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Executive summary 

This document describes the uncertainty analysis of geometrical and functional model input data obtained by 
processing of either computed tomography (CT) or magnetic resonance imaging (MRI) data as well as sensor 
data. Uncertainties introduced during this image or sensor data processing phase might propagate to 
uncertainties in calculated parameters and boundary conditions, either modelled or directly measured, for 
simulations. In addition, possible uncertainties in geometry-derived morphometric or hemodynamic parameters 
are assessed. Uncertainty quantification of input data used to set boundary conditions in simulations is an 
essential part validating the proposed simulation methods within SIMCor as part of WP6 - Data processing for 
anatomy and function. 
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Introduction 
One major aim of SIMCor is to investigate to what extent numerical simulations can support and 
enhance development and certification of implantable cardiovascular devices. Here, two use cases 
were defined. The first use case focuses on the evaluation of heart valve prostheses that can be 
implanted in a minimally invasive way via cardiac catheterization (i.e., transcatheter aortic valve 
implantation, TAVI). These prostheses are used to replace the native aortic valve (AV) in case it is 
diseased. The second use case deals with pulmonary artery pressure sensors (PAPS) that can be 
implanted into the pulmonary artery (PA), again using catheterization, to monitor PA pressure, which 
is a relevant diagnostic parameter in patients with heart failure.  

While TAVI is a relatively young technique, it had a disruptive effect on treatment of AV disease and 
is already performed more frequently than surgical implantation of AV prostheses1. The already large 
number of devices is steadily increasing. In contrast, the first and only PAPS device to date received 
premarket approval by the US American Food and Drug Administration in 20112. As both devices are 
implanted into the cardiovascular system, their requirements regarding safety and efficacy due to 
interaction with flowing blood are high. This is associated with large efforts and high costs in 
development, testing and certification.  
Numerical methods for simulation of mechanical or hemodynamical properties of the cardiovascular 
system with or without artificial organs or medical devices became increasingly important for 
academic as well as industrial research. Also, first numerical models used for diagnosis of 
cardiovascular diseases successfully reached the market and received clearance by regulatory bodies 
of almost all industrialised nations3. These methods hold the potential to also simulate the interaction 
between medical devices and the patient-specific cardiovascular system and thus predict the post-
treatment outcome. 

To investigate these interactions between device, tissue and blood using in-silico modelling, the 
relevant region of interest of the patient-specific cardiovascular system must be described as detailed 
as possible. Here, the most relevant information includes patient-specific anatomy of the aorta, the 
left ventricular outflow tract, and the AV for modelling of TAVI implantation and efficacy, and of the 
PA for modelling of PAPS implantation and efficacy. This information is usually acquired from various 
imaging modalities such as CT, MRI, or echocardiography. Additionally, medical image technologies 
also allow, at least to a given extent, to assess patient-specific functional information on blood flow, 
such as velocity profiles, flow rates, flow rate divisions and the stroke volumes of the left and right 
ventricle. The latter type of information is necessary for providing accurate boundary conditions to 
the numerical simulations. 

All steps of the modelling pipeline, starting from medical image data acquisition, can affect simulation 
results. However, medical image acquisition is usually a well-established routine procedure, following 
acquisition protocols defining requirements for image data quality as well as for spatiotemporal 

resolution. In the frames of D6.1 - Specification of data-processing requirements (CHA, M4), 
requirements for medical image data to be processed within SIMCor were described. 
In the following section, the key procedure - the extraction of the anatomical or hemodynamic 
information from image data - and their uncertainties, which are mostly associated with operator 
biases, are investigated in the human sub-cohorts. In the project, different processing procedures 

 
1 https://www.herzstiftung.de/e-paper/#0; page 83. 
2 Ayyadurai P, Alkhawam H, Saad M, Al-Sadawi MA, Shah NN, Kosmas CE, Vittorio TJ. An update on the CardioMEMS pulmonary artery 

pressure sensor. Ther Adv Cardiovasc Dis. 2019 Jan-Dec;13:1753944719826826. doi: 10.1177/1753944719826826. PMID: 30803405; PMCID: 
PMC6376505. 
3 https://www.heartflow.com/.  
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were used, including manual and fully automated segmentation of pulmonary arteries (PA), automatic 
segmentation of the left ventricle (LV), the AV and the aorta by using a parametric model, as well as a 
manual correction of the AV leaflets. 
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Definition of sub-cohorts for uncertainty quantification 

Sub-cohort of patients used for uncertainty quantification of the PA 
In SIMCor PA of 50 patients were segmented manually from CT data for subsequent use in WP8 and 
WP9, focussing on numerical modelling of the PAPS device implantation, device effect and efficacy. 
For this, the interaction between the device and the tissue of the PA but also between the device and 
the bloodstream must be modelled. To quantify the uncertainty of the segmentation procedure and 
the impact of this uncertainty on the assessment of morphometric and hemodynamic parameters of 
interest, 10 cases were selected randomly and segmented again by a second operator (inter-operator 
bias). There were no relevant differences between the demographic and anatomical parameters of 
the sub-cohort and the entire cohort (Student’s t-test, p > 0.05; see Table 1). Both operators 
performing the manual reconstruction for assessing the operator bias had long-standing experience 
in image-based processing of different anatomical structures of the cardiovascular system of more 
than 10 years. In addition to the manual reconstruction, a machine learning-based approach using a 
standard ‘U-net’ architecture was evaluated for reconstruction of the patient-specific PA anatomy.  

