

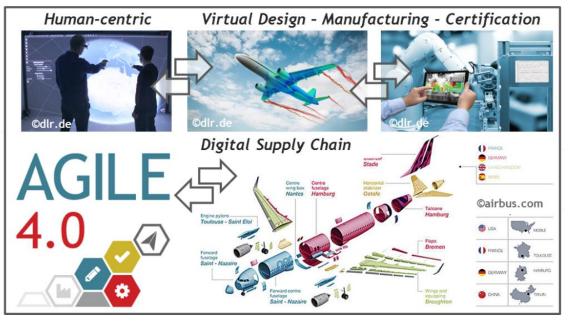
AGILE4.0

Towards cyber-physical collaborative aircraft development

German Aerospace Center (DLR) | Jasper Bussemaker
AGILE 4.0 Project Consortium

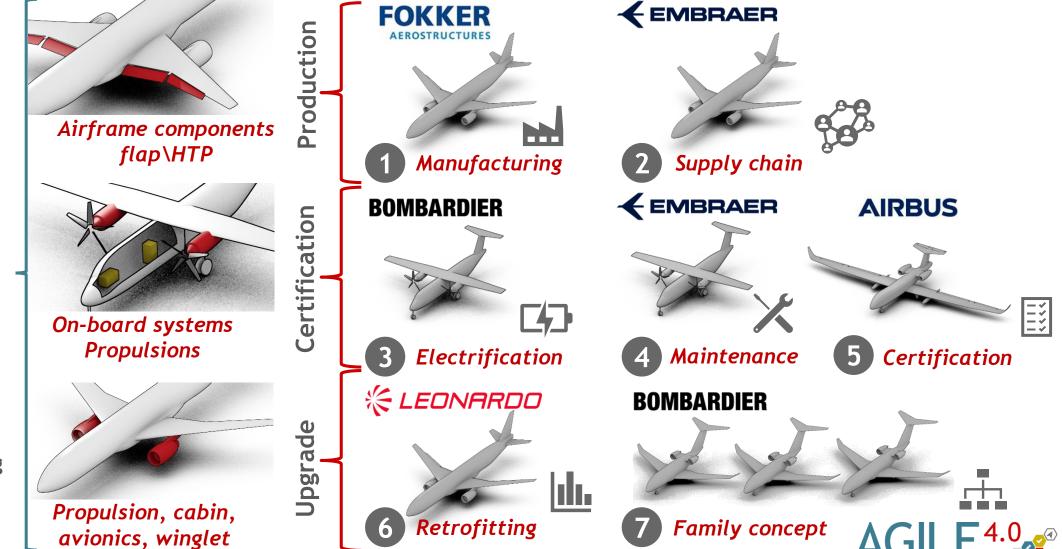
3rd European Workshop on MDO | 20 September 2022

AGILE4.0


Towards cyber-physical collaborative aircraft development

AGILE 4.0 project ambition:

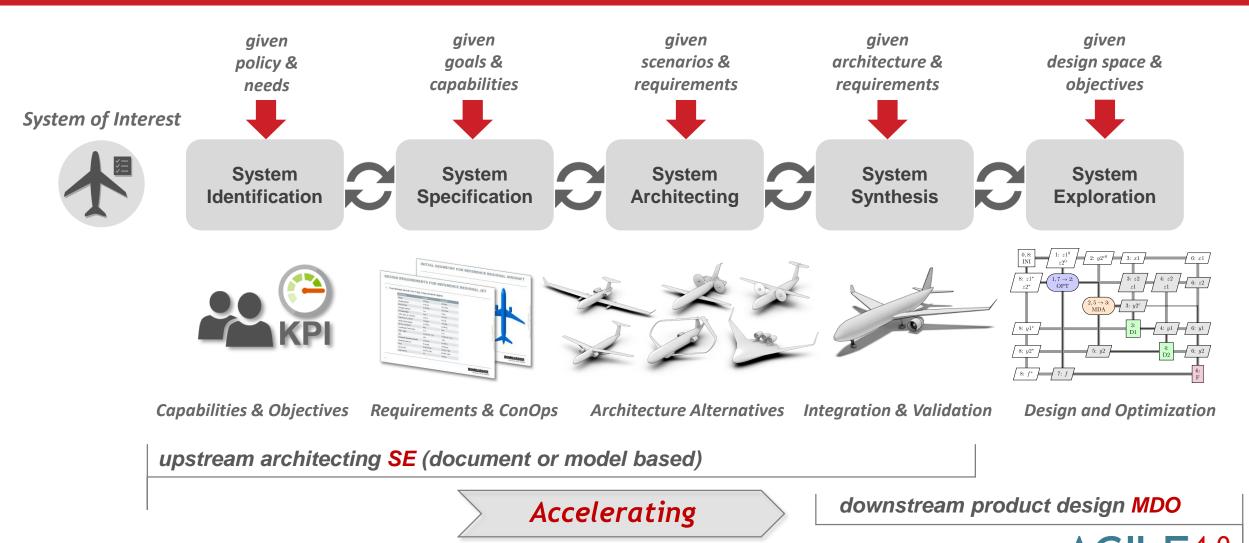
"The high-level objective of AGILE4.0 is to bring significant reductions in aircraft development costs and time-to-market through the implementation of an integrated cyber-physical aeronautical supply chain, thereby increasing the competitiveness of the European aircraft industry, from integrators and high-tiers suppliers to SMEs, leading to innovative and more sustainable aircraft products"

