
Colloids and Surfaces A: Physicochemical and Engineering Aspects 655 (2022) 130167

A
0

Contents lists available at ScienceDirect

Colloids and Surfaces A: Physicochemical and Engineering
Aspects

journal homepage: www.elsevier.com/locate/colsurfa

Estimates of noble metal particle growth in a molten salt reactor
E.M.A. Frederix
Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 LE, Petten, The Netherlands

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
Nano-flotation
Molten salt reactor
Interfacial processes
Modeling

A B S T R A C T

Within the H2020-Euratom project SAMOSAFER, research is currently ongoing into the Molten Salt Fast
Reactor (MSFR) concept in which nuclear fuel is dissolved in a liquid salt. A major challenge in the MSFR is the
online and offline treatment of salt in order to remove a plethora of fission products. Noble metals are a type of
such fission products, the atoms of which are thought to coagulate into particles as a result of diffusion. Due to
their low solubility, noble metal particles will deposit onto interfaces such as solid walls but also on bubbles, as
was observed in the Molten Salt Reactor Experiment (MSRE) at Oak Ridge national laboratory. The relatively
large interfacial area generated by bubbles makes online or offline bubbling, therefore, an interesting option to
extract noble metals from the MSFR and to limit wall deposition. However, to understand the performance of
the bubbling process, particle sizes must be known. Particle size distributions arise from a complex interplay
of atomic formation by fission and decay, growth by coagulation and removal by interfacial deposition. In
this paper, theory is developed to understand these mechanisms on a semi-analytical level, in order to provide
estimates of noble metal particle growth in the MSFR. The governing partial differential equation is reduced to
a set of ordinary differential equations using the method of moments, revealing the dynamics of the underlying
physics. We show that large noble metal particles, up to the micrometer scale, can arise in the reactor, but
only at very long operational times. Moreover, we show that the previously assumed ‘cycle time’ of noble
metal particle removal of 30 s is only feasible at very high bubbling void fractions. The theory developed in
this work contributes significantly to a qualitative understanding of the behavior of noble metals in an MSR.
The theory can potentially help to explain certain phenomena observed in the MSRE and can assist in the
future design of safe and reliable MSRs.
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1. Introduction

Molten Salt Reactors (MSRs) are a type of nuclear reactor in which
a molten salt is used as the primary coolant held at a high temperature,
either to remove heat from conventional solid fuel assemblies or from
fuel that is dissolved in the salt itself. An important benefit of using
molten salt as a coolant is its high heat capacity and high boiling point,
allowing for efficient operation at near-atmospheric pressure. Advan-
tages of fluid-fueled reactors are a high thermal expansion coefficient
providing inherent safety, the possibility of continuous and batch fuel
reprocessing and better resource utilization, as transuranic elements
can be cycled through the core to eventually undergo fission [1]. In
this work, as part of the H2020-Euratom SAMOSAFER project, we
focus on the fluid-fueled MSR concept, and in particular on the MSFR
concept [2].

When fuel is dissolved in the salt, its fission products will form
and decay inside the salt too. In the context of MSRs, fission products
can be categorized into three groups: salt seekers, noble gases and
noble metals [3]. Salt seekers tend to dissolve in the salt as they form
stable bonds with fluorine. Noble gases (typically Xe and Kr) and noble
metals do not, and have extremely low solubility in the salt. As such,
they migrate to salt–gas and salt–solid interfaces, where they deposit.
In the case of salt–solid interfaces, noble metals are very likely to
adhere to the solid surface permanently, particularly on metal surfaces.
This process is called plating, and can lead to dangerous hot spots in
power reactor systems as a result of decay heat, even more so in loss-
of-coolant accident scenarios. The behavior of noble gases and noble
metals, being a subject of major importance to the design of MSRs,
was already extensively studied half a century ago, in the Molten Salt
Reactor Experiment at Oak Ridge National Lab., e.g., see [3,4]. It was
observed that when helium bubble entrainment into the salt increased
(which, in fact, was unintended) from 0.04% to 0.5% void fraction,
noble metal deposition shifted significantly from the vessel and heat
exchanger walls towards the off-gas system [5]. This resulted in 86% of
the total noble metal mass to be deposited in the pump bowl, overflow
tank or off-gas system, suggesting that salt bubbling can be leveraged
as a tool to control and reduce noble metal plating. To explain the
results observed in the MSRE, we speculate that the tendency of noble
metals to adhere to bubbles is likely to be amplified because of three
reasons. First, bubbles have a relative velocity with respect to the salt
as a result of buoyancy or other forms of drift. This, in turn, enhances
mass transfer as expressed by an increase in the Sherwood number as
a function of bubble Reynolds number and particle Schmidt number.
Thus, per unit of interfacial area, bubbles could be likely to absorb
noble metals more efficiently than solid walls. Second, most noble
metals will form in the core of the reactor where the fission rate is
highest, relatively far away from solid walls but close to bubbles that
can freely drift and rise into the core. Therefore, noble metals are more
likely to encounter a bubble before they reach a solid wall. Third, the
interfacial area concentration of bubbles can be made larger than that
of walls. For example, in the MSRE the total area of walls (excluding
the graphite moderator, which is not used in the MSFR) was about 80
m2 [6] enclosing a total salt volume of about 2 m3 [3], giving a wall
area concentration of 40 m−1. The wall area concentration will reduce
further for larger salt volumes such as that of the MSFR (18 m3). On
the other hand, the interfacial area concentration of 1 mm bubbles at
a void fraction of 1% is 60 m−1. This is independent of the salt volume
and will dominate wall area concentration at larger salt volumes, thus
leading to a preference of particles to attach to bubbles instead of walls.
These considerations, then, are a strong motivation to explore the use
of an online bubbling system in MSRs, as is indeed envisaged in the
MSFR [7].