 N of 
cases 

Sex 
(% male) 

Age 
(years) 

Weight 
(kg) 

BSA 
(m2) 

BMI 
(kg/m²) 

MPA length 
(mm) 

MPA diameter 
(mm) 

Sub-cohort 10 70% 81±4.8 83±21.1 1.95±0.23 28.7±7.0 41.6±7.4 31.3±4.2 

Cohort 48 60% 81±7.7 77±18.4 1.87±0.24 26.9±5.4 47.1±8.3 31.0±3.8 

Table 1: Comparison of selected parameters between the whole cohort of segmented human PA against the sub-cohort of 
10 patients used for the uncertainty analysis. 

Sub-cohort of patients used for uncertainty quantification of the AV 
In SIMCor over 100 individual geometries of patients treated via TAVI were reconstructed from CT 
data for subsequent use in WP8 and WP9, focussing on numerical modelling of the TAVI device 
implantation, device effect and efficacy. To quantify segmentation uncertainty, the intra- and inter-
operator variability of the reconstruction procedure was quantified in 10 randomly selected cases. No 
relevant differences between the demographic and anatomical parameters of the sub-cohort and the 
entire cohort were found (see Table 2). 

 N of cases Sex  
(% male) 

Age  
(years) 

Weight  
(kg) 

BSA  
(m2) 

TPGcath 

(mmHg) 
AVA  
(cm2) 

Sub-cohort 10 51% 79±7.1 70±16.9 1.79±0.25 43.8±44.1 0.94±0.45 

Cohort 101 40% 82±5.5 77±18.6 1.88±0.26 50.5±26.0 0.80±0.25 

Table 2: Comparison of selected parameters between the whole cohort of reconstructed human AV with the sub-cohort 
used for uncertainty analysis (TPGcath: catheter-measured transvalvular maximal pressure gradient; AVA: AV area). 

Validity of the sub-cohorts 
As in both sub-cohorts no relevant deviations in either relevant anatomical or demographic 
parameters from the entire cohorts were observed, these cohorts were used for the subsequent 
uncertainty quantification. As parameter ranges were similar between the entire and the sub-cohorts 
and the sub-cohorts included ten patients each, findings from these sub-cohorts are generalizable for 
the entire cohorts. 
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Extraction of anatomical input data from image data 

PA segmentation using manual approach 
The end-diastolic 3D geometry of the human PA was segmented and reconstructed from retrospective 
CT data. CT data sets of the entire heart (Figure 1) were acquired from clinical routine, including 
different clinical indications, as for example TAVI planning.  

 
Figure 1: Geometry reconstruction workflow: (A) one orthogonal slice of the CT imaging data of a sheep; (B) regions 

highlighted in blue are automatically selected voxels in the current slice with an Hounsfield unit value above 175; (C) the 
two highlighted areas (purple colour, red border) highlight the PA lumen in the current slice; (D) Label voxel field of the PA; 
(E) rough triangulated surface reconstruction with step artefacts; (F) final volume-preserved smoothed surface of the PA. 

Two different wide area-detector volume CT scanners (Aquilion One Vision, Canon Medical Systems; 
Revolution CT, GE Healthcare, Chicago, IL, USA) with 100kV tube voltage were used for image 
acquisition. The image resolution varied from (0.390 - 0.648) × (0.390 – 0.648) mm² for the in-plane 
resolution and between (0.5 - 1.0) mm for the slice thickness. 



 

D6.3 – Uncertainty quantification for input data  SIMCor – GA No. 101017578 

    

 
  10 

 

The manual reconstruction of both operators followed the exact same protocol and was realised using 
ZIBAmira (v. 2015.28, Zuse Institute Berlin, Germany). To support the manual segmentation, first, all 
image voxels above a specific Hounsfield Unit (HU) threshold were labelled as candidates for the PA 
lumen. The threshold definition was patient-specific due to high variability in the contrast agent 
concentration. The HU threshold varied between 80 and 190. From the remaining image voxels, the 
PA lumen was reconstructed slice by slice, beginning from RVOT, using the brush as well as the region-
growing tools. The segmentation was corrected by slicing through the data stack from top to bottom 
as well as from left to right and front to back. Multiple iterations were necessary to facilitate the final 
reconstruction. This approach was necessary, as an automated approach based solely on the HU 
values would inevitably have resulted in segmentation of the pulmonary veins as well, due to their 
close proximity to the PA as well as the similar HU values. 

