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Abstract—Offloading computation from user devices to nodes
with processing capabilities at the edge of the network is a major
trend in today’s network/service architectures. At the same time,
serverless computing has gained a huge traction among the cloud
computing technologies and has, thus, promoted the adoption of
Function-as-a-Service (FaaS). The latter has some characteristics
that make it generally suitable to edge applications, except for
its cumbersome support of stateful applications. This work is set
to provide a broad view on the options available for supporting
stateful FaaS, which are distilled into four reference execution
models that differ on where the state resides. While further
investigation is needed to advance our understanding of the
opportunities offered by in-network computing through stateful
FaaS, initial insights are provided by means of a qualitative
analysis of the four alternatives and their quantitative comparison
in a simulator.

Index Terms—Edge computing, Serverless, Function-as-a-
Service, Distributed computing, In-network intelligence

I. INTRODUCTION

Today we are witnessing the transition of service provision-
ing from cloud-centric to edge-centric [1]: centralizing storage
and processing in data centers is now showing its limitations
for a wide class of scenarios where a significant amount of
traffic is generated/consumed at the edge of the network, or
which include applications that cannot tolerate the latencies
associated to reaching the cloud [2]. All these applications
require offloading (part of) their computation tasks to external
elements with processing capabilities, e.g., because their local
resources are CPU- or memory-limited or to save power since
they have constrained energy availability [3]. Furthermore,
they do not always need long-term storage of their transac-
tions. Thus, in-network processing is a much better option
than centralizing computation in a cloud platform, since this
keeps processing close to where data are actually used, which
can be also an additional benefit in terms of privacy [4].

Serverless computing is thriving among cloud providers as
the next step of evolution from Infrastructure as a Service
(IaaS) and Platform as a Service (PaaS). With serverless, the
service providers are offered an extremely light abstraction
of the physical computation resources: they simply need to
upload a container image, while orchestration, monitoring,
and scaling are handled by the platform [5]. All serverless
platforms support a programming model called Function as
a Service (FaaS), where the basic unit of computation is
the function: developers can focus on the implementation of
elementary units with well-defined input vs. output, while
providers compose such functions into chains of invocations
to offer complex services to the end users [6]. In principle,
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due to its programming simplicity, FaaS is a good candidate
for in-network processing at the edge of the network, and
some studies show promising results in this direction [7].
However, many practical applications are made of stateful
tasks. In [?] the authors discuss the issues they had to face
in the migration of some micro-service-based applications to
serverless, which required defining ad hoc solutions for state
management. Examples of applications include a real-time
collaborative LATEX editor, where the state is the document
being edited, and an e-commerce application, where the state
is the list of items in the basket. In Internet of Things (IoT)
applications, which are even more relevant at the edge, com-
monly the tasks have a strong dependency from one another
as they compose Machine Learning (ML) pipelines, where
the state are the models or windows of observations [8]. To
manage the state, cloud serverless platforms include backend
services for state synchronization and data exchanges between
function execution [10]: however, the use of these services
incurs additional costs, increases vendor lock-in, and violates
the underlying pure functional paradigm. Indeed, efficient
state management has been identified as a critical open issue
in the position paper [11]. At the edge, the above issues
are exacerbated by the decentralized nature of computation
elements over geographical distances, the limited capabilities
of edge nodes (compared to high-end servers in a data center),
and the possible presence of multiple competing platform
providers in the same area [12].

In this paper we first very briefly survey serverless works in
the literature that are particularly relevant to aspects related to
edge computing systems (Sec. II). We then focus on the exe-
cution of stateful functions at the edge, for which we propose
four models in Sec. III, which are compared via simulation in
Sec. IV. This work sets the scene for further research activities
on the emerging topic of in-network computing at the edge
through serverless/FaaS, as discussed in Sec. V.

II. RELATED WORK

Serverless computing only recently began expanding to-
wards edge deployments (see [12]). In addition to a more effi-
cient execution of functions on edge devices, which have more
limited capabilities than their cloud counterparts, deploying
at the edge requires modifications to the system architecture.
For instance, in [13] the authors investigate the possibility
to decentralize control to local edge networks, as opposed
to manage resources in a fully centralized manner. Also the
problem of allocating applications, consisting of multiple inter-
related functions, to edge nodes has been studied in some
works, for instance, in [14] the authors propose a mathemat-
ical formulation of the problem taking into account different



cost categories (activation, placement, proximity, sharing), for
which they put forward offline and online heuristic algorithms.