Noble metals are thought to originate as, or very rapidly become,
individual metal atoms and diffuse in the salt as such [5]. Because
they have low solubility, aggregation of atoms into colloidal particles,
2

and subsequent aggregation of such particles into larger ones, is likely. o
Just like atoms, small metal particles undergo diffusion too, however,
this colloidal diffusion is usually referred to as Brownian diffusion. The
Stokes–Einstein equation modeling Brownian diffusivity is proportional
to 1∕𝑑 with 𝑑 the particle diameter, showing that diffusive mobility
decreases with size. The flux of noble metal particles thus becomes a
function of size, making the net rate of particle absorption by bubbles
a non-trivial integral over the complete size spectrum of coagulated
particles. The idea of diffusion-driven noble metal particle absorption
by bubbles, here referred to as diffusional flotation, carries an obvious
similarity with classical heat and mass transfer theory. While MSRE
research into noble metal behavior was significantly hampered by the
complexities associated with the operation of an integral reactor sys-
tem, the hypothesis that noble metals migrate according to the simplest
form of mass transfer theory has always prevailed and is supported by
experimental evidence [3,6,8].

In addition to diffusional transport, from classical flotation the-
ory [9] it is known that for particles with sizes beyond 100 nm,
hydrodynamic effects contribute to particle–bubble absorption too.
Large particles can sediment due to gravity, or drift due to iner-
tia. Consequently, that leads to an enhancement in the likelihood
of particle–bubble collision. The magnitude of hydrodynamic flotation
typically carries a proportionality with the Stokes number which, in
turn, is proportional to 𝑑2. Thus, the total flotation efficiency curve,
rom the nanometer scale up to the millimeter scale, is expected to be
-shaped where the left ‘arm’ is diffusion-driven and the right ‘arm’

s hydrodynamics-driven. The presence of a minimum in the flotation
fficiency curve has been experimentally observed for silica particles in
ater, see [10].

So, the flotation efficiency curve is expected to be a strong func-
ion of particle size, where particle sizes can span several orders of
agnitude. The prevailing underlying mechanism of flotation, being
iffusion or hydrodynamics, is not know a priori. Therefore, estimates
f the noble metal particle size distribution, subject to the operat-
ng conditions inside the reactor, should be developed. In this work,
e do this by considering the classical particle coagulation equation
mended by an additional source and sink term to account for particle
ormation as a result of fission or precursor decay, and removal by
ubbles, respectively. We show that the process of particle formation
nd particle removal is closely linked with two time scales: one of
rowth and one of removal. An evaluation of the two readily provides
stimates of the equilibrium particle size spectrum at which the rate of
article production is balanced by the rate of removal. The equilibrium
emoval rate gives rise to a cycle time, i.e., the mean life time of noble
etal atoms in the reactor between production by fission or decay and

emoval by bubbles. The developed theory relies on the assumption that
he particle size distribution is log-normal. This reduces the complexity
f the model significantly, but preserves the fundamental dynamics
nherent to the problem at hand, including knowledge on the moments
f the particle size distribution. Finally, we apply the developed theory
o estimates of operational parameters of the MSFR, giving insight in
he process of noble metal particle formation in operational conditions.