The final voxel mask was then used to generate a rough triangulated surface using a Marching Cubes 
algorithm4. Afterward, all geometries were smoothed using a volume-preserving smoothing 
algorithm5 implemented in JavaView. Smoothing of the surface geometries was necessary, as the 
discrete resolution of CT images results in surface mesh geometries with pronounced steps. The 
volume change between original and smoothed surface geometries was below 0.2%. The average 
distance between the smoothed and the original surface is below half of the voxel resolution. All 
geometries were truncated at the main PA (MPA) directly after the sinus of the pulmonary trunk, 
whereas all side branches of the left PA (LPA) and right PA (RPA) were truncated at the approximately 
10 mm length from their origins. The reconstruction workflow is exemplary shown in Figure 1 for an 
animal (ovine) data set. Exemplary reconstructions by both operators for four cases of the PA sub-
cohort are shown in Figure 2.  

 

 

Figure 2: Four PA surface geometries reconstructed by 2 independent operators: Operator 1 - upper row, Operator 2 - lower 
row. 

 

 

 
4 Lorensen WE, Cline HE. Marching cubes: a high-resolution 3D surface construction algorithm. Proceeding SIGGRAPH ’87 Proceedings of 

the 14th annual conference on Computer graphics and interactive techniques, Pages163–169. 
5 Kuprat, A., Khamayseh, A., George, D. & Larkey, L. Volume conserving smoothing for piecewise linear curves, surfaces, and triple lines. J. 

Comput. Phys. 172, 99–118. https ://doi.org/10.1006/jcph.2001.6816 (2001). 
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PA segmentation using machine learning 
In addition to the manual segmentation performed by two operators, a machine learning-based 
method for reconstruction of the PA anatomy was evaluated. Here, a full resolution nnU-Net6 was 
trained on PA label masks, available from a previous project. This technique is a self-configuring deep 
neural network for biomedical image segmentation. Different configurations were tested for pre-
processing, network architecture, training and post-processing and the most suitable combination of 
approaches for the given dataset was selected for inference. The dataset contained 130 CT image data 
sets. 100 data sets were used for training of the network, while 30 were used for validation.  The image 
resolution, in pixels, were between 512 x 512 x 228 and 512 x 512 x 376, whereas the in-plane voxel 
resolution was between 0.50 and 0.95 mm, whereas the slice thickness was always 1 mm. Figure 4 
representatively shows PA surfaces of four cases reconstructed by Operator 1 and by the neural 
network.  

 

Figure 3: Exemplary voxel mask used for training of the nnU-Net. 

 

 
Figure 4: Four PA surface geometries manually reconstructed by one operator (upper row) and an automated approach 

using a neural network (lower row). 

 
6 Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2020). nnU-Net: a self-configuring method for deep learning-based 

biomedical image segmentation. Nature Methods, 1-9. 
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Extraction of the PA geometric parameters 
To quantify differences between different segmentations of the same PA, two approaches were used. 
First, we performed the assessment of surface differences using -ZIBAmira, a software tool which 
calculates the mean and standard deviation of the distances between two similar surfaces: an 
Euclidean surface distance was calculated for each node of the triangulated surface mesh describing 
the shape of the one of two surfaces, which is defined as the master surface, to the nearest point of 
the second surface, which is defined as the slave surface (see Figure 5). Finally, a Hausdorff distance 
is calculated. Since manual segmentations often result in different lengths of the segmented outlet 
branches, in order to avoid the resulting analysis bias we defined a common region of interest for each 
investigated case.  

 

Figure 5: Left: Example of 2 superimposed surface geometries of the PA reconstructed by two independent operators (red 
surface - Operator 1; purple surface - Operator 2). Red and purple bounding boxes show minor differences in reconstructed 

domains, which results, however, in a large Hausdorff distance of 13 mm, while the mean and standard deviation of the 
surface distance was 0.27 mm and 1.08 mm, respectively. The black frame in the left panel shows the region of interest 

(ROI) used for the surface distance analysis resulting in a Hausdorff distance of 1.34 mm and mean and standard deviation 
of the surface distance of 0.23 mm and 0.25 mm respectively, which is smaller than the average voxel sizes. 

Second, we carried out a paired statistical comparison between geometric parameters, which were 
selected to describe the PA anatomy. For the analysis, we selected geometric parameters which could 
potentially affect the safety and function of the implantable PAPS device. There are two major safety 
and functionality endpoints of interest which affect the selection of the relevant geometric 
parameters: (1) fixation of the device and (2) thrombosis, which are affected by the complex 
interaction between the blood flow, the anatomy, and the device. 
 
