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 Design of proportional-integral-derivative (PID) controller with proportional, 

integral, and derivative gains given by 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑  respectively, for time-

delay systems is presented in this study. The centroid of the convex stability 

region (CCSR) method in the 𝑘𝑖-𝑘𝑑 plane for fixed 𝑘𝑝 is used. PID controller 

design for time-delay systems in the 𝑘𝑝-𝑘𝑖 plane for a fixed 𝑘𝑑 and 𝑘𝑖-𝑘𝑑 

plane for a fixed 𝑘𝑝 have been extensively researched. Despite the amenability 

of CCSR method to design of PID controller in the 𝑘𝑖-𝑘𝑑 plane for fixed 𝑘𝑝, 

its application in this regard has not been given serious attention. The stability 

region in 𝑘𝑖-𝑘𝑑 plane for fixed 𝑘𝑝 was determined and the required controller 

gains in the region were determined using the CCSR method. Using the 

determined controller gains, the system closed loop unit step response for all 

the considered regions was plotted on same axes. Based on the obtained 

results, different combinations of controller gains can be implemented 

depending on the system time domain performance measures (TDPMs) 

requirements. However, selection of an appropriate controller gains 

combinations, requires compromise among any of the conflicting TDPMs. 
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1. INTRODUCTION 

Time-delay is an inherent part of all practical control systems [1]-[3] and it may be caused by the time 

required for processing and/or transmitting of signals in the control loop [4], [5]. To design controllers for these 

group of systems, full understanding of the effects of time-delay on the system performance is required. Time-

delay can reduce system quality of performance or cause system instability in worse case [6]. PID controller is 

generally used to control this class of systems due to its popularity [7], [8], simplicity [9], robustness and easy 

to use [10]-[12]. 

In PID controller design for time-delay systems, the first step is to establish the stability boundary for 

the system in its parameter space [13]. This is because such design is normally carried out using stability locus 

method [14]. This area of knowledge has been extensively researched. The method of computing all the 

stabilizing PID controller gains for a linear arbitrary order system with time-delay in the 𝑘𝑖-𝑘𝑑 plane with fixed 

𝑘𝑝 was reported in [7]. More so, the procedure for the computation of the entire stability gains in the 𝑘𝑖-𝑘𝑝 

plane with fixed 𝑘𝑑 was presented in [15]. The stabilization controller parameters for a time-delay integral 

fractional-order system under the control of fractional-order PID controller were determined in the 𝑘𝑖-𝑘𝑝 

stability region for a given 𝑘𝑑, as reported in [16]. The controller gains in the 𝑘𝑖-𝑘𝑝 plane for a given 𝑘𝑑 yielded 
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general stability region while the global stability region was obtained after sweeping over the permissible valus 

of 𝑘𝑑. In [17], [18] parametric methods were used to establish the stability region in the 𝑘𝑖-𝑘𝑑 and 𝑘𝑝-𝑘𝑖 planes 

for a fixed 𝑘𝑝 and 𝑘𝑑, respectively. Then GA was used to determine the optimum controller gains in the 

established region of the plane.  

PID parameters for second-order plant with time-delay system was obtained by [15] in the 𝑘𝑝-𝑘𝑖 plane 

with a fixed 𝑘𝑑 for specified gain and phase margins using dominant poles method. PID controller tunning 

method for integrating system with time-delay and inverse response was developed in 𝑘𝑝-𝑘𝑖 stability region 

for a fixed 𝑘𝑑 in [19]. After determining the stability region, weighted geometrical center (WGC) approach 

was used to determine the required 𝑘𝑝 and 𝑘𝑖 gains for a given 𝑘𝑑. Though the method produced good results, 

it is computationally intensive. PI-PD controller for time-delay systems was tuned by [20] using WGC method 

which yields satisfactory performance compared to some other methods in the literature. In [14] CCSR method 

for PI-PD controller design was proposed for unstable systems with time-delay. Both the experimental and 

simulation results shows that the method is superior to some of the others reported in the literature. The method 

is simple, less computational and with satisfactory performance. 

