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Figure 1: Our network predicts image error metrics for real-time use cases, such as variable rate shading (VRS). The shading rate
(□ full, ■ fine, ■medium, ■ coarse) is selected for each image region based on a neural network’s prediction from G-buffer data.
In addition to established metrics (e.g., FLIP), we can learn Weber-corrected variants (JNFLIP) that respect perceptual context.

ABSTRACT
Visual error metrics play a fundamental role in the quantification of
perceived image similarity. Most recently, use cases for them in real-
time applications have emerged, such as content-adaptive shading
and shading reuse to increase performance and improve efficiency.
A wide range of different metrics has been established, with the
most sophisticated being capable of capturing the perceptual char-
acteristics of the human visual system. However, their complexity,
computational expense, and reliance on reference images to com-
pare against prevent their generalized use in real-time, restricting
such applications to using only the simplest available metrics. In
this work, we explore the abilities of convolutional neural networks
to predict a variety of visual metrics without requiring either refer-
ence or rendered images. Specifically, we train and deploy a neural
network to estimate the visual error resulting from reusing shading
or using reduced shading rates. The resulting models account for
70%–90% of the variance while achieving up to an order of magni-
tude faster computation times. Our solution combines image-space
information that is readily available in most state-of-the-art de-
ferred shading pipelines with reprojection from previous frames
to enable an adequate estimate of visual errors, even in previously
unseen regions. We describe a suitable convolutional network ar-
chitecture and considerations for data preparation for training. We
demonstrate the capability of our network to predict complex error
metrics at interactive rates in a real-time application that imple-
ments content-adaptive shading in a deferred pipeline. Depending
on the portion of unseen image regions, our approach can achieve
up to 2× performance compared to state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies→ Rasterization;Machine learn-
ing.

1 INTRODUCTION
The quest for more realistic and interactive rendering has led to a
race for ever-increasing display resolutions and refresh rates in the
hardware market. At the same time, shading costs also keep increas-
ing due to higher software shading complexity and the intricacy
of effects being used. Neither trend is expected to halt, especially
considering the recent introduction of GPUs with real-time ray-
tracing capabilities and the surge in popularity of virtual reality
(VR) headsets, as visual quality for VR requires much higher reso-
lutions and framerates than regular screens for the same level of
perceived visual fidelity.

In light of these developments, the perceptual relevance of each
pixel can change drastically depending on the view configuration
and the content being viewed. To exploit this fact in real-time appli-
cations, both software and hardware solutions have recently been
proposed for dynamically and locally reusing rendering informa-
tion from previous frames [26] or changing the shading resolution
across the screen depending on the displayed content [12, 39]. How-
ever, the key question then becomes: how does one choose how
to render each region of the screen, not knowing the end result
of the shading operations? The status quo is to use recent, repro-
jected renderings to estimate perceptual error metrics for selecting
between different (reduced) rendering modes. This comes with two
limitations:

(1) Only metrics that can be estimated from previous render-
ings in a computationally efficient manner may be used.
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This rules out most image metrics, with simple estimates
becoming the norm among perceptual problems.

(2) Estimation is only possible for previously seen content. The
higher the amount of motion in the scene (and thus the
frequency of disocclusion of previously unseen regions),
the smaller the impact of these methods becomes.

In this work, our goal is to enable the use of arbitrary metrics
in real-time applications and their efficient prediction, even for
previously unseen regions of the scene resulting from, e.g., fast
camera movement. We present a convolutional neural network
(CNN) that takes as input both reprojected renders, similarly to
previous work and current-frame screen-space information that is
often readily available in G-buffers before final shading, such as
material properties or light visibility buffers. We demonstrate our
approach by applying our network to solve the broad problem of
adaptive rendering mode selection: given a viewport that is divided
into equally-sized tiles, select the suitable fidelity mode for each
one. Possible examples in current hardware include variable-rate
shading (VRS), software multi-sampling, temporal shading reuse,
and hybrid rendering. By enabling consistent prediction of arbitrary
metrics on the entire screen regardless of scene motion, we also
open the door for new methods, use cases, and perceptual metrics
to appear in a real-time context.

Metric prediction for seen and unseen regions as a learning effort
confronts us with novel challenges: balanced selection of training
samples becomes non-trivial since conventional data preparation
methods cannot be applied. Furthermore, for many practical use
cases (including VRS), perceptually correct threshold values may
be required, which cannot be measured for unseen regions. In
this paper, we present solutions to these challenges. As a proof of
concept, we use our approach to implement content-adaptive VRS.
Our main contributions are as follows:

(1) A compact CNN for learning and predicting error metrics
in real-time applications for seen and unseen regions.

(2) Two metric transforms to produce a more balanced training
loss that easily generalizes for new metrics and scenes.

(3) Applying a correction to metrics that removes the need
for explicitly measuring perceptual thresholds, embedding
them into the trained models’ predictions.

(4) Analysis and discussion of which current-frame screen-
space data is most valuable for predicting error metrics.

(5) An evaluation of achievable quality, performance, and abil-
ity to generalize our learning-based approach for VRS with
the current state of available hardware support.

In the following, Section 2 lists previous work and necessary
context to frame our contributions. Section 3 describes our net-
work and how to train it to consistently achieve high-accuracy
image-error estimation in real-time. Section 4 describes how to use
the network in the context of adaptive rendering mode selection,
including a concrete example for application to VRS (see Figure 1).
Finally, Section 5 considers the performance and quality aspects of
our approach and provides an analysis of the obtained results.

2 RELATEDWORK
Methods for reducing the amount of final shading computation
required per display pixel are not a new concept. Mixed-resolution

shading [31, 37] renders expensive and low-frequency shading com-
ponents at low resolution and bilaterally upsamples the results to
full resolution. Decoupled shading [10, 21, 30] separates the shading
rate from the visibility sampling rate by establishing a mapping
between the visibility samples and shading samples and sharing
or reusing shading samples where possible. Texture-space shading
[3, 7, 9, 16] computes shading in texture or patch space in an appro-
priate density controlled by the mip level. These software-based
techniques are available for use on a wider variety of hardware but
require more complicated implementation and maintenance due to
their significant deviation from the hardware rasterization pipeline.