Another key research challenge is how to support data-
intensive applications: in [8] the authors focus on selecting
the best edge nodes for the execution of functions that match
the application requirements and data locations. In this work,
instead, we explore the concept of stateful FaaS in an open
manner, and envision the generic mechanisms to support
stateful serverless applications at the edge. We have taken
inspiration from [15], where we have proposed to dispatch
stateless functions using lightweight brokers installed at each
edge node, and [16], which defines an architecture where
stateless micro-services can be deployed anywhere in the
device-to-cloud continuum, while stateful components operate
in the device or the cloud only.

III. EXECUTION MODELS OF STATEFUL FAAS

In this section, we introduce some terminology and funda-
mental concepts of cloud serverless. Afterwards, we explain
in Sec. III-B how the fundamental design principles of cloud
serverless are violated at the edge, and introduce four exe-
cution models of stateful FaaS (Sec. III-C), with a focus on
execution of Directed Acyclic Graphs (DAGs) applications,
see Sec. III-D.

A. Serverless in the cloud

The typical execution model of FaaS in cloud serverless
is illustrated in Fig. 1. The clients invoke the execution of
functions (e.g., f(·) and g(·) in the figure) by providing their
input xi and expecting a return value yi. All the invocations
are directed towards a logically centralized entry point, which
performs load balancing towards one of the workers, i.e.,
instances of containers of matching type in a virtualized
infrastructure, managed by an orchestrator.

A function may require accessing the state of an application:
this is done through an external service providing persistence,
such as a database; in our figure this is represented by the
execution of f(xi, si) and g(xj , sj), where si and sj are
the states bound to the application in execution at clients
i and j, respectively. Commercial cloud service providers
encourage using services in the same ecosystem to disguise
stateful operations as stateless, since this increases billing and
vendor lock-in. This model highlights the following implicit
assumptions of serverless/FaaS:
1. Access to the state is cheap: in commercial systems the

state repository in Fig. 1 is located in the same data center
as the serverless platform, and the state usually consists of
a small amount of data that can be retrieved/updated with
a single query.

2. Location of workers is irrelevant: since all the workers run
in containers managed by the same orchestration platform,
the physical location of a worker in general can be assumed
to have a negligible impact on the performance: in [17] the
authors have found that cold-start effects are dominated by
the creation and initialization of containers’ namespaces,
rather than other location-dependent effects.

Fig. 1. FaaS execution model in serverless cloud.

3. Location of clients is irrelevant: as shown in Fig. 1, there is
a full separation between the clients (in the Internet) and the
serverless platform services (in the data center), their only
point of contact being the load balancer, which is logically
centralized and located within the cloud domain.

B. Serverless at the edge

A reference scenario of edge computing is illustrated in the
top left part of Fig. 2: edge nodes have compute capabilities
that can be used to provide services to clients, which reach
them via access networks created by access points and internal
connectivity provided by edge network devices. The scenario
may represent a smart city with sensing nodes or an industrial
IoT deployment with embedded devices with constrained
resources.

Some of the edge elements may have an Internet connection,
but, in general, reaching the cloud cannot be considered to
be cheap like for cloud serverless. In fact, one of the driving
motivations of edge computing is that it reduces the application
latency since computation happens close to the clients: if the
edge nodes have to reach the cloud to retrieve/update the
application state as part of the function invocation procedure,



Fig. 2. Four stateful FaaS execution models in serverless edge: a) external; b) in-edge; c) in-function; d) in-client.

then the edge advantage may simply vanish (violation of
assumption 1.).

Furthermore, edge networks may be very heterogeneous, in
terms of both the compute capabilities of the nodes (ranging
from single-board computers to full-fledged servers) and the
communication links: therefore, the function invocation perfor-
mance depends very much on the location of the worker, unlike
what happens in a cloud deployment (violation of assumption
2.).

Finally, in edge networks there is no clear separation be-
tween clients and processing nodes: the users are interspersed
in the same network connecting the edge nodes to one another.
As a result, the location of the clients matters a lot in deter-
mining the overall quality of the performance they perceive,
because the cost to reach a node is not uniform across all the
clients (violation of assumption 3.).

In summary, none of the design assumptions of cloud
serverless (Sec. III-A) hold at the edge: this is particularly
problematic for stateful functions, since they are less flexible
regarding their lifecycle and incur an additional overhead to
access the state.

C. Stateful FaaS execution models

In the following we illustrate four models for the exe-
cution of stateful FaaS in an edge network, with different
characteristics. This analysis is a step forward towards the
definition of better solutions to support (stateful) FaaS at the
edge under different application constraints and deployments:
this is an open area of investigation, whose importance is
steadily increasing thanks to the widespread diffusion of edge
computing and the growing appeal of serverless for not only
mobile but also IoT and data analytics applications.