All the reviewed PID controller design methods were carried out either in the 𝑘𝑖-𝑘𝑑 plane with a fixed 

𝑘𝑝 [21] or in the 𝑘𝑝-𝑘𝑖 plane for a fixed 𝑘𝑑 [22]. The CCSR method has several merits [14]; however, it is 

seldom applied in PID controller design. Its application in PI-PD controller design can be extended to PID 

controller design in the 𝑘𝑝-𝑘𝑖 plane for a fixed 𝑘𝑑 due to their 𝑘𝑖-𝑘𝑝 stability locus similarity. The method is 

amenable to the stability region in the 𝑘𝑖-𝑘𝑑 plane for fixed 𝑘𝑝 being a convex polygon. Despite the amenability 

of CCSR design method, its application has not been extensively explored in the research community, hence 

the need for this study. 

A PID controller design for time-delay system in 𝑘𝑖-𝑘𝑑 plane with a fixed 𝑘𝑝 using the CCSR method 

is reported in this study. The equations relating controller gains, system parameters and time-delay were 

derived; and then used for plotting the stability boundaries in 𝑘𝑖-𝑘𝑑 plane for fixed 𝑘𝑝. Thereafter the centroids 

of the stability region, the required controller gains, were calculated. Using the calculated controller gain, the 

fixed 𝑘𝑝, the system and time-delay transfer functions, the closed-loop unit step response were plotted for all 

the generated stability regions on the same axes. The required TDPMs for characterising the designed systems 

were obtained from its closed loop step response plots. 

Based on the TDPMs obtained for the various combinations of controller gains, a unique gain combination 

can be selected for a system considering its performance specifications. In practice, conflicts do exist among the 

TDPMs; therefore, a compromise is made when selecting any of the controller gains combinations. 

 

 

2. METHOD 

2.1.  Determination of stability region in the 𝒌𝒊-𝒌𝒅 plane for fixed 𝒌𝒑 

The closed-loop transfer function required for the analysis and design of PID controlled time-delay 

system can be derived from the block diagram of unity feedback control system shown in Figure 1. In  

Figure 1, 𝑅(𝑠), 𝐸(𝑠) and 𝑌(𝑠) is the reference input, error, and output respectively. The expressions for the 

plant, time-delay and controller transfer function are given in (1), (2) and (3) respectively. 
 
 

𝐺𝑝(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
  (1) 

 

where, 𝑁(𝑠) and 𝐷(𝑠) is the plant transfer function numerator and denominator respectively. 

 

𝐺𝑑(𝑠) = 𝑒−𝜏𝑠 (2) 

where, 𝜏 is the time-delay in seconds. 

 

𝐺𝑐(𝑠) =
𝑘𝑑𝑠2+𝑘𝑝𝑠+𝑘𝑖

𝑠
 (3) 

 

The expression in (1) was decomposed into its even and odd parts after substituting 𝑗𝜔 for 𝑠 as shown 

in (4) for easy application of D-decomposition method [23]. The (−𝜔2) term has been removed from 

𝑁𝑒(−𝜔2), 𝑁𝑜(−𝜔2), 𝐷𝑒(−𝜔2) and 𝐷𝑜(−𝜔2) terms in (4) for compactness purpose. 

 

𝐺𝑝(𝑗𝜔) =
𝑁𝑒+𝑗𝜔𝑁𝑜

𝐷𝑒+𝑗𝜔𝐷𝑜
  (4) 
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Figure 1. Block diagram of unity feedback time-delay control system 

 

 

The formulation of the stability boundaries in 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 space is a three-dimensional problem. To 

simplify the controller design and analysis, it can be reduced to two-dimensions by fixing one of the gains and 

then finding the stability region in the plane of the remaining two gains. The overall stability region can then be 

determined using the stability regions in the plane of the two parameters by sweeping over the fixed parameter 

values. In the proposed method, 𝑘𝑝 was fixed and the stability boundary in 𝑘𝑖-𝑘𝑑 plane was determined. The 

equations and conditions required for determining the stability region in the 𝑘𝑖-𝑘𝑑 plane for a fixed 𝑘𝑝 are 

presented as follows [17], [18], [23], [24]: 