The structure of this paper is as follows. In Section 2, we consider
he situation in which particles are not removed from the system and
re free to agglomerate. Next, in Section 3, we consider the opposite:
article removal without production. The resulting models are then
ombined in Section 4, allowing to make a first realistic estimate of
article sizes in the MSFR. Finally, in Section 5 we formulate the
onclusions of this work.

. Noble metal particle size spectra without sinks

We study the formation and coagulation of noble metal particles in
he context of an imaginary infinitely large and homogeneous MSR, first
ithout any bubbles or other surfaces on which particles can deposit.
ithout any depositories, the growth of particles due to coagulation
ill be indefinite, assuming that they will not decay further. Neverthe-

ess, the approach developed in this section will serve as a basis for
urther analysis of the complete problem that will be addressed later

n.
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2.1. Modeling the noble metal particle spectrum

Noble metal atoms are born in a nuclear reactor as the result of
fission or from the decay of precursors. Their solubility in the salt is
very low. For example, measurements in the MSRE showed that only
0.21% of the total 99Mo mass produced in the reactor was found in the
alt. Everything else had deposited on the graphite moderator, metal
alls or in the purge gas system [5]. Drawing an analogy with Classical
ucleation Theory (CNT), the low solubility of noble metal atoms in

alt can be considered as an over-saturation leading to the formation
f critical clusters whose probability of further growth equals that of
isappearance. However, whereas in CNT such clusters usually consist
f a relatively large number of atoms, here we assume that the ‘critical
lusters of noble metal atoms’ consist of just one atom as a consequence
f strong insolubility. This is analogous to condensable materials with
ery low vapor pressures, in which essentially all collisions are effective
o that the critical cluster size is a single molecule [11]. This assump-
ion, which is supported by the experimental evidence from the MSRE,
llows us to avoid the modeling of formation of the metallic particle
nalogy of a critical cluster. Instead, we may directly inject single atoms
n the population of noble metal particles, as single-atom particles.

We introduce the population 𝑛(𝑣, 𝑡) with particle volume 𝑣 and
ime 𝑡, defined in such a way that 𝑛(𝑣, 𝑡)d𝑣 provides the total number

concentration of particles having a particle volume in the interval
[𝑣, 𝑣+d𝑣]. The population is not yet affected by any sinks, but undergoes
nucleation’ of new particles and coagulation due to Brownian diffusion.
ts evolution in time is subject to the population balance equation given
y
𝜕𝑛(𝑣, 𝑡)

𝜕𝑡
= 1

2 ∫

𝑣

0
𝛽(𝑣 − 𝑢, 𝑢)𝑛(𝑣 − 𝑢, 𝑡)𝑛(𝑢, 𝑡)d𝑢

− 𝑛(𝑣, 𝑡)∫

∞

0
𝛽(𝑣, 𝑢)𝑛(𝑢, 𝑡)d𝑢 (1)

+ 𝛿(𝑣 −𝑤)𝐹 ,

with 𝛽(𝑢, 𝑣) the collection kernel (e.g., see [12–14]) which will be
clarified momentarily, 𝑤 the volume of a single noble metal atom and
𝐹 the rate at which noble metal atoms are born per unit of volume. The
rate 𝐹 is assumed to be a constant, implying that the reactor operates at
steady state in terms of neutronics. The first term in the right-hand side
is the rate at which particles of size 𝑣 are formed as a result of binary
coagulation of particles of size 𝑣− 𝑢 and 𝑢. The second term is the rate
at which particles of size 𝑣 are lost due to coagulation into bigger ones.
The third term is the formation rate, modeled by a Dirac delta function
shifted to the atomic volume 𝑤.

In principle, we can introduce a population balance Eq. (1) for each
noble metal isotope and track the evolution of each size distribution
separately. However, this is problematic for two reasons. First, some
noble metal isotopes are short-lived, meaning that they decay into
other elements. To account for this, a decay sink term should be
included into (1), which is not straight-forward due to the large number
of decay chains. Second, noble metal particles are likely to consist
of a spectrum of elements, essentially demanding a high-dimensional
multi-species population balance model. To avoid these difficulties,
we consider noble metal formation as a single-species problem with
material properties appropriately averaged over all individual isotopes.
Moreover, it is assumed that when a noble metal atom decays, it
decays into another lower noble metal atom, therewith not significantly
changing its properties. This, then, allows us to retain (1), in which the
population 𝑛(𝑣, 𝑡) now pertains to the population of all multi-species
noble metal particles subject to an assumption of ‘internal mixing’,
i.e., their composition is independent of 𝑣. Of course, the real decay of
noble metals will include a variety of decay chains, some of which will
result in salt seekers, therewith removing mass from the population.
This will be particularly relevant when the time scale of particle growth
is much larger than that of decay into salt seeking elements. Thus,
the neglect of this removal term implies that the developed model
3

i

will produce an upper bound in terms of particle sizes. Similar to the
removal term of particles by bubbles as will be introduced in Section 3,
a term for removal by decay can also be introduced. However, this is
left for future research.