Variable-rate shading (VRS) does not suffer from these issues.
VRS can be seen as a generalization of multi-sample anti-aliasing,
by which a single shading operation can be used to color not only
multiple samples within a single pixel but multiple pixels. Software-
based VRS implementations commonly divide the screen into 𝑛 × 𝑛

pixel tiles (where 𝑛 is an integer number) and assign shading rates—
the ratio of actual pixels to the number of shading operations—
independently to each tile. Current hardware implementations are
even more specific and operate on 16 × 16 tiles, with a fixed set
of possible shading rates [17, 28]. Some use cases for VRS have
been targets of growing interest, such as foveated rendering [6,
14, 35], a technique which uses eye-tracking hardware to direct
rendering resources to the region the user focuses on [29], or lens-
optimized shading [19, 38], which aims at warping screen space to
more closely match the final lens-corrected image [22]. However,
these techniques are only usable with specific peripherals, such
as a VR display with eye-tracking capabilities, and do not take
advantage of scene-dependent information.

Content-adaptive shading, first proposed by Yang et al. [39], pro-
vides a more general solution that is usable in the rendering of
any 3D scene. It does so by dynamically varying the shading rate
across the screen according to the perceivable level of detail of the
content being rendered: the rendering result of the previous frame
and the previous shading rate choices are reprojected into the cur-
rent screen space and used as cues to choose the required shading
rate. Drobot [12] developed a variant of this concept, designed with
software-based VRS in mind. Mueller et al. [26] showed that shad-
ing information from previous frames can be reused for quite some
time if properly sampled. Jindal et al. [18] proposed a more elabo-
rate VRS specific metric that adapts to known texture IDs. However,
these techniques share several common limitations: First, they rely
solely on analyzing the content from previous frames. Thus they are
unable to make predictions where reprojection data isn’t available.
Further, they are unable to make any predictions regarding how a
surface’s light response or texture aliasing might change over time,
which can be especially problematic with visual edges, shiny and
animated materials. Finally, due to the constraints of real-time ren-
dering, image quality needs to be measured using a computationally
efficient estimator, and some form of Just-Noticeable-Difference
(JND) [33] threshold. Thus, these methods have to rely on multi-
ple approximations, leading to imprecise shading-rate decisions,
which, in theory, could accumulate error over time. In practice,
adaptive shading is only used after significant engine- and scene-
specific tuning, such as ensuring it is only enabled in highly diffuse
materials.
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Figure 2: Proposed network architecture for metric predic-
tion. Each block 𝑖 performs down-pooling at size Λ(𝑖).

There has been a large amount of work in developing image
metrics capable of replicating human perception, which remains in-
accessible in real-time environments. Andersson et al. [4] presented
the FLIP estimator, inspired by models of the human visual system
and designed with particular focus on the differences between ren-
dered images and corresponding ground truths. Zhang et al. [40]
discovered that, during image classification, the intermediate image
representation produced by the network could be used for compari-
son with other images. Wolski et al. [36] created a data set of image
pairs with user markings of where they perceive distortions and a
convolutional network trained on it capable of predicting markings
in new images. There has also been a surge in the development
of deep learning approaches for the post-processing of real-time
renderings, such as super-resolution and temporal anti-aliasing of
rasterized surfaces [23, 34], or denoising of ray-traced ones [15, 25].

3 METRIC PREDICTION
Conventionally, a reference image metric 𝑓 (𝐼 , 𝐽 ) computes the per-
ceptual difference between a reference image 𝐼 and a candidate
image 𝐽 . No-reference methods 𝑓 (𝐽 ) guess perceptual issues given
the expected proprieties and common distortions in natural images.

Values may be computed for the entire image domain or regions
thereof. In this work, we aim instead to estimate 𝑓 (𝐼 , 𝐼 ′), where
𝐼 ′ represents an informed approximation of the reference 𝐼 , such
as a lower-resolution rendering of 𝐼 . Our goal is to predict 𝑓 (𝐼 , 𝐼 ′)
directly, without explicitly computing either 𝐼 or 𝐼 ′ by exploiting
other, more easily available screen-space scene information instead.

Our deep learning-based approach enables fast prediction of com-
plex metrics that would otherwise incur significant computational
overhead. However, one challenge to overcome is the sensitivity
of machine learning to unbalanced training data sets; another is
that the practical applications of 𝑓 (𝐼 , 𝐼 ′) often involves spatially
varying parameters, e.g., the local just noticeable difference (JND)
at each point in 𝐼 [39]. In this section, we introduce our network
architecture, discuss which input data should be used to predict
metrics, and present our solution to the output imbalance problem.
Furthermore, we show how the spatially varying JND threshold can
be integrated directly into the trained model. For the sake of brevity,
the visual illustrations of our approach will focus exclusively on
the example of predicting the error when 𝐼 and 𝐼 ′ vary in shading
rate. In the figures displayed in this article, plotted or color-coded
values of 𝑓 (𝐼 , 𝐼 ′) show the difference between reference 𝐼 and cor-
responding 𝐼 ′ obtained with coarser 2 × 2 shading rate for a given
metric 𝑓 .

3.1 Convolutional Network Architecture
Figure 2 shows the schematic of our convolutional network archi-
tecture. It consists of 3×3 convolutions, interlaced with rectified
linear units (ReLU) and batch normalization. We optimize for pre-
diction performance by pooling as early as possible in the network
and maintain a consistent amount of parallelism by dividing hid-
den channels into independent groups at the same rate at which
down-pooling is performed—that is, we try to keep the number of
independent groups times the number of pixels remains the same.
A single final sigmoid layer is used to constrain the output to the
range [0, 1]. To support optimized generation of (conservative) pre-
dictions for arbitrarily-sized image regions (e.g., for application
to hardware VRS), maximum pooling is done depending on an in-
tended region size𝑤×𝑤 (for per-pixel predictions,𝑤 = 1). The size
Λ(𝑖) in down-pooling layer 𝑖 is:

Λ(𝑖) =
{
2 if 𝑤

2𝑖 > 2 and 𝑖 < 5
⌈𝑤2𝑖 ⌉ otherwise

(1)

The design of our network is governed by its intended use in real-
time applications: given sufficient training time, the network is
capable of learning sophisticated features while prediction remains
fast. Its layout makes it compatible with optimized, massively par-
allel inferencing solutions, such as TensorRT. Furthermore, the
per-region predictions for𝑤 > 1 can be passed on directly to tile-
based procedures.