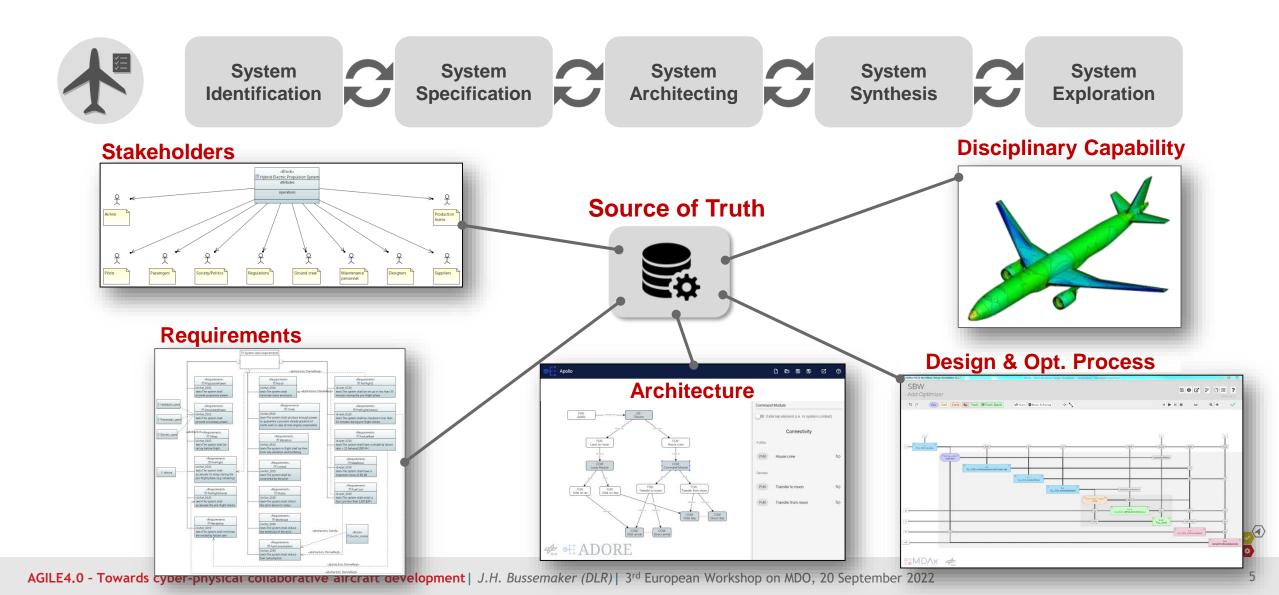


EU funded H2020 project: September 2019 – February 2023

- 16 International Partners (EU, Brazil, Canada)
- Coordinated by DLR Hamburg

Towards the next generation MBSE-MDO accelerating the development of complex systems


Industrial-driven Applications



- MBSE Approach
- Ontologies
- Models
- Platforms
- Decision Making
- Optimization
- Competences

Systems Engineering Approach for the Development of Aeronautical Systems

Shifting from document based to Model Based Engineering Approaches (MBE)