For 𝜔 = 0 

 

𝑘𝑖 = 0 (5) 

 

For 𝜔 > 0  

 

𝑘𝑝 =
(𝜔2𝑁𝑜𝐷𝑜+𝑁𝑒𝐷𝑒) cos(𝜔𝑇)+𝜔(𝑁𝑜𝐷𝑒−𝑁𝑒𝐷𝑜) sin(𝜔𝑇)

−(𝑁𝑒
2+𝜔2𝑁𝑜

2)
  (6) 

 

𝑘𝑑 =
𝜔2(𝑁𝑜𝐷𝑒−𝑁𝑒𝐷𝑜) cos(𝜔𝑇)−𝜔(𝑁𝑒𝐷𝑒+𝜔2𝑁𝑜𝐷𝑜) sin(𝜔𝑇)+𝑘𝑖(𝑁𝑒

2+𝜔2𝑁𝑜
2)

𝜔2(𝑁𝑒
2+𝜔2𝑁𝑜

2)
  (7) 

 

The frequencies 𝜔 = 𝜔𝑚 , (𝑚 = 1, 2, … …) are the frequencies at which the line of a given value of 𝑘𝑝 

intercepts the graph of 𝑘𝑝 versus 𝜔 using (6). The stability boundary in the 𝑘𝑖-𝑘𝑑 plane is formed by the line 

obtained from (5) and the lines generated using (7) when 𝜔𝑚 is substituted for 𝜔. It should be noted that 𝑚 is 

the number of points of intersection of 𝑘𝑝 line with the graph of 𝑘𝑝 versus 𝜔, that is, the number of lines 

obtainable from (7).  

 

2.2.  Determination of controller gains using CCSR method 

The advantages of this method over others are as follows: i) no iterative optimization process is required, 

ii) system’s closed loop stability is guaranteed, iii) trial and error are eliminated, iv) no error manipulation, v) low 

computational load, vi) controller can be design using only the stabilizing controller parameters region, vii) it can 

be used for any system with closed stability region and viii) it has high precision. 

Detailed discussion on the formulation and advantages of CCSR method of controller design can be 

found in [14]. This method is amenable to PID controller design for time-delay system in the 𝑘𝑖-𝑘𝑑 plane for 

fixed 𝑘𝑝 because, the stability region in this plane is a convex polygon (triangle in this study). 

To use this method, the coordinates of corner points of the stability boundary were determined. 

Assuming the number of corner points on the stability boundary is 𝑛, then the coordinates of the corner points 

in 𝑘𝑖-𝑘𝑑 plane can be represented by (𝑘𝑖1, 𝑘𝑑1), (𝑘𝑖2, 𝑘𝑑2), ……(𝑘𝑖𝑛, 𝑘𝑑𝑛). The coordinate of the CCSR (𝑘𝑝𝑐, 

𝑘𝑖𝑐), for fixed 𝑘𝑝, which is the required controller gains in 𝑘𝑖-𝑘𝑑 plane can be calculated using (8) and (9) 

respectively [14].  

 

𝑘𝑝𝑐 =
∑ 𝑘𝑝𝑗

𝑛
𝑗=1

𝑛
  (8) 

 

𝑘𝑖𝑐 =
∑ 𝑘𝑖𝑗

𝑛
𝑗=1

𝑛
 (9) 

 

2.3.  System performance 

There are two major states embedded in the time domain performance of feedback control systems, 

namely: i) transient-state, which describes the speed of the system closed-loop response to the step input and 
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ii) steady-state, which gives the accuracy of the system response under decayed transient condition. It should 

be noted that the system transient-state depends on swiftness and closeness by which the system responds to 

and tracks respectively the step input. The swiftness depends on the value of rise time (𝑇𝑟) and time-to-peak 

(𝑇𝑝), while closeness depends on the value of settling time (𝑇𝑠) and percentage overshoot (%𝑂𝑆) [25]. The 

lower the value of these TDPMs the better the system performance. The quality of system steady-state response 

depends on the value of steady-state error (𝑒𝑠𝑠) and the lower it is, the better.  