We converged on our eventual design after comparing more
complex alternatives, which all underperformed or provided no
visible benefit over the simpler solution. These alternatives included
using partial convolutions—with and without data masking—and
rendering-aware denormalization. We also decided on maximum
pooling as it provided higher accuracy than downscaling purely
through convolution.
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(a) Reference (b) Temporal Reprojection

(c) Surface Data (d) Both

(e) Optimal 4 Channels (f) Target

Figure 3: Network predictions for FLIP error between the
full-resolution reference image and a coarser, 2 × 2-shaded
versions. Results were obtained from networks trained with
different screen-space input sets. Number of input channels
used are 3, 16, 19 and 4 in (b), (c), (d) and (e), respectively.

3.2 Input Data
Our solution aims to leverage as input any screen-space informa-
tion that becomes available in real-time rendering pipelines prior
to expensive stages that can benefit from accurate metric predic-
tions. Hence, it presents an ideal fit for ubiquitous deferred shading
pipelines, which provide a range of screen-space information via the
G-buffer. Outputs of previous frames are also commonly obtained
as a byproduct of rendering or at little additional cost through
temporal reprojection. The question then becomes which of these
resources to choose as inputs for the network to yield high accu-
racy while keeping the input set compact. We assessed commonly
available G-buffer contents and statistically analyzed how influ-
ential each is on the prediction of perceptual error metrics. Our
reference rendering pipeline uses deferred shading, with cascading
shadow maps, screen-space ambient occlusion, fast approximate
anti-aliasing, and tone mapping with automatic exposure selection.
The pipeline was implemented on top of Falcor [5] and the network
trained on established ORCA scene assets (Amazon Bistro [1] and
Unreal Engine 4’s Suntemple [13]).

We found that directly available information in the G-buffer—
such as view-space normals, diffuse color, or roughness—enables
reasonable predictions across the entire screen. However, it lacks a
myriad of information that otherwise would have to be explicitly
encoded, such as lighting, tone mapping, or other effects. As shown
in Figure 3, we found the temporal reprojection of final color from
previous frames to be a valuable asset (similar to [39] and [12]),
as it contains most of this missing information. However, color

Table 1: DeepLIFT contribution of network inputs (FLIP)

Channels Format Seen Regions Unseen
Reprojected Color RGB 31.37% —
Reprojection Mask Bool 17.26% 8.67%
View Normals RGB 16.89% 33.63%
Diffuse Color RGB 14.8% 42.59%
View Normal Z Float 10.12% 20.15%
Shadowing Float 7.48% 9.36%
Roughness Float 5.41% 6.77%
Specular Color RGB 5.73% 10.61%
Reflect Product Float 1.06% 1.33%
Emissive Color RGB 0.01% 0.03%

reprojection is spatially limited to previously seen regions only and
thus presents decreasing benefits in use cases with more obstruc-
tions, animated scenes or fast-paced camera movement. Figure 3
proves that using temporal reprojection with a quickly changing
view or scene does not suffice to produce adequate predictions for
the current frame. Hence, a good prediction solution should weight
available inputs differently, depending on whether it is predict-
ing for recently seen or newly disoccluded, unseen regions. We
assumed (and experimentally confirmed) that the network’s predic-
tion quality is highest if reprojected color is paired with a binary
mask (seen = 1, unseen = 0).

To quantify the contribution of each input candidate, we used
DeepLIFT [2, 32] on a model trained on all pre-selected candidate in-
puts and computed attribution scores on a large validation set from
our test suite. Table 1 lists the mean absolute attribution score of
each candidate input, as identified on the FLIP metric. As expected,
reprojected color contributes the most, but even more so if masked
(accepted if previously seen, zero otherwise). The contribution of
diffuse material colors is highest for unseen regions. Other inputs
are less important, such as emissive material color, for which we
found no anecdotal or statistical benefit, or the dot product between
the surface normal and the reflection vector, which is redundant
if view-space normals are provided directly. Most RGB channels
are relatively redundant, with whichever channel being first in
the input order becoming the dominant one and representing the
majority of the accuracy of the whole group. The only exception
was normals, where the Z-axis is always the dominant one. We
also found no advantages of training with HDR for RGB input data
instead of 8-bit color channels. Using this knowledge, we can derive
effective yet compact input data sets. For real-time applications, we
propose to use a single 4-channel texture containing the reprojec-
tion mask, one RGB channel (any) of the reprojected color, one RGB
channel of diffuse material color, and the Z-axis of the view-space
normals. This provides a good tradeoff between desired low infer-
ence time and prediction quality since these four account for 52.08%
of the network’s prediction capability, according to DeepLIFT.

3.3 Reparameterization
For a given perceptual metric, its output value distribution can
change drastically with different environments and rendering set-
tings. We noticed in our experiments that, for most metrics, the
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tested scenes produced mostly low output values and only a few
very high outliers. Such an unbalanced target distribution might
prevent the network from converging to a reasonable solution alto-
gether when trained on arbitrary scenes. In theory, this problem
becomes less noticeable the more data and a greater variety of
scenes are provided. However, our goal is to provide a solution that
can be efficiently trained with a limited training set, as well as arbi-
trary metrics, scenes, and rendering settings, yet still, generalize
across them well.

We note that for many real-time applications, high metric pre-
diction accuracy is most relevant within a limited range of values
that drive performance-related optimizations, such as render mode
selection. Thus, we choose to tackle the data imbalance issue by us-
ing a modified parameter space that balances the data distribution
while preserving the relevant information in it.