The stable implantation and fixation of the device is important, as device migration into smaller vessel 
segments of the PA could result in obstructions of parts of the pulmonary circulation, affecting the 
lung function, which could be potentially life threatening for patients. From this point of view, 
diameters of the LPA and RPA, as well as the curvature and ellipticity of these vessel segments are of 
interest. Furthermore, the implanted device, which is manufactured using non-biological material, is 
an obstacle for the blood flow in the PA, which results in a disturbed flow with increased turbulence, 
flow separation and regions of flow recirculation. These disturbed flow features are known to promote 
thrombus formation, especially in regions with low wall shear stresses. Similarly, geometric 
parameters, such as the bifurcation angle between LPA and RPA, cross-sectional enlargement from 
MPA to LPA and RPA, are relevant to device migration. Finally, the lengths of RPA and LPA are of 
interest for the device implantation procedure.  
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All measurements were obtained automatically using a centreline-based analysis of reconstructed 
surface geometries (see Figure 6). This analysis was performed using MeVisLab (MeVis Medical 
Solutions AG, Germany).  Centrelines were generated using a shortest path algorithm to connect the 
midpoint of the opening of the MPA and the midpoints of each branch endpoint. The centrepoints 
were calculated as the mean of all points on the respective boundary. The shortest paths were 
accumulated into a single graph, the edges smoothed, unnecessary nodes removed as well as possible 
cycles reduced to the shortest connection. The root was set to be the midpoint of the MPA and the 
graph was directed accordingly.   
 
All edges up until the first bifurcation were considered to belong to the MPA. The LPA and RPA were 
defined depending on the orientation within the scanner. Starting from the first edge of the LPA and 
RPA, at each bifurcation, the edge with the smallest angle to the previous edge was considered to 
belong to the LPA/RPA respectively. All other edges were defined as side branches.   
 
For each edge, the length, the area- and perimeter-derived (i.e., hydraulic diameter) and minimal and 
maximal diameters of the respective vessel segment were obtained. For the MPA and internal edges, 
the diameters were obtained exactly at the midpoint of each edge. For side branches, the diameters 
were obtained closer to the outlet nodes. From the minimal and maximal diameters, the mean 
diameters and ellipticity were calculated. The measurements were accumulated to calculate the 
overall length and length-weighted diameters of the MPA, LPA and RPA, respectively. Edges with a 
length below 10 mm were disregarded on the length-weighted diameter calculation, as side branches 
will likely distort the diameter measurements. The curvature index was calculated from the distance 
of start- and end-node, divided by the overall length of the considered segment. Lastly, the bifurcation 
angle between LPA and RPA was determined, by calculating the angle between the vectors connecting 
the endpoint of the MPA to the endpoint of the first edges of LPA and RPA, respectively, with an overall 
length of at least 10 mm (see Figure 6).   

 
Figure 6: Measurements from centreline-based analysis: the centreline (red) is subdivided into several edges, connected by 

nodes (blue), which mark a bifurcation. Diameters for each edge are obtained at the midpoint (blue star) between start and 
end node of an edge or at start node + 0.8 * (end node - start node) for branches (blue triangle). The bifurcation angle 

between LPA and RPA is the angle between the vectors connecting the endpoint of the MPA to the endpoint of the first edge 
of LPA and RPA, respectively. 

 



 

D6.3 – Uncertainty quantification for input data  SIMCor – GA No. 101017578 

    

 
  14 

 

Segmentation of the AV using parametric heart model 

The segmentation procedure is performed automatically with using a parametric model described 
earlier7,8. However, during the final step, manual correction of the AV leaflets affecting the AV area 
during fully open state is necessary as the parametric model assumes a symmetric configuration of all 
three leaflets, which is seldom found in patients with severe aortic stenosis. To assess intra- and inter-
operator variability, reconstruction of the AV geometries was repeated by the main operator 6 months 
after the initial reconstruction. In addition, reconstruction was performed by another user for analysis 
of inter-operator variability. Based on these segmentations, the AV area was then calculated and 
compared against each other. Figure 7 shows the two independent reconstructions of one case 
exemplarily. 

  

Figure 7: Example of the differences in AV anatomy of one TAVI patient resulting from independent reconstructions by two 
different operators. The AV area of both operators was 0.58 cm² and 0.42 cm², respectively. 

For both analyses, intraclass correlation coefficients (ICCs) were calculated according to the 
convention by McGraw and Wong [ICC (1)9]. Only the operator bias on AV area was investigated, as 
the volume flow rate quantification was based upon the fully automatic segmentation of the LV. 