The four models are shown with the help of the example
in Fig. 2. The first model (Fig. 2a) is a straightforward trans-
position of cloud serverless to an edge network: the workers
remain in fact stateless, as they access the state on demand
via external services in the cloud. We thus call this model
external. It has the advantage that a function developed for the
cloud can be deployed at the edge without any modifications.
However, there is a cost for reaching the state repository in
the cloud, which has to be paid in terms of application latency
and outbound traffic.

Our second model, called in-edge (see Fig. 2b), is similar



to the previous one, but with an important difference: the
functions remain stateless, but the state-associated data are
kept by the edge nodes themselves. This removes the eco-
nomic/performance burden of accessing external services, but
requires data distribution agents to be deployed on heteroge-
neous and resource-constrained nodes, possibly with limited
connectivity. An in-edge model is proposed, for instance, by
Cloudstate (https://cloudstate.io/), which relies on
a commercial system (Akka) to manage the applications’ state
in a distributed manner. However, to the best of our knowledge,
a general-purpose definitive solution has not yet been found.

A different approach is shown in Fig. 2c, where the state
of a function for a given application instance is kept within
the worker itself, called in-function. In FaaS, the developer
is not allowed to use local resources to keep persistent data,
whereas with this model such a feature must be provided by
the serverless platform and used by the programmer. In this
model there is a mapping between a given application context
and its worker, which outlasts a single invocation: we represent
this in the figure with a single container being present in the
edge network, towards which all functions invocations of that
client must be directed. The in-function model is expected to
perform better than the others, because it does not require any
transfer of information for the function to retrieve/update the
state and it allows exploiting data locality (e.g., hot caches).
The in-function model can be realized via the integration
of a system-wide serverless framework with an underlying
Kubernetes (K8s), as in [8], which proposes to influence the
scheduling of K8s by adjusting its internal weights based on
metadata specified by the application developers.

Finally, in Fig. 2d we illustrate in-client, where the state
is embedded in the function arguments (so that it can be
read by the container executing the function) and in the
return value (so that a modified state can be returned to the
client). The client remains the sole owner of the state, whose
ownership is delegated only temporarily for the execution
of a single function invocation. This way, the containers are
in fact stateless, as in external and in-edge, and consecutive
invocations of the same function from the same client may
happen on different edge nodes, as shown in the example.
The traffic never leaves the edge network, but in-client may
increase the amount of internal traffic generated because the
state has to be piggybacked on every function invocation
exchange, which is instead unnecessary with the other models.
Furthermore, the serverless framework has to provide a means
for the client to embed the state in the arguments and return
value.

To summarize:
– All the models identified, except in-function, can be used

jointly with scheduling policies to dispatch the function
invocation requests towards any of the currently available
containers that can serve requests of matching types: this
can be exploited to follow short-scale variable load/network
conditions as in [15].

– In-function, instead, uses stateful containers. Therefore, it
must rely on container migration to optimize the perfor-

Fig. 3. Example of in-client FaaS execution of an application composed of
three functions in a DAG, where only f2 requires access to the application’s
state.

mance by adapting to the changing environment; migration
may incur a non-negligible cost in terms of unavailability,
negatively impacting the quality perceived by the applica-
tion [18], and hence cannot be done too frequently.

– In-client is the only model offering a straightforward op-
portunity to enable multi-tenant applications: since the client
owns its data, it is possible to use multiple service providers
at the same time, which might coexist in the same geograph-
ical area or even in the same virtualized infrastructure, thus
contributing to the removal of dreaded vendor lock-ins.

D. Execution of DAGs

One of the most appealing features of FaaS is that it allows
the creation of complex workflows by combining functions,
so that the input of a function is the output of one or more
preceding functions arranged in a DAG. An example is shown
in the top part of Fig. 3, where the final output to the user is
given by f3(·), which takes as input the output of f1(·) and



f2(·), the latter also depending on the persistent state S bound
to the specific application instance.

All the models in Sec. III-B, illustrated in Fig. 2, can be
adopted in a straightforward manner by a serverless platform
that allows the composition of functions in DAGs. For the in-
client model, we show in the bottom part of Fig. 3 the sequence
of function invocation exchanges to realize the example DAG
at the top of the figure. As can be seen, when the client invokes
f2 it embeds the state S in the function arguments together
with out12, i.e., the output of f1 intended for f2.