Let L(𝑌,𝑌 ) be a given loss function, where 𝑌 ∈ [0, 1] is a set
of predicted values in transformed space, and 𝑌 = 𝑓 (𝐼 , 𝐼 ′) ∈ [0, 1]
the corresponding target values. We define a new loss function
that measures the difference between predictions 𝑌 and targets 𝑌
after transforming them to a new parameter space according to a
function T :

L𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 (𝑌,𝑌 ) = L(T (𝑌 ), 𝑌 ) (2)

We then use mean absolute error (MAE) as our L loss function:

L𝑀𝐴𝐸 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 (𝑌,𝑌 ) =
1
𝑛

𝑁∑︁
𝑖

|T (𝑌𝑖 ) − 𝑌𝑖 | (3)

If predictions in non-transformed space are required (e.g., for
comparison with perceptual thresholds), they can be obtained as
T−1 (𝑌 ). In the following, we describe our two proposed different
reparameterization transforms.

3.3.1 Clamped Transform. A computationally efficient but lossy
reparameterization solution is to re-scale the metric, so its output
distribution is centered at 0.5, and clamp outlier values to [0, 1]
—existing work on HDR imagery shows us this is not unreasonable
[20]. Let 𝑌𝑖 be a value to be transformed and 𝜇𝑌 the mean value of
all target values in the data set. We define the clamped transform:

T𝑐𝑙𝑎𝑚𝑝𝑒𝑑 (𝑌𝑖 ) = max(min( 𝑌𝑖

2𝜇𝑌
, 1), 0) (4)

where 𝜇𝑌 can either be precomputed before training or estimated
on-the-fly as a running average of previously seen values for 𝑌 . We
found this transform to improve prediction efficacy on all of our
tests, exemplified by Figure 4, and suggest it as the default choice.
Note that due to its lossy nature, T−1 only exists in the [0, 1] range.

3.3.2 Logistic Transform. Due to its assumptions, the clamped
transform may fail to generalize in special cases. This could occur
when training on a data set with higher values—and thus, higher
𝜇𝑌—or if using a metric with a vastly different distribution. Addi-
tionally, it also removes information and zeroes out derivatives for
the high outlier values. In cases where this becomes an issue, we
propose using instead a transform based on the logistic function S,
which is a bounded function with a bell-shaped derivative that is
defined everywhere and has its peak at the curve’s midpoint. We

use the standard logistic function, centered on 𝜇𝑌 :

S(𝑌𝑖 ) =
1

1 + 𝑒−𝑘 (𝑌𝑖−𝜇𝑌 )
(5)

This function allows us to re-center the prediction distribution
for any value of 𝜇𝑌 , while establishing increased importance of
accuracy for values near 𝜇𝑌 , without zeroing any derivatives. Fur-
thermore, it allows adjusting the relative impact of outliers using
the logistic growth rate hyperparameter 𝑘 . In practice, we found
that 𝑘 = 10 works best across the evaluated data sets. S, as defined
above, does not produce values ∈ [0, 1]. Hence, we normalize it as:

T𝑙𝑜𝑔𝑖𝑡 (𝑌𝑖 ) =
S(𝑌𝑖 ) − S(0)
S(1) − S(0) (6)

3.4 Weber Correction
Several use cases of real-time perceptual metrics, such as content-
adaptive shading [12, 39] or decoupled shading [26] use the just-
noticeable difference (JND) threshold to inform performance de-
cisions, like render mode selection. However, state-of-the-art ap-
proaches rely on explicit computation or reprojection to obtain
this—spatially varying—value. Hence, it is only available after ren-
dering or for previously seen regions, but not for unseen regions
before shading. We solve this issue for our learning-based approach
by embedding the visual component of the prediction directly into
the model. To enable visually-based decisions, for the current frame,
we must estimate the final image error 𝐸 and compare it with the
JND thresholdW. Based on Weber’s law [33], Yang et al. [39] de-
fine this threshold W𝑖 and its applied relation to the visual image
error 𝐸𝑖 at each location 𝑖 as:

𝐸𝑖 ≤ W𝑖 = 𝑡 · (𝐿𝑖 + 𝑙) (7)

where 𝐿𝑖 is the average luminance at location 𝑖 , 𝑡 is a user-selected
sensitivity threshold, and 𝑙 is the environment luminance, which
affects the sensitivity to dark areas. This definition is only valid
assuming a metric whose output values 𝐸 directly represent visual
error on a luminance scale (e.g., FLIP). The relation is equivalent to:

𝐸𝑖

𝐿𝑖 + 𝑙
≤ 𝑡 (8)

Hence, instead of computing the perceptually-corrected threshold
in real-time, we can train the network to estimate an already cor-
rected metric 𝑌 ′, enabling the model to specialize for its eventual
real-time application and reducing computational cost at runtime:

𝑌 ′ =
𝐸

𝐿 + 𝑙 (9)

Our experiments include Weber-corrected variants derived from ex-
isting metrics: just-noticeable FLIP (JNFLIP) and the just-noticeable
variant of the image error estimation used in [39] (JNYang).

4 REAL-TIME RENDER MODE SELECTION
We describe how our metric prediction network can be used for
render mode selection. Furthermore, we describe optimizations for
applying it to content-adaptive shading with VRS (see Figure 5).
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(a) Helmet scene (b) Ground truth (c) MSE Loss (d) MAE Loss (e) Clamped MAE (ours)

Figure 4: Example of the network predicting FLIP on an extremely unbalanced scenario [8], containing mostly background and
highly reflective surfaces. Training this network to predict this error (b) with traditional losses causes it to underestimate the
metric (c,d). Applying our transform on the parameter space remedies the issue (e).

4.1 Data Capture
In order to train a metric prediction network for render mode
selection, capturing of training data should be performed with the
same render engine that the model is intended to be used with
eventually. In the case of a perceptual metric, reference images for
different rendering modes should be captured only after all image
post-processing and effects have been applied since the computed
errors should capture the perceived visual difference.