The collection kernel 𝛽(𝑢, 𝑣) provides the rate at which particles
of volume 𝑢 collide and coagulate with particles of volume 𝑣. In
the problem at hand, collisions are driven by the Brownian motion
of particles. The Knudsen number, expressing the ratio of the mean
free path in the salt over the particle size, is expected to be much
smaller than unity, which is generally true for particles suspended in a
liquid [13]. Following [13], the collection kernel then takes the form

𝛽(𝑢, 𝑣) = 𝐾( 3
√

𝑢 + 3
√

𝑣)(1∕ 3
√

𝑢 + 1∕ 3
√

𝑣) = 𝐾[2 + 3
√

𝑢∕𝑣 + 3
√

𝑣∕𝑢] (2)

where 𝐾 is the coagulation constant given by

𝐾 = 2𝑘𝑇
3𝜇

(3)

with Boltzmann constant 𝑘, temperature 𝑇 and salt dynamic viscosity
𝜇. The coagulation constant is related to the Stokes–Einstein diffusivity
𝐷 as 𝐾 = 2𝜋𝑑𝐷 and has units m3/s.

Solving the partial differential Eq. (1) subject to (2) explicitly
or 𝑛(𝑣, 𝑡) is not straightforward and can only be done numerically.

full discretization in volume space, covering many decades, must
e adopted (e.g., see [15–17]), however, this would not yield any
undamental insight into the dynamics of the model. Here, instead of
ursuing such an approach, we reduce the problem by considering
oments of the size distribution only. The 𝛾th volume moment is
efined as

𝛾 (𝑡) = ∫

∞

0
𝑣𝛾𝑛(𝑣, 𝑡)d𝑣. (4)

rom the moments, we can extract useful information pertaining to
he evolution of the size distribution, such as mean size and variance.
ultiplying (1) by 𝑣𝛾 , integrating over [0,∞) in 𝑣 and introducing (2)

nd (4), gives
d𝑀𝛾 (𝑡)

d𝑡
= 𝐾

2 ∫

∞

0 ∫

∞

0
[(𝑢 + 𝑣)𝛾 − 𝑢𝛾 − 𝑣𝛾 ][2 + 3

√

𝑢∕𝑣

+ 3
√

𝑣∕𝑢]𝑛(𝑢, 𝑡)𝑛(𝑣, 𝑡)d𝑢d𝑣 +𝑤𝛾𝐹 , (5)

here the first two terms in the right-hand side of (1) have been
ombined, see [12]. For the number concentration (𝛾 = 0), the volume
oncentration (𝛾 = 1) and the squared volume concentration (𝛾 = 2)
he general moment balance equations become

d𝑀0
d𝑡

= −𝐾[𝑀2
0 +𝑀1∕3𝑀−1∕3] + 𝐹 , (6a)

d𝑀1
d𝑡

= 𝑤𝐹 (6b)

nd
d𝑀2
d𝑡

= 2𝐾[𝑀2
1 +𝑀4∕3𝑀2∕3] +𝑤2𝐹 , (6c)

espectively, where we have rewritten the integrals over the
olynomial-weighted size distribution in terms of the moments using
4). We recall that 𝑀𝛾 is only a function of time for any 𝛾. With 𝑀1
eing the volume fraction of particles, we observe from (6b) that the
oagulation term is zero, i.e., coagulation preserves particle volume as
t should.

Another observation is that (6a) and (6c) pose a closure problem,
ecause they depend on unknown moments 𝑀1∕3, 𝑀−1∕3, 𝑀4∕3 and
2∕3. If we are to write the balance equations of those unknown
oments, they will, in turn, depend on a new set of unknown moments,

nd so on, giving rise to an infinite system. In order to avoid this, we
ust be able to relate any required unknown moment to the set of

nown moments, i.e., the set of moments for which we are willing to
olve a balance equation. There are several ways of doing this, like the
uadrature method of moments [18] or the Presumed Number Density
unction (PNDF) method. Here, we use the latter for its simplicity and
ase of use. While presuming a certain number density function is often
crude simplification, the approach is justified here as we are after the
dentification of the main dynamics of the problem only.
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2.2. Mono-dispersed closure