IV. PERFORMANCE EVALUATION

We have carried out a high-level performance evaluation of
the execution models described in Sec. III. Due to the absence
of publicly available data from real edge deployments, we have
created our dataset for the simulation using the technique of
workload composition:
– for the network we have used “ether: Edge Topology

Synthesizer”, with a pre-configured topology model for an
Industrial Internet of Things (IIoT) scenario [8], including
a mix of hardware architectures and communications links;

– for the workload we have started from DAG traces gen-
erated by “Spår: Cluster Trace Generator” [19], which we
have transformed into a linear chain of stateful function
invocations, with CPU/memory requirements and hardware
architecture affinity.
Our methodology follows a Monte Carlo approach: for a

given set of configuration parameters we extract 200 random
subsets of jobs, each made of a chain of heterogeneous
function invocations with different length, and perform an
assignment of function invocations to the edge nodes with
processing capabilities. The assignment is done using a greedy
online algorithm that selects for every function of every
job (sorted randomly) the edge nodes that minimizes the
response time, according to one of two assignment policies:
(i) processing time only (Load), vs. (ii) processing time +
transfer time for input arguments, return values, and states
(Load+net). Such assignment assumes global knowledge of
the network and task execution times. We then measure the
response time, due to processing and network transfer, of each
chain of function invocations, with the four execution models
in Sec. III-B. For the external model we assume that access
to the cloud has an RTT of 120 ms and a bandwidth of
50 Mb/s [20]; for the in-edge model, for simplicity we did not
simulate a distributed storage system, but rather we assumed
that the state repository is located in the central node of the
topology. The simulator used has been released as open source
and the instructions to fully reproduce the results are avail-
able on GitHub (ccicconetti/serverlessonedge, tag
v1.1.1, simulations 002).

In Fig. 4 we show the traffic generated per function chain
with the four models as the load increases from 100 to 500
jobs, with the two function assignment policies. With Load,
in-client execution incurs greatest network overhead, because
the functions tend to be allocated always towards the center of
the network, which has most powerful servers. However, with
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Fig. 5. Total latency (processing and network), with Load+net allocation
strategy, all execution models, and 500 jobs.

Load the traffic is much higher than that with Load+net for
all execution models, which may jeopardize the edge network
resources and also negatively impact the quality experienced
by the applications. Hence, in the following we focus on the
Load+net allocation strategy only. With the latter, the traffic
increases slightly with the load, and in-edge exhibits the worst
performance, while all the other execution models have similar
performance.

For the representative case of Load+net and 500 jobs,
we report in Fig. 5 the total latency of all the jobs across
all the random subsets, sorted and normalized in [0, 1]. As
can be seen, external and in-edge yield a much higher latency
than the others, with in-function performing only slightly better
than in-client. The results show that in-function achieves best
performance, which however comes at the cost of adding
protocol complexity and limiting the opportunities for platform
optimization, as explained in Sec. III-B. On the other hand,
even though in-client incurs additional overhead due to the



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2  4  6  8  10  12  14  16  18  20  22  24

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
cy

 (
m

s)

Number of functions in the chain

external
in-edge
in-function
in-client
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need of piggybacking the required state of a function on the
input arguments and return value, in our scenario the overall
function response times are smaller than with external and
in-edge.

We conclude with a deeper insight on the latency due to
the network transfers only in Fig. 6, combining together jobs
with the same chain length. The sharp increase of all curves
for longer function chains is because they tend to be more
heavyweight in the Spår-generated traces, in accordance with
the real ones from Alibaba. With all the execution models
the average latency increases with the chain length; however,
such an increase is more evident with the external and in-edge
models. Finally, the in-client strategy deviates in a noticeable
manner from in-function only for the jobs with longest chains.

V. CONCLUSIONS AND OUTLOOK

In this paper we have provided an overview of the nascent
topic of stateful FaaS to support in-network computing. We
have identified four reference execution models: external,
where persistence is provided by an external service in the
cloud (current standard); in-edge, which envisions distributing
the data within the edge nodes themselves; in-function, where
the state remains into a stateful instance of the function’s
container; and, in-client, where the client’s device is the
sole owner of the application’s state. The four models have
different implications on the architecture and protocols, and we
envisage that further research is required to determine which
one is best for a given deployment or set of edge applications.
As an initial step in this direction, we have built a trace-
driven simulator to identify the traffic overhead and latency.
Our results have shown that in-client is very promising since
it can surpass external and in-edge, while providing users with
almost same performance as in-function, despite being simpler
and more amenable to system-wide optimization.
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