  

 
7 Weese J, Lungu A, Peters J, Weber FM, Waechter-Stehle I, Hose DR. CFD and Bernoulli-based pressure drop estimates: a comparison using 

patient anatomies from heart and aortic valve segmentation of CT images. Med Phys. (2017) 44:2281–92. doi: 10.1002/mp.12203 
8 Franke B, Weese J, Waechter-Stehle I, Bruning J, Kuehne T, Goubergrits L. Towards improving the accuracy of aortic transvalvular pressure 

gradients: rethinking Bernoulli. Med Biol Eng Comput. (2020) 58:1667– 
79. doi: 10.1007/s11517-020-02186-w 
9 McGraw KO,Wong SP. Forming inferences about some intraclass correlation coefficients. Psychol Methods. (1996) 1:30–46. doi: 

10.1037/1082-989X.1.1.30 
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Quantification of AV calcification 
Usually, the AV calcification score is acquired based on CT acquisitions without contrast agent by using 
a threshold of HU = 13010. However, this approach does not allow to measure uncertainty of the 
calcification measurements. Furthermore, in clinical routine image data with contrast agents as used 
for TAVI treatment planning is also commonly used for assessment of calcifications, requiring more 
flexibility in the choice of the HU threshold.  Here, currently no agreement for an appropriate HU 
threshold11 exists. Since for TAVI planning also dynamic CT acquisition with more than 5 phases per 
heart cycle are available, this data was used for the uncertainty measurements in calcification 
measurement. Due to the high contrast of the blood pool, a HU threshold of 800 was chosen for the 
measurement of the calcification volume. Figure 8 visualises the process of the calcification volume 
measurement, which is done in a region of interest covering the AV leaflets and the AV annulus. 

 

A B  

C D  

Figure 7: Assessment of AV calcification: (A) - CT image depicting the AV and a black arrow highlighting calcifications with 
high Hounsfield unit values. (B) - visualisation of the AV as an isosurface with a constant HU of 400 and black wireframe 
defining the ROI used for the calcification volume measurement. (C) and (D) - frontal and back surfaces of the AV (red) as 

well as calcifications (blue). 

 

  

 
10 Pawade T, Sheth T, Guzzetti E, Dweck MR, Clavel MA. Why and How to Measure Aortic Valve Calcification in Patients With Aortic Stenosis. 

JACC Cardiovasc Imaging. 2019 Sep;12(9):1835-1848. doi: 10.1016/j.jcmg.2019.01.045.  
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Extraction of hemodynamic blood flow information  

To simulate blood flow in, for example, patient-specific PA, information about the patient-specific 
volume flow waveform at the MPA might be required, depending on the question of interest. This 
information is usually acquired during MRI measurements. Here, data was acquired using a 1.5 T 
clinical MR system (Achieva; Philips Healthcare, Best, Netherlands) with a five-element cardiac 
phased-array coil. All flow measurements were performed with automatic correction of concomitant 
phase errors. 4D MRI was acquired with a field of view of 185 mm x 240 mm x 80 mm, a matrix size of 
100 x 128, an acquired voxel size of 2.5 mm x 2.6 mm x 2.5 mm, reconstructed voxel size of 1.9 mm x 
1.9 mm x 2.5 mm, repetition time of 3.2 ms, echo time of 1.9 ms, retrospective cardiac gating, flip 
angle of 5°, number of signal averages of 1 and a velocity encoding of 150 cm/s. The temporal 
resolution was 25 timesteps. 4D data was analysed using the GTflow (version 3.2.16, Gyrotools, Zurich, 
Switzerland) as shown in Figure 9.  

 
Figure 8: Exemplary 4D velocity encoded MRI velocity vector field in the PA with a measurement plane perpendicular to 

MPA. 
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Catheter-based pressure measurements 
To simulate the paravalvular leakage after TAVI implantation information about pressures in the LV 
and aorta are necessary. The paravalvular leakage is moderated by the paravalvular orifices as well as 
the pressure gradient oriented from aorta to left ventricle during diastole. This data was acquired 
during TAVI procedure by catheter-based pressure measurements. These measurements are 
associated with heart-to-heart beat uncertainty. Catheterization is performed according to the Heart 
Team decision under local (remifentanil) or general anaesthesia (propofol and remifentanil). Blood 
pressure waveforms (see Figure 10) are measured in the ascending aorta as well as in the LV using a 
6-F pigtail catheter (Cordis, Dublin, Ireland). Measurements in the ascending aorta are always 
performed before measurements in the left ventricle. For each measurement, 5 consecutive cardiac 
cycles or more, if possible, were acquired in order to assess pressure uncertainty. The peak systolic 
pressure in the left ventricle and the ascending aorta are calculated as the average of all peak values. 
Peak systolic values at each heart cycle are identified automatically by using MATLAB. Beside 
measurement of pressure values, for the modelling of paravalvular leakage, information on the 
duration of the diastolic and/or systolic period is important. These measurements are also based on 
pressure curves. Please note that the uncertainty in the pressure measurement procedure cannot be 
assessed via this approach, as due to the retrospective nature of the data only the already filtered and 
printed pressure waveforms were available.  
 