The most elementary PNDF assumes that the size distribution is
mono-dispersed, i.e.,

𝑛(𝑣, 𝑡) = 𝛿(𝑣 − 𝑣)𝑁, (7)

with number concentration 𝑁 and mean particle volume 𝑣, which are
the two unknowns of the PNDF and must be closed by retaining two
moment balance equations. We select those of the number concentra-
tion and volume concentration. Introducing the PNDF in (4), we find

𝑀𝛾 = 𝑣𝛾𝑁, (8)

which gives 𝑀0 = 𝑁 and 𝑀1 = 𝑣𝑁 = 𝑣𝑀0. In turn, we can relate 𝑀𝛾
to 𝑀0 and 𝑀1 by eliminating 𝑣 from (8), giving

𝑀𝛾 = 𝑀1−𝛾
0 𝑀𝛾

1 . (9)

e can use this relation to close (6a), resulting in
d𝑀0
d𝑡

= −2𝐾𝑀2
0 + 𝐹 , (10)

hich is the most elementary model for particle number evolution
ue to coagulation and formation. Together with (6b), it forms an
ncoupled set of non-linear ordinary differential equations, which,
ubject to the initial condition 𝑀0(0) = 0 and 𝑀1(0) = 0, has solution

0(𝑡) =
√

𝐹∕(2𝐾) tanh(
√

2𝐹𝐾𝑡) and 𝑀1(𝑡) = 𝑤𝐹𝑡. (11)

This outcome suggests that we can adopt the following non-dimensional
quantities:

𝑚𝛾 =
𝑀𝛾

𝑤𝛾
√

𝐹∕𝐾
and 𝜏 =

√

𝐹𝐾𝑡, (12)

with non-dimensional 𝛾th moment 𝑚𝛾 and non-dimensional time 𝜏,
urning the solution into

0(𝜏) =
tanh(

√

2𝜏)
√

2
and 𝑚1(𝜏) = 𝜏, (13)

evealing the self-similarity of the problem as the solution is shaped
ndependently of its parameters. From (13), we observe that for 𝜏 → ∞
he non-dimensional number concentration asymptotically approaches
∕
√

2. In that limit, production by fission/decay is balanced by loss of
number concentration by coagulation. Finally, the mean diameter of
particles 𝑑, related to the mean volume as 𝑣 = 𝜋∕6 𝑑

3
, is then given by

𝑑
𝑏
= 3

√

√

√

√

√

2 𝜏

tanh(
√

2𝜏)
, (14)

ith 𝑏 ∶= 3
√

6𝑤∕𝜋 the diameter of a single noble metal atom.
Fig. 1 shows the non-dimensional solution (14). It can be observed

hat from roughly one time unit onward the mean diameter linearly
ncreases as a function of log(𝜏), with slope 1

3 . This means that doubling
of time is associated with only a 3

√

2 increase in mean diameter.
This result comes as no surprise, as we concluded that the number
concentration asymptotically attains a constant value while particle
volume increases at constant rate, indeed resulting in the slow particle
growth as reflected by Fig. 1. What we learn from the above analysis
is that particle growth is associated with a typical time 𝑇𝑔 = 1∕

√

𝐹𝐾,
hich we can compare to the macroscopic time scale of the reactor to
btain a first estimate of mean particle size. Roughly speaking, if 𝑇𝑔
ould be unity, then it takes minutes for particles to grow tenfold and
ays to grow hundredfold—if they were not to be removed from the
ystem.

However, what we cannot extract from the above analysis is an
stimate of the spread of particle sizes. In fact, for the mono-dispersed
NDF, all average diameters (like the count mean, count median,
4

Fig. 1. Evolution of the non-dimensional mean particle diameter as a function of
non-dimensional time, subject to the mono-dispersed PNDF.

diameter of average mass, etc.) are the same. While the count mean
particle diameter, which is represented from now on by 𝑑, may be
small, a wide particle spectrum will lead to a significant increase in
other relevant mean diameters such as the massmean diameter 𝑑𝑚𝑚. For
example, if the size distribution is log-normal, then the Hatch–Choate
conversion equations [19] readily provide a relation between the count
mean diameter and mass mean diameter, i.e.,

𝑑𝑚𝑚 = 𝑑 exp(3𝜎2), (15)

ith 𝜎 the logarithm of the geometric standard deviation. Thus, for
distribution with 𝜎 = 1, the mass mean diameter is roughly 20

imes larger than the count mean diameter. Therefore, while the above
nalysis was useful in establishing the time scale of particle growth, we
ust extend it to include information on the variance of particle sizes.