The Operational Collaborative Environment

SysML environment representation of stakeholders, needs and requirements model

Automatic generation of SysML models

Requirements verification

Modeling environment representation of operational scenarios model

aoals &

capabilities

System

Specification

System Synthesis

modelling

objectives

given

desian space &

System Design

Definition and sharing of executable surrogate models

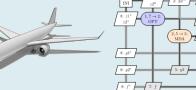
Enabling crossorganization collaborative simulation workflows

Executing simulation workflows

given

policy &

needs


System

Identification

Capabilities & Objectives

Requirements & ConOps

Architecture Alternatives

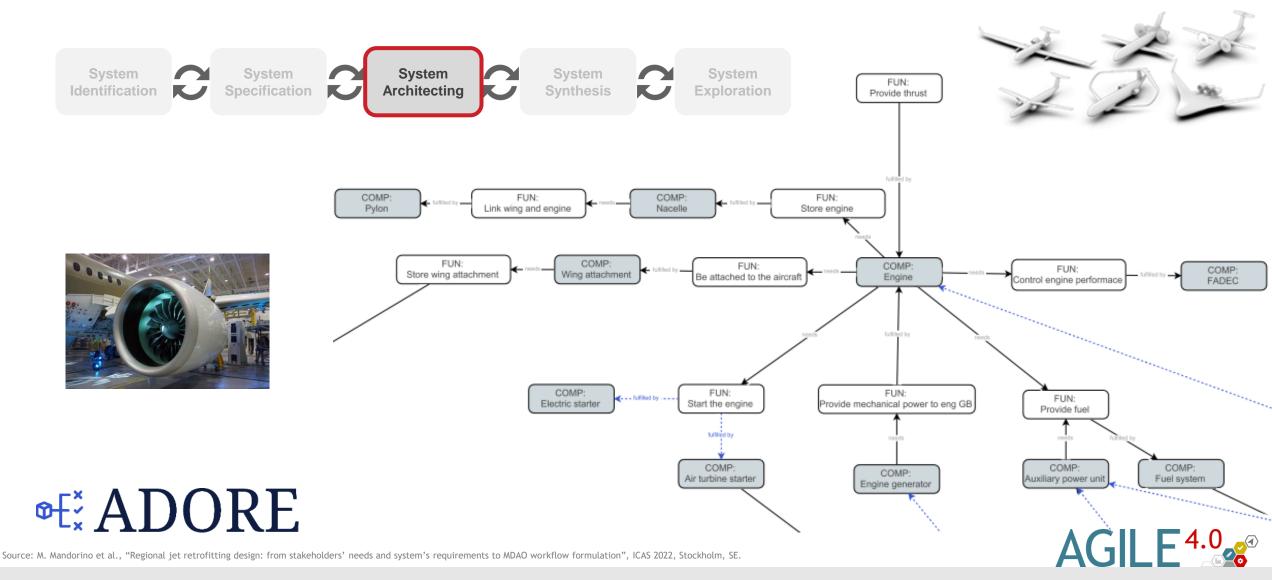
Integration & Validation

Design and Optimization

of ADORE

System Architectures generation, modelling and visualization

Bridging System Architectures to MDAO



Web-based collaboration and process integration platform

Architecture Modeling: Engine Retrofit

Architecture Decisions

System Specification

System Exploration

Architecture Decisions

#	Operation	Subject	Options
1	Fulfill function	Avoid presence of ice	Electro-thermal IPS, Pneumatic IPS, Bleed air IPS
2	Fulfill function	Control flight control surfaces	MEA FCS, AEA FCS, Conventional FCS
3	Fulfill function	Provide compressed air	Wing inlets, Auxiliary power unit
4	Fulfill function	Provide compressed air	Engine, Wing inlets, Auxiliary power unit
5	Fulfill function	Recharge battery	Engine generator, APU generator
6	Fulfill function	Start the engine	Air turbine starter , Electric starter
7	Fulfill function	Store hydraulics circuits	Fuselage, Wing
8	Fulfill function	Store pneumatics circuits	Fuselage, Wing
9	Assign attribute value	Nacelle -> Shape	Elliptical, Circular
10	Assign attribute value	Wing -> Winglet type	Sharklet, Fences, Whitcomb

System of Interest

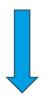
Aircraft

Enabling System

Retrofitted Aircraft

Source: M. Mandorino et al., "Regional jet retrofitting design: from stakeholders' needs and system's requirements to MDAO workflow formulation", ICAS 2022, Stockholm, SE.