For data collection and training, we start by capturing the en-
vironments at representative viewpoints at each possible render
mode. This is necessary for generating the training and validation
targets of any metric that relies on 𝐼 , 𝐼 ′ image pairs. We then com-
pute the metric between each render mode and the reference image
obtained without any optimizations active. We also capture the
corresponding network input data for each rendered frame, both
temporarily reprojected and from the current frame.

4.2 Mode Inference
Rather than predicting render modes directly, we suggest producing
a continuous error prediction and perform mode selection based on
user-defined thresholds, e.g., the JND threshold, as this allows for
greater control by artists and application users alike. Consequently,
we can exploit our metric prediction network for this task. We set
the layout for our network such that the predicted metric between
a render mode and the reference image is computed in a separate
output channel for each available mode. We can therefore iterate
these channels in order of increasing computational cost and check
if any presents a perceptual loss lower than the defined threshold.
If no available channel presents an acceptable value for a given tile,
we apply the highest quality mode instead:

chooseMode ( met r i c , t i l e )
for each mode in i n c r e a s i n g c o s t

i f met r i c [mode , t i l e ] < t h r e s h o l d
return mode

return r e f e r e n c e mode

4.3 Rate Extrapolation for VRS
Many modern real-time graphics solutions offer support for VRS,
which allows selecting different shading rates for individual objects
or image regions to economize on expensive fragment shader invo-
cations. Commonly supported shading rates include fundamental
squares (1× 1, 2× 2 and 4× 4) and rectangles with conforming side
lengths. For this particular use case, the metric values for similar

shading rates are strongly correlated: similar to Yang et al. [39],
we can reduce the number of output channels by extrapolating
the outputs of multiple channels from just a few. Let 𝑌𝑢×𝑣 be an
output channel of the network, where 𝑢 and 𝑣 are its corresponding
horizontal and vertical shading strides, respectively. Let 𝑘 = 2.13
capture the constant relative change in error when switching from
a shading rate to its half (e.g., 2 × 2 → 4 × 4), as derived by Yang
et al. [39]. We can approximate lower shading rates from higher
ones, allowing for using only two output channels—the network
predictions for 1 × 2 and 2 × 1 shading rates:

𝑌𝑢×𝑣 ≈


max(𝑌𝑢

2 ×𝑣, 𝑌𝑢×
𝑣
2
) if 𝑢 = 𝑣

max(𝑌𝑢
2 ×

𝑣
2
· 𝑘,𝑌𝑢

2 ×𝑣) if 𝑢 > 𝑣

max(𝑌𝑢
2 ×

𝑣
2
· 𝑘,𝑌𝑢× 𝑣

2
) if 𝑢 < 𝑣

(10)

The values for shading rate 2 × 2 can be extrapolated from 1 × 2
and 2 × 1. Following Equation 10, 2 × 4 can further be obtained
from 1 × 2 and 2 × 2, 4 × 2 from 2 × 1 and 2 × 2, 4 × 4 from 2 × 4
and 4 × 2, and so on. We found that square rates are approximated
with higher precision than non-square rates. Thus, in practice, we
recommend using 4 output channels (1 × 2, 2 × 1, 2 × 4, 4 × 2) and
extrapolating the others for good quality/performance trade-off.

5 EVALUATION
We evaluate our approach regarding prediction quality, perfor-
mance, and robustness. We use the 4-channel input set we recom-
mended in Section 3.2, and randomly captured 12820 viewpoint
pairs to simulate camera movement in a total of 8 different scenes.
Results were generated on a Windows 10 PC with an i7 CPU @
3.40GHz, 16GB RAM, and an NVIDIA RTX 2080TI GPU.

5.1 Metric Prediction
To evaluate the network’s prediction capability, we trained and
tested it with three established error metrics (PSNR, FLIP, and
LPIPS), as well as theWeber-corrected variants (JNFLIP and JNYang).
Validation was performed for each scene from Section 3.2, using
64 random viewpoint pairs that were withheld during training, as
well as on three scenes the network was never trained on: Emerald
Square (day/dusk) [27] and Sibenik Cathedral [24]. For the approx-
imation 𝐼 ′ of 𝐼 that the network should learn, we chose images
rendered for the same frames at full resolution (𝐼 ) and at four dif-
ferent reduced shading rates (𝐼 ′).

Table 2 shows the measured statistics per scene for predicting
each metric between reference images and their reduced versions
on each scene’s test set. Its consistent high accuracy, high coefficient
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Figure 5: Proposed rendering mode selection pipeline for content-adaptive shading with VRS. Inputs are provided to a network
that has been trained to predict a perceptual metric, with Weber correction and reparameterization applied. At run-time, the
network predicts the implied image error for selecting different shading rates. Based on these predictions and a user-defined
threshold, the final shading rate (■ full, ■ fine, ■medium, ■ coarse) is selected for each image region.

Table 2: Prediction quality on test sets across six different scenes. The network has only been trained on the three scenes in the
left column (Suntemple and Amazon Bistro). For each scene, we give the number of triangles (Δ), unique materials (⊛), and
the achieved 𝑅2 score (coefficient of determination), mean average error (MAE, i.e., the discrepancy between measured and
predicted perceptual metric, both total and underestimation only) and variance (𝜎𝑀𝐴𝐸 ) of the total MAE.

