEEE International
Conference on Fog Computing (ICFC), Jun. 2019, pp.
1-10.

18. T. Rausch, A. Rashed, and S. Dustdar, “Optimized
container scheduling for data-intensive serverless edge
computing,” Elsevier Future Generation Computer Sys-
tems, vol. 114, pp. 259-271, Jan. 2021.

19. V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E.

2021

Gonzalez, J. M. Hellerstein, and A. Tumanov, “Cloud-
burst: stateful functions-as-a-service,” in ACM VLDB
Endow., Jul. 2020, pp. 2438-2452.

Carlo Puliafito has a PhD in Smart Computing jointly
from the Universities of Florence and Pisa (ltaly). He
is a research fellow at the University of Pisa. His re-
search interests include edge computing and Internet
of Things. Contact him at carlo.puliafito@ing.unipi.it.

Claudio Cicconetti has a PhD in Information Engi-
neering from the University of Pisa (ltaly) and he is a
Researcher at [IT-CNR. He is interested in serverless
edge computing and Quantum Internet architecture
and protocols. Contact him at c.cicconetti@iit.cnr.it.

Marco Conti is the Director of IIT-CNR. He
is interested in design, modelling, and perfor-
mance evaluation of computer and communica-
tions systems, and their use for decentralized so-
lutions for self-organizing networks. Contact him at
m.conti@iit.cnr.it.

Enzo Mingozzi is a Full Professor with the Depart-
ment of Information Engineering, University of Pisa,
Italy. He received a PhD in Computer Systems Engi-
neering from the same university. His research inter-
ests span several areas, including resource optimiza-
tion in wireless and wired networks, mobile Edge/Fog
Computing and the Internet of Things. Contact him at:
enzo.mingozzi@unipi.it.

Andrea Passarella has a PhD in information engi-
neering awarded by the University of Pisa (Italy). He
is a Research Director at IIT-CNR and Head of the
Ubiquitous Internet Group. He is interested in content-
centric networks, Internet of People, and explainable
Al. Contact him at a.passarella@iit.cnr.it.

11

https://docs.aws.amazon.com/greengrass/v1/developerguide/lambda-functions.html#lambda-lifecycle
https://docs.aws.amazon.com/greengrass/v1/developerguide/lambda-functions.html#lambda-lifecycle
https://www.huawei.com/minisite/hwmbbf16/insights/5g_opening_up_new_business_opportunities_en.pdf
https://www.huawei.com/minisite/hwmbbf16/insights/5g_opening_up_new_business_opportunities_en.pdf
https://blog.bosch-si.com/industry40/industry-4-0-predictive-maintenance-use-cases-in-detail/
https://blog.bosch-si.com/industry40/industry-4-0-predictive-maintenance-use-cases-in-detail/

	STATEFUL FAAS AT THE EDGE
	EVALUATION
	USE CASES
	Smart vehicles
	Smart factory

	RELATED WORK
	CONCLUSIONS
	REFERENCES
	Biographies
	Carlo Puliafito
	Claudio Cicconetti
	Marco Conti
	Enzo Mingozzi
	Andrea Passarella