.3. Log-normal closure

A PNDF that is typically chosen is the log-normal size distribution,
hich was experimentally and numerically validated to be accurate

n the context of particle coagulation [14]. Staying with a log-normal
ssumption, we replace the mono-dispersed PNDF by a distribution that
s log-normal in diameter space. Writing that distribution in terms of
olume space, we obtain [14]:

(𝑣, 𝑡) = 𝑁

3
√

2𝜋𝜎𝑣
exp

(

−
log2(𝑣∕𝑣𝑔)

18𝜎2

)

, (16)

in which 𝜎 and 𝑁 are as defined above and where 𝑣𝑔 is the geometric
number mean particle volume [19]. The log-normal size distribution
is controlled by three parameters: height 𝑁 , offset 𝑣𝑔 and width 𝜎.
Introducing (16) into the definition of the 𝛾th moment (4), we find

𝑀𝛾 = 𝑁𝑣𝛾𝑔 exp
( 9
2
𝛾2𝜎2

)

(17)

Since the right-hand side has three unknown quantities, we must
solve three independent moment equations and can then relate those
moments to the arbitrary moment 𝑀𝛾 , in order to develop a clo-
sure relation. We select the number, volume and squared volume
concentrations, giving

𝑀0 = 𝑁, 𝑀1 = 𝑁𝑣𝑔 exp
( 9
2
𝜎2

)

and 𝑀2 = 𝑁𝑣2𝑔 exp
(

18𝜎2
)

.

(18)

ombining these to eliminate 𝑁 , 𝜎 and 𝑣𝑔 from (17), we obtain

2
𝛾 =

𝑀 (𝛾−1)(𝛾−2)
0 𝑀𝛾(𝛾−1)

2
2𝛾(𝛾−2)

. (19)

𝑀1



Colloids and Surfaces A: Physicochemical and Engineering Aspects 655 (2022) 130167E.M.A. Frederix

u
n
(

a

a

w

𝑞

w
d
h
t

𝑑

T
g
m
g

d
o
r
s
w
i

s
s
d
n
d
t
m
t
s
d
t
m
l
t
t

3

t
d
b
w
b
t
s
c
n
d
I
g
t
i
m
m
i
o
t

u
b

r
t
s
m

t

w
w

This, then, is the log-normal closure relation that relates an arbitrary
moment 𝑀𝛾 to the set of known moments (𝑀0,𝑀1,𝑀2), and can be
sed to close their respective balance equations. First, however, we
on-dimensionalize the balance equations using the scaling given by
12), yielding

d𝑚0
d𝜏

= 1 − 𝑚2
0 − 𝑚1∕3𝑚−1∕3, (20a)

d𝑚1
d𝜏

= 1 (20b)

nd
d𝑚2
d𝜏

= 1 + 2𝑚2
1 + 2𝑚4∕3𝑚2∕3. (20c)

Eliminating the unknown moments with the non-dimensional equiva-
lent of the log-normal closure relation (19), we find

d𝑚0
d𝜏

= 1 − 𝑚2
0
(

1 + 9
√

𝑞
)

, (21a)

d𝑚1
d𝜏

= 1 (21b)

nd
d𝑚2
d𝜏

= 1 + 2𝑚2
1
(

1 + 9
√

𝑞
)

, (21c)

ith the non-dimensional quantity 𝑞 given by

=
𝑚0𝑚2

𝑚2
1

. (22)

Using the non-dimensional equivalent of the definition of a log-normal
moment, Eq. (17), we observe that

9
√

𝑞 = exp(𝜎2), (23)

showing that for narrow size distributions with 𝜎 ≪ 1 we have 9
√

𝑞 ≈ 1.
The solution of (21a) is then approximated by (13). The equation of
the volume moment remains unchanged and is therefore also provided
by (13). In turn, assuming again that the 𝑞-term is close to unity, the
right-hand side of (21c) can be approximated by 1 + 4𝑚2

1 = 1 + 4𝜏2,
giving the solution

𝑚2(𝜏) = 𝜏 + 4𝜏3
3

. (24)

By definition, the diameter of average mass is given by

𝑑𝑚 = 𝑏 3

√

6𝑚1
𝜋𝑚0

. (25)

From this, Eq. (23) and the Hatch–Choate relations, we can determine
any mean diameter subject to the log-normal size distribution. For
example, the count mean diameter is given by