 

 

3. DEMONSTRATING EXAMPLES 

To demonstrate the proposed methods, three Examples were used. The detailed steps of PID controller 

design, testing and characterization using the proposed method are fully explained and presented for Example 

1 in section 3.1. To avoid repetition, these steps are skipped for Examples 2 and 3 as presented in sections 3.2 

and 3.3 respectively.  

 

3.1.  Example 1 

Design of PID controller for an integrating second-order time-delay system with system transfer 

function given by (10) [26] was considered in this example.  

 

𝐺(𝑠) =
1

𝑠(𝑠+1)
𝑒−𝑠 (10) 

 

For this system, using (2), (4) and (10), 𝑁𝑒 = 1, 𝑁𝑜 = 0, 𝐷𝑒 = −𝜔2, and 𝐷𝑜 = 1. 

The range of 𝑘𝑑 and 𝑘𝑝 for stability was first determined by plotting the trajectory of 𝑘𝑑 against 𝑘𝑝 

for 𝜔=[0, ∞] and 𝑘𝑖 = 0 as shown in Figure 2 using (6) and (7). Also based on (6), the plots of 𝑘𝑝 against 𝜔 

are shown in Figures 3 for the determination of the relevant frequencies for any fixed value of 𝑘𝑝.  
 

 

  
  

Figure 2. Plotting k_d against k_p for Example 1 Figure 3. Plot of k_p against ω for Example 1 
 
 

It can be seen from Figures 2 and 3 that the range of 𝑘𝑝 is 0–1.717. To find the controller gains in the 

𝑘𝑖-𝑘𝑑 plane the fixed gains considered based on range of 𝑘𝑝 as shown in Figure 3 are 𝑘𝑝=0.2, 0.4, 0.6, 0.8, 1.0, 

1.2, 1.4 and 1.6. The detail design for 𝑘𝑝=0.2 is presented as follows: 

As earlier explained in subsection 2.1, when 𝜔=0, the stability boundary equation that can be used for 

generating one of the boundary lines was derived using (5). To generate the squations that can be used to form 

the remaining boundary lines, the frequency at the point of intersection of the line of 𝑘𝑝=0.2 (with the graph 

of 𝑘𝑝 versus 𝜔 in Figure 3) was determined. From Figure 3, the points of intersection are two and their 

corresponding frequencies are 0.322 and 1.991 rad/s, respectively. Substituting these frequency values into (7) 

yielded the two equations required for generating the remaining stability boundary lines. The resulting stability 

boundary equations are shown in (11)–(13). 

 

𝑘𝑖 = 0  (11) 

 

𝑘𝑑1 = 9.6447𝑘𝑖 − 0.8467  (12) 

 

𝑘𝑑2 = 0.2523𝑘𝑖 + 2.2257 (13) 
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Based on these equations and the similar equations obtained when the remaining fixed 𝑘𝑝 values were 

used following the steps used for 𝑘𝑝=0.2, the system stability boundaries in the 𝑘𝑖-𝑘𝑑 planes shown in  

Figures 4 and 5 was obtained for 𝑘𝑝=0.2 and for the complete set of fixed 𝑘𝑝 considered respectively. 

 

 

  
  

Figure 4. The stability boundary in the k_i-k_d 

plane for k_p=0.2 for Example 1 

Figure 5. The stability boundary in the 𝑘𝑖-𝑘𝑑 plane 

for all set of fixed 𝑘𝑝 for Example 1 

 

 

In this example, the explanation given in subsection 2.2 was used for determining the controller gains 

as the CCSR in the 𝑘𝑖-𝑘𝑑 plane. From Figure 4, the stability boundary is a triangle, therefore there are 3 corners 

making 𝑛=3. The coordinates of the corner points as indicated in Figure 4 are (𝑘𝑖1, 𝑘𝑑1)=(0, 2.226), (𝑘𝑖2, 

𝑘𝑑2)=(0.331, 2.346) and (𝑘𝑖3, 𝑘𝑑3)=(0, -0.8467). Based on these coordinate points, using (8) and (9) the 

coordinate of the CCSR which is the required gains was determined to be (𝑘𝑖𝑐, 𝑘𝑑𝑐)=(0.1103, 1.2418). The 

location of these controller gain values is indicated hexagram marker in Figure 6. 