Suntemple, 606k Δ, 48 ⊛ Amazon Bistro (Exterior), 2.8M Δ, 132 ⊛ Amazon Bistro (Interior), 1M Δ, 71 ⊛
𝑅2 MAE𝑡𝑜𝑡𝑎𝑙 MAE𝑢𝑛𝑑𝑒𝑟 . 𝜎𝑀𝐴𝐸 𝑅2 MAE𝑡𝑜𝑡𝑎𝑙 MAE𝑢𝑛𝑑𝑒𝑟 . 𝜎𝑀𝐴𝐸 𝑅2 MAE𝑡𝑜𝑡𝑎𝑙 MAE𝑢𝑛𝑑𝑒𝑟 . 𝜎𝑀𝐴𝐸

FLIP 90% 5.99e-2 4.40e-2 7.30e-2 81% 8.55e-2 4.40e-2 1.08e-1 78% 7.88e-2 4.46e-2 9.87e-2
PSNR 92% 3.15e-2 1.42e-2 3.21e-2 82% 4.06e-2 1.98e-2 4.55e-2 80% 3.85e-2 1.25e-2 4.71e-2
LPIPS 79% 4.32e-2 2.46e-2 4.54e-2 77% 4.15e-2 2.23e-2 4.51e-2 72% 3.39e-2 1.52e-2 3.83e-2
JNYang 87% 7.75e-2 5.02e-2 1.11e-1 84% 7.93e-2 4.15e-2 1.29e-1 78% 8.59e-2 4.72e-2 1.32e-1
JNFLIP 88% 7.37e-2 4.78e-2 9.56e-2 82% 9.52e-2 4.10e-2 8.21e-2 79% 9.51e-2 4.12e-2 8.21e-2

Emerald Square (Day), 10M Δ, 220 ⊛ Emerald Square (Dusk), 10M Δ, 222 ⊛ Sibenik Cathedral, 75k Δ, 15 ⊛
𝑅2 MAE𝑡𝑜𝑡𝑎𝑙 MAE𝑢𝑛𝑑𝑒𝑟 . 𝜎𝑀𝐴𝐸 𝑅2 MAE𝑡𝑜𝑡𝑎𝑙 MAE𝑢𝑛𝑑𝑒𝑟 . 𝜎𝑀𝐴𝐸 𝑅2 MAE𝑡𝑜𝑡𝑎𝑙 MAE𝑢𝑛𝑑𝑒𝑟 . 𝜎𝑀𝐴𝐸

FLIP 94% 4.98e-2 2.51e-2 7.56e-2 94% 6.18e-2 1.24e-2 6.99e-2 91% 4.07e-2 2.50e-2 6.18e-2
PSNR 83% 5.45e-2 3.22e-2 5.72e-2 92% 4.95e-2 6.4e-3 4.30e-2 88% 2.95e-2 1.15e-2 4.05e-2
LPIPS 80% 4.15e-2 2.29e-2 4.55e-2 81% 3.56e-2 1.38e-2 3.85e-2 70% 3.28e-2 2.09e-2 3.68e-2
JNYang 94% 5.03e-2 1.83e-2 9.50e-2 92% 5.15e-2 1.55e-2 1.04e-1 86% 6.61e-2 2.34e-2 9.61e-2
JNFLIP 90% 7.30e-2 2.37e-2 8.15e-2 82% 9.62e-2 0.61e-2 1.53e-1 81% 9.18e-2 1.06e-2 9.17e-2

of determination, and low variance in each scene’s test set indicate
that the network generalizes rather well: the model is capable of
explaining most of the variance in each metric (high R2) without
over-fitting to specific scenes or states (visual examples of predic-
tions are provided in Figure 6). We did not find a direct correlation
between triangle/material count and the network’s ability to pre-
dict perceptual metrics. In fact, the highest prediction accuracy was
achieved on the most demanding scene in terms of geometry and
the number of unique materials, Emerald Square at dusk, despite the
network having only been trained on daylight scenes. The lowest
scores were obtained in Bistro (Interior), which can be explained by
the large number of specular objects it contains: since light sources
are not explicitly encoded in the input, the network struggles to
produce accurate predictions in previously unseen regions with
specular materials. To test this theory, we created two variations of
this scene: one with highly specular chrome materials and one with

flat checkerboard textures applied everywhere (see supplemental
material). As expected, the prediction quality, as indicated by 𝑅2,
is lower for the completely specular scene (FLIP: 71%, PSNR: 76%,
LPIPS: 64%, JNYang: 70%, JNFLIP: 70%). However, for the same scene
with only flat, checkered textures, the opposite is true: prediction
quality rises, conversely, bringing it closer to the other scenes. The
network does not require a large number of training samples to
achieve generalization: in our experiments, we found a negligible
decrease in test accuracy—0.04%—when an environment is not in-
cluded as part of the training and found no benefit in using more
than 500 − 2000 captured frames on any environment (the exact
number depends on the scene size).

Finally, we recorded the run time for prediction and compared it
against reference implementations of the corresponding metrics on
the CPU and on the GPU (Python+PyTorch). For our neural network,
timings are independent of the metric it was trained on since it
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Figure 6: Examples of our network predicting metrics in tested scenes. Black in the center column indicates unseen regions in
the current frame. All metrics performed similarly across tested scenes, with no obvious outliers or catastrophic failures.

does not influence its architecture. Inference with our network took
0.58𝑠/2𝑚𝑠 on CPU/GPU, respectively. It is thus significantly faster
than explicitly computing FLIP (2.46𝑠/190𝑚𝑠 → 4.24×/95.9×) and
LPIPS (13.6𝑠/16.4𝑚𝑠 → 23.5×/8.2×). For the much simpler PSNR,
our approach is between 2× and 10× slower.

5.2 Content-Adaptive Shading Application
To assess a real-time use case, we implemented content-adaptive
deferred shading in Falcor [5] using our network, trained on JNYang

and running on 16 × 16 tiles at 1080𝑝 resolution. We load the net-
work into TensorRT and provide it with GBuffer-texture inputs
in Falcor directly. For comprehensive results, we ran performance
evaluation on five scenes that exhibit varying complexity in terms
of geometry and materials: Suntemple, Bistro (Exterior), and the
regular/specular/checkered Bistro (Interior). Frame times of our
approach was compared with full-rate shading and a state-of-the-
art VRS method [39]. We considered two types of camera motion
between frames: slow (resulting in 14% previously unseen pixels per
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frame on average), and fast (31% unseen on average), and evaluated
15 corresponding viewpoint pairs per scene and speed.