𝑑 = 𝑑𝑚 exp(−𝜎2) = 𝑏 3
√

6∕𝜋 9

√

√

√

√

𝑚5
1

𝑚4
0𝑚2

∼ 9√

𝜏2, (26)

here the similarity with 9
√

𝜏2 is obtained by substitution of the non-
imensional moments with their approximate solutions and taking the
ighest power in 𝜏 which will prevail in the limit of 𝜏 → ∞. Likewise,
he mass mean diameter is given by

𝑚𝑚 = 𝑑𝑚 exp(2𝜎2) = 𝑏 3
√

6∕𝜋
9

√

𝑚2
2

𝑚0𝑚1
∼ 9√

𝜏5. (27)

his shows that the count mean diameter of the log-normal distribution
rows slightly slower than the mean diameter in the mono-dispersed
odel (powers 2

9 and 1
3 , respectively), but that the mass mean diameter

rows quicker than both, with power 5
9 .

Fig. 2 (left) shows the approximate analytical solutions of the non-
imensional count mean diameter, mass mean diameter and diameter
f average mass as a function of time, using the log-normal PNDF. As
eference, also a numerical solution, in which the 𝑞-term is retained, is
hown. The numerical solution is computed by application of the for-
ard Euler scheme, and by applying the transformation 𝑡 = log(𝜏) which

̃

5

mproves accuracy. The time step size 𝛥𝑡 is verified to be sufficiently
mall to establish numerical convergence, meaning that the numerical
olution can be regarded as the exact solution. Appendix gives more
etails on the numerical algorithm to solve the set of equations. The
umerical solution is very close to the approximate analytical one,
emonstrating the validity of the latter. It can be observed in Fig. 2
hat at about 103 time units the mass mean diameter is one order of
agnitude larger than the count mean diameter, and has grown by

wo orders of magnitude. Fig. 2 (right) shows the non-dimensional
ize distribution at different non-dimensional times. The mass mean
iameter position inside each distribution is marked. It can be seen that
he number concentration at the position of the mass mean diameter is
uch smaller than the value at the peak of the distribution. Neverthe-

ess, on average, mass is carried by particles that have a diameter equal
o the mass mean one. Even though they are scarce, they contribute to
ransport of noble metal material most significantly.

. Removal of particles by interfacial area

The Brownian diffusion of particles gives rise to agglomeration of
hem into larger particles. At the same time, the Brownian diffusion
rives small particles to deposit onto interfaces such as those formed
y bubbles. In the previous section, we have considered a situation
ithout any depositories so that particles are free to grow without
eing removed from the system. This approach allowed us to study the
ypical dynamics of particle growth, and provided the relevant time
cale of the problem along with an upper bound of particle sizes that
an be expected to occur in the system at a given point in time, if
o or very little interfacial area is present onto which particles can
eposit and be removed, and if they are not removed by other means.
n this section, we will study the rate at which particles are removed
iven the presence of an amount of interfacial area 𝑎𝑖, expressing the
otal area prone to deposition per unit volume present. We note that
nterfacial area can be expressed in terms of a combination of other
oments of the bubble size distribution. For example, the product of
ean bubble size squared and bubble number concentration equates to

nterfacial area up to a constant. However, ultimately it is the amount
f depository area available to the particles that drives the removal of
hem by bubbles.

From nano-flotation theory, e.g., see [20], the sink term in the pop-
lation balance equation modeling the diffusional removal of particles
y interface is given by

𝜕𝑛(𝑣, 𝑡)
𝜕𝑡

= −
𝜆𝑎𝑖𝐾𝑛(𝑣, 𝑡)

3
√

𝑣
, (28)

with 𝜆 the mass transfer coefficient in units of 1/m. The proportionality
of the sink term to 1∕ 3

√

𝑣 signifies that the particle diffusivity scales
with 𝐷 ∼ 𝐾∕𝑑. The diffusivity 𝐷 is ultimately driving the deposition
ate, at least for small particles. As particles grow beyond 100 nm,
hey can also be transported to interfaces by different means such as
edimentation or inertial drift. However, to develop a first insight these
echanisms are ignored for now.