 
Figure 9: Exemplary catheter-measured pressure curves in the left ventricle (left) and the ascending aorta (right). Red dots 

mark peak systolic values. 
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Uncertainty quantification of segmentations 

Uncertainty quantification of manually segmented PA surfaces 
In Table 3 results of the surface distances for all 10 investigated cases are summarised, along with the 
size of each bounding box representing the reconstructed domain, as well as the size of the ROI used 
for the analysis. On average, 73% ± 8% of the reconstructed domains were considered for the surface 
distance analysis. While this sounds like a relevant difference, slight changes in the length of branching 
vessels can result in relevant differences in the bounding box. Also, the region of interest included the 
entire valid implantation zone in all 10 cases.  The averaged surface distance for all cases was 0.39 mm 
± 0.22 mm, which is below the average voxel size of 0.596 mm in our data. This means that the 
uncertainty due to manual segmentation is lower to acquisition accuracy (spatial resolution of the 
voxel field). The mean Hausdorff distance was 3.7 mm ± 1.06 mm. Large differences were only found 
for the branching vessels, but not for the main vessels (MPA, LPA, RPA). Finally, regression analysis 
indicated no significant correlation between averaged surface and Hausdorff distances. 

Case BB  
(mm x mm x mm) 

ROI (mm x mm x mm),  
(BB/ROI, %) 

Surface distance  
(mm) 

HD  
(mm) 

1 126x114x75 104x114x65 (71%) 0.10 ± 0.20 2.97 

2 123x125x75 105x110x75 (75%) 0.70 ± 0.33 3.41 

3 113x88x54 113x88x47 (87%) 0.17 ± 0.19 2.49 

4 163x131x80 125x131x80 (77%) 0.26 ± 0.23 2.70 

5 131x97x57 107x88x57 (74%) 0.45 ± 0.44 5.45 

6 123x96x64 94x86x64 (68%) 0.25 ± 0.24 4.42 

7 130x129x65 107x124x65 (79%) 0.76 ± 0.27 2.49 

8 129x105x71 113x90x71 (75%) 0.44 ± 0.43 4.88 

9 168x93x100 142x78x90 (64%) 0.29 ± 0.35 3.92 

10 143x108x88 110x108x66 (58%) 0.50 ± 0.51 4.51 

Table 3: Analysis of the surface distances between manual PA reconstructions of 10 human cases by 2 independent 
operators in a limited region of interest which represents only the most relevant anatomical region including main, left, and 

right PA but not all branching vessels. 

Uncertainty quantification of geometric parameters: manual PA 
reconstruction 
For all investigated geometric parameters we found no significant differences between both operators 
(paired t-Student test, p >> 0.05), whereas linear regression analysis found significant correlations (all 
p < 0.001) between geometric parameters calculated from surface reconstruction based on the 
manual reconstructions of both independent operators. Figure 11 exemplary shows scatter plots for 
four geometric parameters at different PA vessels (RPA-LPA bifurcation angle, length of the MPA 
segment, diameter of the LPA segment and the curvature index of the RPA).  

To quantify uncertainties, we calculated differences between parameters based on segmentations of 
two different operators and calculated the relative uncertainty (RU) in percentage in two ways: 

1. RU1: relationship of the standard deviation of all 10 differences between calculated values of a 
geometric parameter divided by the mean parameter value calculated from all 20 values of the 
same parameter (10 patients, 2 operators) in percentage; 

2. RU2: relationship of the mean absolute differences between calculated values of one geometric 
parameter divided by the mean parameter value calculated from all 20 values of the same 
geometric parameter (10 values, 2 operators) in percentage. 

Both RU, calculated for four geometric parameters, are shown in Figure 11 and are summarised in 
Table 4. Finally, we demonstrated that no significant linear regression correlation between surface or 
Hausdorff distances and differences in calculated geometric parameters occurred due to the different 
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manual segmentations. The highest relative uncertainty of approximately 10% was found for the 
diameter (LPA diameter) and corresponds approximately to the three averaged voxel sizes of 0.595 
mm, which is still relatively small given the large average value of that parameter. 

 

 

 

Figure 10: Scatter plots and linear regression analysis for four exemplary geometric parameters describing the PA anatomy. 
Operator 1 - O1. Operator 2 - O2. Curvature index - CI. 