The obtained 𝑘𝑖𝑐 and 𝑘𝑑𝑐 and the corresponding fixed 𝑘𝑝 were used in conjunction with the plant and 

time-delay transfer functions to plot the system closed loop unit step response. The required TDPMs for the 

characterization of the designed system were obtained from the step response graph. The adopted TDPMs used 

in this study are rise time (𝑇𝑟), peak time (𝑇𝑝), percentage overshoot (%𝑂𝑆), percentage undershoot (%𝑈𝑆), 

settling time (𝑇𝑠) and steady-state error (𝑒𝑠𝑠). 

 

3.2.  Example 2 

An integrating second-order time-delay system with left hand side zero with transfer function shown 

in (14) [19] was treated in this example.  

 

𝐺(𝑠) =
0.6(−0.3𝑠+1)𝑒−0.2𝑠

𝑠(𝑠+1)
  (14) 

 

For this system 𝑁𝑒 = 0.6, 𝑁𝑜 = −0.18, 𝐷𝑒 = −𝑤2, and 𝐷𝑜 = 1. 

The PID controller design in the 𝑘𝑖-𝑘𝑑 plane was considered for the following fixed 𝑘𝑝 values:1, 2, 3, 

4, 5, and 6. The stability boundary for these range of fixed 𝑘𝑝 is shown in Figure 7. The obtained 𝑘𝑖𝑐 and 𝑘𝑑𝑐 

in the stability region associated with each of the fixed 𝑘𝑝 were also used accordingly as explained for Example 

1 in section 3.1. The closed loop unit step response graph was plotted and the necessary TDPMs obtained. 

 

3.3.  Example 3 

In this example a second-order time-delay system with left hand side zero whose transfer function is 

shown in (15) [23] was considered in this example.  
 

𝐺(𝑠) =
(−0.5𝑠+1)𝑒−0.6𝑠

(𝑠+1)(2𝑠+1)
 (15) 

 

For this system 𝑁𝑒 = 1, 𝑁𝑜 = −0.5 , 𝐷𝑒 = 1 − 2𝑤2, and 𝐷𝑜 = 3. 
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In this example, the PID controller design in the 𝑘𝑖-𝑘𝑑 plane was considered for the following fixed 

𝑘𝑝 values: 𝑘𝑝=-0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5. By applying the method used for Example 1 the 

stability boundary for the considered range of fixed 𝑘𝑝 shown in Figure 8 was obtained. The obtained 𝑘𝑖𝑐 and 

𝑘𝑑𝑐 in the stability region associated with each of the fixed 𝑘𝑝 were appropriately used as earlier explained. 

The closed loop unit step response graph was plotted and the needed TDPMs obtained. 

 

 

  
  

Figure 6. The CCSR in the 𝑘𝑖-𝑘𝑑 plane for 𝑘𝑝=0.2 

for Example 1 

Figure 7. The stability boundary in the 𝑘𝑖-𝑘𝑑 plane 

for the set of fixed 𝑘𝑝 for Example 2 

 

 

 
 

Figure 8. The stability boundary in the 𝑘𝑖-𝑘𝑑 plane for the set of fixed 𝑘𝑝 for Example 3 

 

 

4. RESULTS AND DISCUSSION 

The fixed 𝑘𝑝 values and the corresponding 𝑘𝑖𝑐 and 𝑘𝑑𝑐 gains in the 𝑘𝑖-𝑘𝑑 plane for Examples 1, 2, 

and 3 are presented in Tables 1(a), 1(b), and 1(c) respectively, where it can be seen that 𝑘𝑖𝑐 and 𝑘𝑑𝑐 increase 

with the value of 𝑘𝑝 in all the three (3) examples considered. These changes in the controller gains are a form 

of controller tunning, because for every change a new combination of controller gains is generated in the 

stability region. For better understanding of the effects of changes in controller gains on the system response, 

closed-loop unit step response graphs for the controlled and uncontrolled system (UCS) were plotted using the 

same axes for each of the three illustrated examples. 

