

FAIR Data Analysis Services
for Photon and Neutron Science: VISA

16th September 2022

Jean-François Perrin (ESRF - PaNOSC)

Projects Cheat Sheet

EU Call	HORIZON 2020 INFRA-EOSC-04	HORIZON 2020 INFRA-EOSC-5B
Description	Cluster of ESFRI PaN Sources	EOSC PaN Data Services
Partners	ESRF, ILL, ESS, EU-XFEL, CERIC-ERIC, ELI-DC, EGI	DESY, ALBA, DLS, ELETTRA, EGI, HZB, HZDDR, Max IV, PSI, Soleil, UKRI
Observers	GEANT EU-DAT National RI's	
Linked 3 rd Party	DESY STFC CESNET	
Start – End (Duration)	2018-12-01 – 2022-11-30 [4 Years]	2019-09-01 - 2023-02-28 [3 ½ Years]
Coordinators	A. Götz, G. Bodera	P. Fuhrmann, S. Servan
Budget	12 M Euros	6 M Euros
Home Page	PaNOSC.EU	ExPaNDS.EU
Twitter	@PaNOSC_eu #PaNOSC	@ExPaNDS_eu #ExPaNDS
GitHUB	github.com/panosc-eu	Github.com/expands-eu

PaN facilities involved in PaNOSC or ExPaNDS

PaNOSC

ExPaNDS

Photon (LEAPS)

Neutron (LENS)

Some key achievements of these projects

- FAIR data policy framework
 - https://doi.org/10.5281/zenodo.3738497
- E-learning platform
 - https://pan-training.eu/
- FAIR data management practices
 - Data catalogue for all RI
 - Common APIs to access data
 - PIDs for data
 - DMPs
 - •
- Data transfer solutions
- Community AAI ready for EOSC
- Development and deployment of Data Analysis Services

High level objectives for Data Analysis Services

- Keep the high level of RI users' scientific articles production despite the growing complexity of experiments (volume of datasets, ...)
- Contain the necessary time for RI users to publish their work after experiments
- Try to get data processing as FAIR as possible (especially Findable and Reproducible)
- Keep the RI computing infrastructure a safe place for research activities
- Running cost for RIs as low as possible

Data Analysis Services

- Jupyter Notebooks
- Desktop interface in a web browser

Specifications ...

- Simplify the processing activities for RI's users
 - Has to be a remote service (Web)
 - Should avoid transfer of data, data should be available for processing
 - All necessary processing software should be ready to be used
 - Computing resources should be available
 - Support from RI experts (Scientific and/or technical) should be simplify
- Traceability and reproducibility of data processing (FAIR)
 - Notebooks when possible (preservation of the processing workflow)
 - At least preservation of data and software
- Cybersecurity
 - Isolate these services as much as possible from the production RI networks.
 - Keep this service up to date in regards to security patches.

— ...

VISA: Virtual Infrastructure for Scientific Analysis

- Provides remote data analysis services in a web browser with access to
 - Experimental data
 - Analysis software
 - Compute infrastructure
 - Support (IT and Scientific)
- Makes access as simple as possible using a web browser
 - Remote desktop as if the user was sitting in front of an RI data treatment workstation
 - Jupyter Notebook environment
 - Easy and flexible machine management
- Allow scientific collaborations and support
 - Sharing remote desktops in real time
- Remote experiments (ILL Specific for now)
 - Access the Instrument Control Software to perform remote experiments

Users view – typical workflow

- 1. Login
- Selects an experiment to associate to the machine
- Customises the machine (CPUs, Memory, GPU, Screen resolution, ...)
- The machine is being created (10s to 20s)
- 5. Starts processing either using the desktop interface either using the Jupyter notebook one
- 6. Can share the interfaces with colleagues, or RI staff for support
- 7. Processing data (results) and notebooks are saved alongside the RAW data
- 8. The machine is deleted after N days or few days of inactivity, users are informed and can request extension.

Users view

- Users get access to a desktop (like if they were on sitting on the RI's site) or jupyter interface.
- They can exchange with other scientists and receive support through screen sharing

Deployment

- Initially developed by the ILL (Institut Laue Langevin)
 - ILL rolled out VISA early 2020
 - 1,164 distinct users from 38 countries
 - 8,290 VM/instances created
 - **70,000** connections
 - https://visa.ill.fr/

- Further developed inside PaNOSC to fit the needs of the different partners
 - Access to HPC resources, GPU availability, ...
 - Software provisioning and software preservation solutions (containers)
 - How to handle the need for windows software
 - What about using VISA for mass training?
- Currently, in deployment by all partners
 - Pilots with some BLs
 - Some are starting to open: https://visa.esrf.fr/ ...

VISA is open source (GPL-3.0 License) https://github.com/ILLGrenoble

VISA is fully documented

https://visa.readthedocs.io/en/latest/index.html

Thank you for your attention

Time for demonstrations

Special thanks to Jamie Hall & Stuart Caunt (ILL) who are the main developers and have largely contributed to this presentation.

https://www.panosc.eu/news/new-video-released-on-visa-virtual-infrastructure-for-scientific-analysis/