Uncertainty MPA L 𝛂 LPA D RPA CI 

RU1 8.2% 5.1% 13.0% 4.6% 

RU2 5.8% 3.6% 9.0% 2.9% 

Mean parameter value 40.95 mm 91° 19.59 mm 0.905 

Table 4: Relative uncertainties due to manual segmentations performed by two operators of the four exemplary geometric 
parameters: MPA length (L), bifurcation angle (𝛂) between left and right PA, LPA diameter (D), and RPA curvature index 

(CI). 
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Uncertainty quantification of PA surfaces: manual vs. automatic 
reconstruction 
In Table 5 results of the surface distances for 10 investigated PA cases are summarised in an identical 
manner as in the previous section. However, here, the surfaces between the first operator’s manual 
reconstruction and the automated reconstructions are compared. On average, 74.5% ± 11.8% of the 
reconstructed domain were considered for the surface distance analysis. The averaged surface 
distance for all cases was 0.73 mm ± 0.23 mm, which is slightly larger than the average voxel size of 
0.596 mm- This means that the uncertainty due to type of segmentation (manual or automatic) is 
similar to the acquisition accuracy (spatial resolution). The mean Hausdorff distance was 4.7mm ± 
0.88mm.  

Case BB  
(mm x mm x mm) 

ROI  
(mm x mm x mm), (BB/ROI, %) 

Surface distance  
(mm) 

HD  
(mm) 

1 126x114x75 95x114x68 (68%) 0.45 ± 0.41 3.91 

2 123x125x75 123x125x63 (84%) 0.32 ± 0.36 4.42 

3 113x88x54 104x88x54 (92%) 0.82 ± 0.42 3.58 

4 160x131x80 136x77x80 (50%) 0.55 ± 0.53 5.91 

5 131x97x57 92x97x57 (70%) 0.75 ± 0.57 4.24 

6 123x96x64 108x96x64 (88%) 0.73 ± 0.55 4.31 

7 130x129x65 115x106x65 (73%) 0.92 ± 0.57 4.06 

8 129x105x71 96x105x71 (74%) 0.84 ± 0.64 4.95 

9 168x93x100 150x77x100 (74%) 0.98 ± 0.78 5.72 

10 143x108x88 143x78x88 (72%) 0.98 ± 0.88 5.98 

Table 5: Analysis of the surface distances between manual and automatic PA reconstructions of all 10 human cases in a 
limited region of interest which represents only the most relevant anatomical region including main, left, and right PA but 

not all branching vessels. 

Uncertainty quantification of PA geometric parameters: manual vs. U-net 
segmentations 
Similar to the analysis of differences between manual surface reconstruction performed by two 
operators, geometric parameters based on the manual reconstruction performed by Operator 1 and 
the automatic reconstruction (see Table 6) were compared. The uncertainty of geometric parameters 
between manual and automatic reconstruction was higher for vessel lengths, diameters, ellipticity, 
and curvature index compared to the uncertainty due to manual segmentations by two operators. 
This is due to the data used to train the neural network, which included the entire PA tree up to the 
7th - 9th bifurcation generation. In contrast, the manual segmentations were done only until the 3rd 
or partially 4th generation. Respectively this results in different lengths for PA segments, a difference 
which propagates further into the definition of the mean diameter and curvature index. 

Uncertainty LPA L 𝛂 LPA D RPA CI 

RU1 25.5% 3.4% 15.3% 8.8% 

RU2 18.7% 2.9% 11.2% 8.0% 

Mean parameter value 98.60mm 91° 19.62mm 0.888 

Table 6: Relative uncertainties due to manual reconstruction performed by Operator 1 and automatic reconstructions, 
calculated for four exemplary geometric parameters: main PA (MPA) length (L), bifurcation angle (𝛂) between left and right 

PA (RPA), LPA diameter (D), and RPA curvature index (CI). 
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Uncertainty quantification of the AV area 
Intraclass correlation coefficients calculated for the intra- and interobserver analyses were 0.99 and 
0.88, indicating an excellent intraobserver reliability and a good agreement between different 
observers. The relative uncertainty of the intraobserver bias defined as standard deviation of the 
differences between AV areas based on two reconstructions performed by the same with a time delay 
of 6 months was 7.42% and thus lower than the interobserver-based relative uncertainty of 12.76%. 

Uncertainty quantification of the AV calcification volume 
Table 7 summarises the calcification volumes averaged for each patient over all acquired heart phases 
as well as the resulting relative uncertainty. It seems that with increasing calcification volume the 
relative uncertainty decreases, while the absolute uncertainty (i.e., the standard deviation) remains 
stable. Note that the calcification volume was defined as volume of voxels with HU above 800. 