The system closed-loop unit step responses in Examples 1, 2, and 3 are shown in Figures 9, 10, and 11 

respectively. As shown in Figures 9 and 10 (Examples 1 and 2), the response of the UCS is better than the response 

of some of the controlled systems. Therefore, the required TDPMs value for both the controlled and UCSs were 

determined for performance analysis. On the other hand, in Figure 11, the response of the UCS can never attain the 

reference input, hence its TDPMs value cannot be used for performance analysis. The TDPMs for each controller 
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gains combination using the fixed gains and UCS (where applicable) as indicator are presented in the bar charts 

shown in Figures 12(a) and 12(b), 13(a) and 13(b), and 14(a) and 14(b) for Examples 1, 2, and 3 respectively.  
 

 

Table 1. Controller gains in 𝑘𝑖-𝑘𝑑 plane convex stability regions for (a) Example 1, (b) Example 2, and  

(c) Example 3 

(a) 
 𝒌𝒑 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

𝒌𝒊𝒄 0.110 0.219 0.330 0.440 0.555 0.667 0.775 

𝒌𝒅𝒄 1.229 1.284 1.345 1.396 1.457 1.509 1.558 

 

(b) 
𝒌𝒑 1 2 3 4 5 6 

𝒌𝒊𝒄 0.833 1.667 2.520 3.333 4.167 5 

𝒌𝒅𝒄 2.640 2.799 2.972 3.117 3.276 3.432 

 

(c) 
𝒌𝒑 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

𝒌𝒊𝒄 0.208 0.416 0.625 0.833 1.046 1.258 1.473 1.689 1.918 

𝒌𝒅𝒄 1.070 1.233 1.403 1.571 1.746 1.916 2.087 2.256 2.432 

 

 

 

Figure 9. Unit step response graph for Example 1 
 

 

 

Figure 10. Unit step response graph for Example 2 

 

 

It can be observed from Figure 12(a), that the minimum and maximum values of %𝑂𝑆 corresponds to 

fixed 𝑘𝑝 of 0.2 and 1.6 respectively and the minimum and maximum values of 𝑇𝑠 correspond to fixed 𝑘𝑝 of 1.2 

and 0.2 respectively. Also, from Figure 12(b) the minimum value of 𝑇𝑟 corresponds to fixed 𝑘𝑝 of 1.6 while 

the maximum corresponds to fixed 𝑘𝑝 of 0.2 and 0.4 but the minimum and maximum value of 𝑇𝑝 correspond 

to fixed 𝑘𝑝 of 0.6 and 0.2 respectively. From Figure 12(a) the only scenario with %𝑈𝑆 was when 𝑘𝑝=1.6. In 

Figure 12(b) the system of Example 1 yielded good steady-state response for the designed controllers as 𝑒𝑠𝑠=0 
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except for when fixed 𝑘𝑝=0.2 and for the UCS that gives 𝑒𝑠𝑠 of 0.016 and 0.004 respectively which can be 

tolerated in practice. 
 

 

 
 

Figure 11. Unit step response graph for Example 3 
 

 

  
(a)  

 

(b)  

 

Figure 12. Bar chart of TDPMs for fixed 𝑘𝑝 for Example 1, in (a) TDPMs are %𝑂𝑆, %𝑈𝑆 and 𝑇𝑠 and in  

(b) TDPMs are 𝑇𝑟, 𝑇𝑝 and 𝑒𝑠𝑠 
 

 

From Figure 13(a) the minimum and maximum values of %𝑂𝑆 were attained when the system was 

uncontrolled and at fixed 𝑘𝑝 of 6 respectively while the minimum and maximum values of 𝑇𝑠 correspond to 

fixed 𝑘𝑝 of 5 and 1 respectively. From Figure 13(b), the minimum value of 𝑇𝑟 corresponds to fixed 𝑘𝑝 of 6 and 

the maximum was attained for UCS. But the minimum and maximum values of 𝑇𝑝 correspond to fixed 𝑘𝑝 of 3 

and 1 respectively. Also revealed in Figure 13(a) is the system %𝑈𝑆 which has its minimum and maximum 

values corresponding to UCS and fixed 𝑘𝑝 of 6 respectively. It can be observed from Figure 13(b) that the 

steady-state response for the system of Example 2 is equally good because 𝑒𝑠𝑠=0 for the designed systems 

except for when 𝑘𝑝=1 that produced 𝑒𝑠𝑠 of 0.004 which will have negligible practical implications. 