MDAO Workflow Formulation

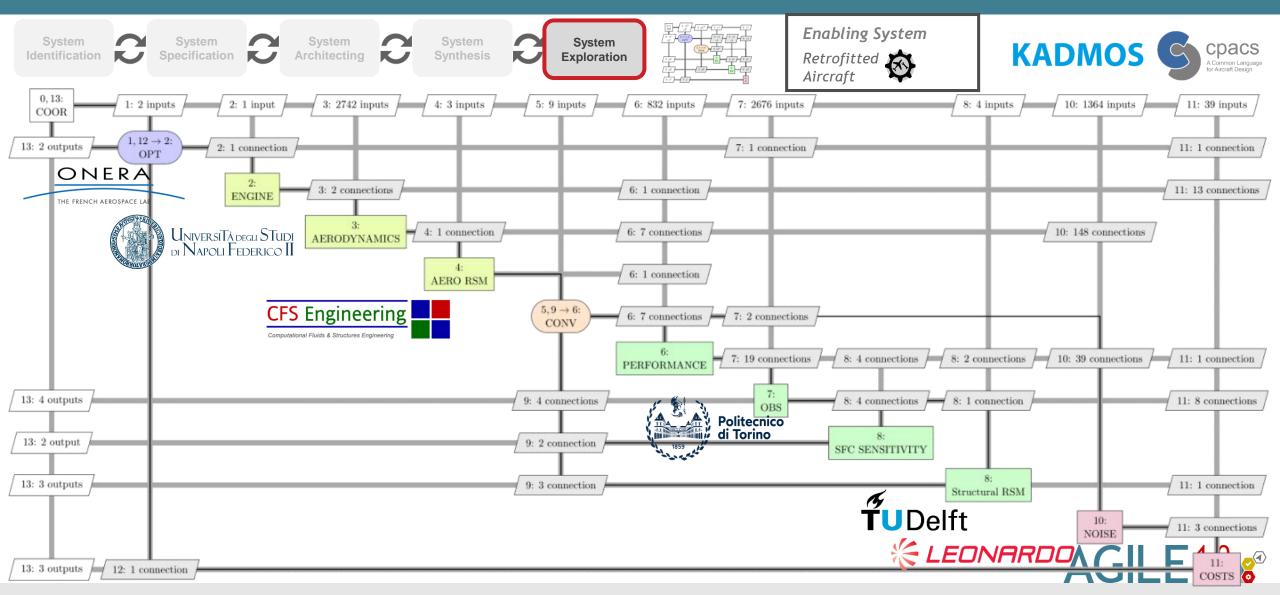

		Tools									
Ø M ∪ L T Components	I L I N Q	AERO RSM	^{AERODYNAMICS}	COSTS	ENGINE	NOISE	SBO	PERFORMANCE	SFC SENSITIVITY	Structural RSM	
AEA FCS	FCS Mass						1				
APU generator	Electrical Generation Mass						1				
Air turbine starter	Electrical Generation Mass						1				
Aircraft	Aircraft Price			~							
Aircraft	Certification EPNL Noise					~					
Aircraft	DOC			~							
Aircraft	Design Range							4			
Aircraft	Landing Distance							4			
Aircraft	Maximum Take-Off Weight						1	4		4	
Aircraft	Retrofitting Cost			~							
Aircraft	Take-Off Distance							4			
Aircraft	Typical Range							/			
Autopilot	Automatic Flight System Mass						1				
Auxiliary power unit	APU Mass						1				
Batteries	Electrical Generation Mass						1				
Bleed air IPS	Delcing Mass						1				
Conventional FCS	FCS Mass						1				
Electric power system	Electrical Distribution Mass						1				
Electric starter	Electrical Generation Mass						1				
Electro-thermal IPS	Delcing Mass						1				
Engine	BPR				~						
Engine	Engine Price			~							
Engine	Number of Compressors				~						
Engine	TT0				*						
Engine generator	Electrical Distribution Mass						1				
Environmental control system	Air Conditioning Mass						1				
FADEC	Automatic Flight System Mass						1				
Fuel system	Fuel Mass							/			

oet[®] ADORE

Design Competences System Components

Input & Output

Quantity of Interest



MDAO Workflow Formulation

Thank you for your attention! Thank You!

HORIZON 2020

More information:

- www.agile4.eu
- ZENODO
- LinkedIn