TAVI case N of CT phases Calcification volume (mean±s.d.), (mm) RU ( %) 

1 11 11514 ± 888 7.7 

2 11 51543 ±517 1.0 

3 10 3672 ± 693 18.9 

Table 7: Results of the calcification volume quantification and resulting RU exemplary for 3 TAVI patients. 
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Uncertainty quantification of PA flow rates 
In order to quantify uncertainty of the flow rate measurements by 4D flow MRI, the flow rate was 
measured at 10 different planes along the centreline of the MPA as visualised in Figure 12. The 
measurements were performed in three different subjects. Table 8 summarises, for each subject, the 
cycle-averaged flow rate, the averaged peak-systolic flow rates, as well as the relative uncertainty for 
both hemodynamic parameters defined as the ratio of the standard deviation of all ten measurements 
and the mean of all 10 measurements. 

 

 
Figure 11: Left: the first plane for flow rate measurement in the MPA together with the measured flow rate curve. Right: 

The last plane for the MPA flow rate measurements with the respective curve. 

Case mean Q with s.d. (ml/s) peak-systole Q with s.d. (ml/s) RUmean-Q (%) RUpeak-systole-Q (%) 

1 127 ± 6.0 459 ± 28.1 4.8% 10.8% 

2 100 ± 8.4 309 ± 62.4 8.4% 20.2% 

3 130 ± 15.2 503 ± 49.2 11.7% 9.8% 

Table 8: Exemplary PA flow rates measured for three subjects. Mean and peak-systolic flow rates averaged over 
measurements in 10 different planes along the MPA, as well as the relative uncertainties calculated for both parameters. 
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Uncertainty analysis of catheter-measured pressure curves 
The average and standard deviation of the peak systolic, static pressure measured in the LV and the 
ascending aorta of TAVI patients investigated in SIMCor was 162.7 ± 32.4 and 113.1 ± 25.0 mmHg. For 
5 randomly selected TAVI cases, the peak systolic LV pressures as well as systolic phase period and 
relative uncertainty of these 2 parameters are summarised in Table 9. 

TAVI case Peak systole P (mmHg) RUp Systolic time T (s) RUT 

1 157 ± 1.6 1.0% 0.48 ± 0.010 2.10% 

2 159 ± 4.0 2.5% 0.71 ± 0.01 2.14% 

3 134 ± 3.0 2.3% 0.59 ± 0.011 1.93% 

4 127 ± 1.5 1.2% 0.45 ± 0.016 3.68% 

5 147 ± 1.2 0.8% 0.51 ± 0.006 1.3% 

Mean 144.8 1.56% 0.548 2.23% 

Table 9: Peak systolic pressures and systolic times averaged over catheter-based pressure measurements of five consecutive 
heart cycles in 5 TAVI patients with resulting RU for pressure and time. 
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Conclusions 
The overall uncertainty introduced due to image processing methods is relatively low. The inter- and 
intra-operator reliability for the manual reconstruction of the aortic or PA geometries was excellent 
and observed differences were below or equal to the image data resolution. Measurement of 
functional parameters was also found to be robust with respect to the uncertainties to be expected in 
clinical real-world data. Nonetheless, the propagation of these uncertainties throughout the modelling 
pipelines for device implantation and device effect simulation is a necessary validation step and will 
be investigated in subsequent analyses. 
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Appendix 

List of tools used for uncertainty quantification 

N Tools Aim 

1 ZIBAmira (v. 2015.28, Zuse Institute Berlin, 
Germany) 

Manual or semi-automatic segmentation, medical 
image data visualisation  

2 MeVisLab software (MeVis Medical Solutions AG, 
Germany) 

Automatic centerline-based analysis of geometric 
parameters. 

3 IBM SPSS Statistics 28 software (IBM Company, USA) Statistical analysis of all data. 

4 GT Flow program (version 3.2.16, Gyrotools,Zurich, 
Switzerland) 

Analysis of MRI measured velocity vector fields. 

5 MATLAB and Statistics Toolbox Release 2012b (The 
MathWorks, Inc., Natick, Massachusetts, United 
States) 

Analysis of pressure curves 

Table 10: List of used tools. 

List of parameters used for uncertainty quantification  

N Use case Parameter type Parameter 

1 TAVI Geometric AV area, cm2 

2 TAVI Geometric Volume of calcifications, mm3 

3 TAVI Hemodynamic LV pressure, mmHg 

4 TAVI Hemodynamic Systolic time, s 

5 PAPS Geometric Mean surface and Hausdoff distances, mm 

6 PAPS Geometric MPA/LPA/RPA lengths, mm 

7 PAPS Geometric MPA/LPA/RPA diameters, mm 

8 PAPS Geometric Ellipticity/Curvature indexes, - 

9 PAPS Geometric LPA-RPA bifurcation angle, ° 

10 PAPS Hemodynamic PA peak systolic flow rate, ml/s 

11 PAPS Hemodynamic PA mean flow rate, ml/s 

Table 11: List of investigated parameters. 
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