From Figure 14(a), the minimum and maximum values of %𝑂𝑆 correspond to fixed 𝑘𝑝 of 1.5 and 3.5 

respectively and the minimum and maximum values of 𝑇𝑠 correspond to fixed 𝑘𝑝 of 2.5 and -0.5 respectively. 

Also, from Figure 14(b) the minimum value of 𝑇𝑟 corresponds to fixed 𝑘𝑝 of 3.5 while the maximum value 

was at fixed 𝑘𝑝 of -0.5 and 0. But the minimum and maximum values of 𝑇𝑝 corresponds to fixed 𝑘𝑝 of 3.5 and 

-0.5 respectively. In Figure 14(a), the minimum and maximum values of %𝑈𝑆 was obtained when the fixed 

𝑘𝑝was -0.5 and 3.5 respectively. From Figure 14(b), the steady-state response of the system of Example 3 is 

better because the designed systems give 𝑒𝑠𝑠 of 0 except for the system with fixed 𝑘𝑝 of -0.5 that gives 𝑒𝑠𝑠 of 

0.01 which can still be accommodated from practical point of view. 

A situation where a system has the lowest value for both the %𝑂𝑆 and 𝑇𝑠 was not encountered in the 

results. Also, simultaneous low values of 𝑇𝑟 and 𝑇𝑝 were not realized in any of designed systems. From these 

observations and explanation on the system performance in subsection 2.3, it can be inferred that, none of the 

systems can be said to have absolute good transient response since non is having absolute swift response to 

step input and absolute close tracking of the step input by the response.  
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(a) 

 

(b) 

 

Figure 13. Bar chart of TDPMs for fixed 𝑘𝑝 for Example 2, in (a) TDPMs are %𝑂𝑆, %𝑈𝑆 and 𝑇𝑠 and in (b) 

TDPMs are 𝑇𝑟, 𝑇𝑝 and 𝑒𝑠𝑠 

 

 

  
(a) 

 

(b) 

Figure 14. Bar chart of TDPMs for fixed 𝑘𝑝 for Example 3, in (a) TDPMs are %𝑂𝑆, %𝑈𝑆 and 𝑇𝑠 and in (b) 

TDPMs are 𝑇𝑟, 𝑇𝑝 and 𝑒𝑠𝑠 
 

 

In control engineering practice, different applications normally require different system performance 

specifications in the form of TDPMs. Therefore, the selection of PID controller gains combination will depend 

on the required system performance specifications. The selection can only be made among these designed 

controllers because the controllers fall under the region where the systems stability is guaranteed. Most of the 

times, conflicts do exist among the TDPMs, therefore, to select any of the controller gains combinations, 

compromise must be made among any of the conflicting or competing TDPMs. It should be noted that, the 

number of controller gains combinations which determines the number of possible controller selection can be 

increased by increasing the number of fixed 𝑘𝑝 considered in the system stability region. 

 

 

5. CONCLUSION 

PID controller design procedure for time-delay systems using the CCSR method in the 𝑘𝑖-𝑘𝑑 plane 

for fixed value of 𝑘𝑝was presented and more so, the system stability region in the said plane was established. 

In all the cases considered, the values of the determined controller gains (𝑘𝑖𝑐 and 𝑘𝑑𝑐) increase with that of 

fixed 𝑘𝑝. The performance analysis was based on system transient and steady-state which make it simple to 

understand. Based on the obtained TDPMs and system performance specifications, a unique combination of 

controller gains can be selected for the system to improve its performance. Again, selection of any of the 

controller gains combinations, normally requires a compromise among any of the conflicting TDPMs. The 

number of gains combinations determines the number of possible controller selections, and the former can be 

increased by increasing the number of fixed 𝑘𝑝 in the system stability region. 
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