Inference with TensorRT requires a constant ≈ 2.3 ms per frame.
For our approach to provide a benefit, it must amortize this over-
head, which can only occur under appreciable fragment shader
load. To simulate a pipeline comparable to interactive graphics
applications (e.g., AAA video game titles), we created a synthetic
load (50:1 arithmetic to memory) in the deferred fragment shader to
bound full-rate shading performance to 60 FPS. In combination with
our network’s prediction, GPU hardware support for VRS yields a
considerable performance gain across the board. For a slow-/fast-
moving camera between frames, we achieved a 1.12/1.14× speedup
for Suntemple, 1.17/1.18× for Bistro (Exterior), and 1.42/1.41× for
the regular Bistro (Interior). The purely specular and checkered ver-
sions of the latter performed slightly better (1.5/1.54× and 1.48/1.52×,
respectively): in both cases, this can be explained by the reduction
of sharp features and high-frequency visual details in the scene,
which enables the network to choose lower shading rates. In sum-
mary, VRS using our network reduced average frame times by at
least 10% compared to full-rate shading in all examined scenar-
ios. The relative performance gain is boosted by the reduction of
high-frequency features, permitting the use of lower shading rates.

For comparison with Yang et al. [39], we used the same setup and
configured the synthetic load so to have their approach match the
target frame rate. Since their base overhead is significantly lower
than our network’s inference time, our method trails behind Yang
et al.’s at 60 FPS with slow camera motion on static scenes (52.1
FPS on average across all scenes→ 0.87×). For fast camera motion,
however, our method performs better (1.03×) due to its ability to
predict and use lower shading rates in unseen regions, rather than
defaulting to full resolution. Using an even heavier load (30 FPS
target), our method prevails as soon as camera motion occurs (1.11×
at slow, and 2.16× at fast motion). Hence, even given the early
state of dedicated GPU inferencing hardware, our learning-based
approach can provide clear benefits in such demanding scenarios.

5.3 Limitations
The key purpose of our approaches is to enable optimizations in real-
time applications by predicting the—otherwise expensive—pixel
shading result. This naturally impedes its ability to account for
factors that are unknown prior to pixel shading. We circumvent
this issue by relying on reprojection and G-buffer data, the latter
of which may not contain all information affecting the final color
generation (e.g., light source position, cf. Figure 3). Hence, similar to
other state-of-the-art methods [39], the network is bound to make
assumptions about such effects based on previously seen regions. If
an effect cannot be predicted from G-buffer data alone, it may only
react to it in the next frame, when its reprojection becomes available.
This includes temporal inconsistencies in the scene (e.g., sudden
disocclusion of a strong light source), reflections, and modifying of
rendering settings or post-processing effects (Figure 7). However,
in this paper, we have shown that our approach can be trained to
discard reprojected color and substitute information derived from
G-buffer data instead. Hence, it may be trained to adapt to sudden
changes immediately. For instance, in the case of a disoccluded
light source, this could be achieved by providing additional input

frame 𝑁 − 1

frame 𝑁

(a) Light flash through windows

frame 𝑁

frame 𝑁 + 1

(b) Delayed predicted metric

frame 𝑁 − 1

frame 𝑁

(c) Tonemapper ACES/Reinhardt

frame 𝑁 − 1

frame 𝑁

(d) Unchanged prediction

(e) Ground truth (f) Predicted

Figure 7: (a,b) Reliance on reprojection can cause the network
to react to sudden lighting changes in previously seen re-
gionswith a delay of one frame. (c,d) Changing tone-mapping
method also does not result in immediate different predic-
tions. (e,f) Incorrect previous frame reprojections can cause
our network to hallucinate duplicated objects due to surface
information mismatch.

tracking changes in the binary screen-space shadowing informa-
tion between frames. For more complex effects, like reflections or
fog, more sophisticated solutions may be needed to provide suit-
able, inexpensive approximations of the required information to
the network. The decision of trading a single-frame delay of pre-
dicted effects for larger input sets should then depend on the user’s
expected attention to them. Future work may explore under which
circumstance reprojection may be omitted and instead replaced by
additional, equally expressive encodings or estimates of important
scene features, such as light sources and reflections. Tackling this
challenge would come with the advantage of providing a unified
solution for both seen and unseen regions.

Although the achieved performance in real-time applications is
acceptable with our approach, it incurs an overhead that limits its
applicability. For slow-moving changes, selective reuse of predic-
tions could significantly alleviate this issue, which we aim to pursue
in future work. In our proof-of-concept, the naive screen-space re-
projection used is not precise, which can sometimes cause our
network to hallucinate thin objects’ duplicates due to material and
reprojection data inconsistency (Figure 7). This could be improved
upon by using state-of-the-art, non-screen-space reprojection.
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6 CONCLUSION
In this paper, we have presented a method for training and pre-
dicting perceptual metrics using a learning-based approach. The
proposed network architecture is compact enough to make predic-
tions with high accuracy in real-time, without relying on a refer-
ence or rendered image. We have shown how to tackle common
machine learning problems, such as unbalanced training data, with
specialized solutions for our task that anticipate the eventual real-
time applications. Furthermore, we have shown how the concept
of visually-based decision-making with just-noticeable differences
can be directly integrated into the learning process.

Our solution can be used to predict various metrics and gener-
alizes well to new scenes and applications. By exploiting recent
advances in GPU hardware, inference can be performed in real-
time, thus opening the door for new uses of visual error metrics in
real-time rendering applications. Our exemplary content-adaptive
shading setup shows that, while direct execution of our network
per-frame may not always be expedient, visually-based decision-
making can already be performed at highly interactive frame rates.
Hence, applications with very demanding shading or only occa-
sional prediction that is amortized over time are likely to benefit
from our solution. Furthermore, it is safe to assume that future
hardware generations will significantly improve upon neural net-
work inference speed. To enable experimentation and research of
such applications, we have published our full codebase for captur-
ing, learning, and applying relevant metrics to 3D scenes and used
datasets at jaliborc.github.io/rt-percept.
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(a) Suntemple Scene (b) Defined Boundaries

(c) Volume Marching (d) Chosen Viewpoints

Figure 8: The different stages in our Blender data capture
pipeline. (b) is the only manual step required on open maps.

A DATA CAPTURE PIPELINE
To avoid bias in our training data and ensure consistency in dataset
generation during the development, we created a pipeline to au-
tomate the generation of our datasets. It was implemented as a
combination of a Blender [11] script tool and custom renderers on
Falcor [5]. See Figure 8 for an overview of its stages.

For any given scene, we define a cube in the scene centered
on a valid viewpoint. Then, we perform flood fill using the cube
geometry to create a voxel domain for potentially valid viewpoints.
Flooding alone works in closed environments but would leak on
any open environment to an infinite domain. To solve this, we
take inspiration from game-level design and manually add invisible
walls to the scene to limit the valid voxel domain (see Figure 8b).
Finally, we select random 3D points in the voxel space paired with
random 3D directions and test whether they would make valid
viewpoints.

Different criteria could be used to validate viewpoints. We filter
them based on two:

(1) Whether a template camera geometry placed on the view-
point position and direction intersects with the scene.

(2) Whether it renders a minimum amount of visible geometry,
measured in percentage of rendered pixels (80%).

The first requirement prevents the dataset from containing view-
points where the camera intersects with the scene geometry, while
the latter avoids an exterior dataset being filled with viewpoints
looking at the skybox, for example.

Having a predefined amount of valid viewpoints selected, we
randomly select for each a corresponding “previous viewpoint".
This simulates the environment being explored by the player and
is necessary to generate reprojection training data. To do so, we
select random valid viewpoints just as before, but each in very
close proximity to its corresponding “next frame". Besides the two
aforementioned criteria, we also check whether a raycast from one

Table 3: Network layers dynamic parameters for𝑤 = 16.

Layer In Channels Out Channels Groups Pooling Factor
1 # input data 16 1 1
2 16 16 1 2
3 16 16 4 2
4 16 16 8 2
5 16 # predictions 1 2

viewpoint to the next intersects with geometry to verify there is
an open path between the two.

Finally, for each previous/next viewpoint pair entry, we render
the set of g-buffers, reprojected color, and final renders at different
shading rates in Falcor.

B HYPERPARAMETER DETAILS
In this Section, we elaborate on hyperparameter details we found
less crucial to include in Section 3.1 of the paper. As mentioned in
that Section, all our convolutions work on a 3 × 3 kernel. They also
have a stride, padding, and dilation equal to 1 to ensure the image
output size of the convolution matches the input size. We chose a
latent channel dimension of 16 as our testing showed us that it is
the lowest one can pick before there is an evident loss of prediction
quality. However, one can go as low as 8 latent channels before
the network becomes unusable. As an illustrative example, Table
3 shows how grouping and max-pooling is used throughout the
network five layers when the intended output tiling size is 16 × 16
pixels (𝑤 = 16).

Initially, we performed training using stochastic gradient descent
However, it required a very low learning rate of 10−6 with an
additional exponential learning decay of 1 − 10−4 to remain stable.
We recommend using root mean squared propagation, which allows
for a much faster training with a learning rate of 10−4, although it
still requires the same level of decay.

C SPECIALIZATION AND DISTRIBUTION
Clearly, the effectiveness of our approach is dictated by the data
that is provided to it during training. While we found that it is
capable of generalizing across various scenes and settings, it in-
herently specializes to the shading models it observes: a network
trained on GGX cannot reason about the errors observed with,
e.g., artistic toon shaders. However, due to its compact design, the
full network we used in our VRS use case requires only 22 KiB of
storage. Hence, in practice, it would be entirely viable to prepare
(and ship) several instances of trained networks for, e.g., differently
stylized animations, cut scenes or even level designs.

D ADDITIONAL ILLUSTRATIONS
In this Section, we present additional visuals to help illustrate se-
lected properties of our approach. We include specific details of our
transforms, a side-by-side comparison of the metrics we tested in
this paper shown on the same scene, assessed variations of Bistro
(Interior), additional examples and comparisons of VRS using our
network with different metrics, and hallucinations that can some-
times occur in our network.
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Figure 9: Visualization of region in the training set distribution, according to different FLIP parameter spaces. The clamping
transform approaches a uniform distribution, at the cost of ignoring differences between the highest values (notice the spike at
𝑌 = 1.0). The logistic transform achieves a similar result but gives greater importance to nuanced decisions. Both methods
preserve all available information.
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Figure 10: Visualization of the parameter spaces created as a result of our transforms, for a training distribution average value
𝜇𝑌 = 0.25.

(a) Bistro scene (b) Ground truth (c) Predicted

Figure 11: Example of variable rate shading on 16x16 tiles using offline ground truth JNFLIP vs realtime network JNFLIP
prediction.
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(a) Yang (b) FLIP (c) LPIPS

(d) PSNR (e) JNYang (f) JNFLIP

Figure 12: Ground-truth side by side comparison of the metrics mentioned in this work for the same frame when considering
half-resolution rendering.

(a) Suntemple scene with bright/dark areas (b) VRS based on predicted FLIP (top) vs JNFLIP (bottom) (c) Yang et al. vs JNFLIP

Figure 13: JNFLIP can provide visual benefits in content-adaptive shading. FLIP is not normalized for local brightness and thus
underestimates dark regions. The method by Yang Yang et al. [39] can struggle in shiny or overly exposed regions. JNFLIP
handles both cases gracefully.

(a) Suntemple, exterior (b) Ground truth FLIP (c) Predicted FLIP

Figure 14: A network trained strictly indoors in the Suntemple scene produces accurate FLIP predictions for bushes and rocks
on the exterior.
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(a) Bistro, interior, highly specular (b) Bistro, interior, high-frequency textures

Figure 15: Two modified scenes used for evaluating the influence of (a) highly specular materials and (b) simple checkerboard
textures on the prediction quality and performance of our approach.

(a) 2x2 (b) 4x2 (c) 4x4

(d) 2x2 Extrapolated (e) 4x2 Extrapolated (f) 4x4 Extrapolated

Figure 16: FLIP at different shading rates. Ground truth versus extrapolation of them as described in Section 4.3.
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