Again considering the number, volume and squared volume concen-
rations, (28) leads to

d𝑀0
d𝑡

= −𝐵𝐾𝑀−1∕3,
d𝑀1
d𝑡

= −𝐵𝐾𝑀2∕3 and
d𝑀2
d𝑡

= −𝐵𝐾𝑀5∕3,

(29)

ith 𝐵 = 𝜆𝑎𝑖 which has units 1/m2. Using the mono-dispersed closure,
e find

d𝑀0
d𝑡

= −𝐵𝐾𝑀0
3
√

𝑀0∕𝑀1 and
d𝑀1
d𝑡

= −𝐵𝐾𝑀1
3
√

𝑀0∕𝑀1 (30)

The mathematical form of both equations in (30) is equivalent, imply-
ing that the solutions of 𝑀 and 𝑀 have a similarity in the sense of
0 1
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Fig. 2. Evolution of the diameter of average mass, count mean diameter and mass mean diameter as a function of time (left) and the size distribution at different non-dimensional
times with the position of the mass mean diameter marked. Both graphs are calculated using the log-normal PNDF.
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𝑀0∕𝑀1 = const. Using this property, the solution to (30) is given by

0(𝑡) = 𝑀0(0) exp
(

−𝐵𝐾𝑡∕ 3
√

𝑣0

)

and

1(𝑡) = 𝑀1(0) exp
(

−𝐵𝐾𝑡∕ 3
√

𝑣0

)

,
(31)

here we use 𝑣0 = 𝑀1(0)∕𝑀0(0) as the initial mean volume, which does
not change in time for the mono-dispersed distribution. The solution
suggests that the typical time of particle removal is 𝑇𝑟 = 3

√

𝑤∕(𝐵𝐾).
sing this as a scaling for time, and using any arbitrary scaling for the
oments, the solution is given by

0(𝑡) = 𝑚0(0) exp

(

− 𝑏𝜏⋆

𝑑0

)

and 𝑚1(𝑡) = 𝑚1(0) exp

(

− 𝑏𝜏⋆

𝑑0

)

,

(32)

where 𝜏⋆ refers to the non-dimensional time of removal and 𝑑0 =
3
√

6 𝑣0∕𝜋. The solution signifies that when the initial particle size
ecomes smaller, the removal is proportionally quicker.

In practice, particle spectra are not mono-dispersed so that the mean
olume will change in time as small particles will be removed much
uicker than larger ones. Thus, we would expect a gradual increase in
ean particle sizes while the moments decrease exponentially. Using

he log-normal closure in (29), we find

d𝑀0
d𝑡

= −𝐵𝐾𝑀0
9

√

√

√

√

𝑀5
0𝑀

2
2

𝑀7
1

, (33a)

d𝑀1
d𝑡

= −𝐵𝐾𝑀1
9

√

𝑀2
0

𝑀1𝑀2
(33b)

nd
d𝑀2
d𝑡

= −𝐵𝐾𝑀2
9

√

√

√

√

𝑀5
1

𝑀0𝑀4
2

. (33c)

ndeed, these equations carry no similarity between themselves in the
ay that the mono-dispersed closure induced, making an analytical

olution not immediately obvious. Instead, we solve the system numeri-
ally using the backward Euler scheme with a time step size sufficiently
mall to establish convergence. As above, the equations are numerically
ntegrated not in time, but in the logarithm of time, which improves
ccuracy. See Appendix for more details. The model is made non-
imensional using 𝜏⋆ as the non-dimensional time and the scaling used
n the previous section for the moments. This gives

d𝑚0
d𝜏⋆

= −𝑚0
9

√

√

√

√

𝑚5
0𝑚

2
2

7 , (34a)
6

𝑚1
d𝑚1
d𝜏⋆

= −𝑚1
9

√

𝑚2
0

𝑚1𝑚2
(34b)

and
d𝑚2
d𝜏⋆

= −𝑚2
9

√

√

√

√

𝑚5
1

𝑚0𝑚4
2

. (34c)

Fig. 3 (left) shows the time evolution of the non-dimensional mo-
ments, scaled by their respective initial values, for a log-normal distri-
bution of which the initial count mean diameter 𝑑0 is 20𝑏 and which
as a moderate width 𝜎 = 1

2 . Also shown is the mono-dispersed solution
for 𝑚0 and 𝑚1, also scaled by their respective initial values and with
the same ratio 𝑑0∕𝑏. The removal of particles is most pronounced for
the number concentration moment, which is more strongly associated
with the behavior of small particles. Initially, its decay is faster for
the log-normal PNDF as compared to the mono-dispersed PNDF, as
the log-normal distribution contains many small particles which are
quickly removed leading to, in turn, an increase in mean particle
size. However, the removal of small particles does not remove mass
from the system very efficiently. The volume concentration is seen
to decrease slower for the log-normal PNDF than that for the mono-
dispersed one. This demonstrates that modeling of the complete size
distribution is relevant in the calculation of removal rates, and that
a mono-dispersed assumption can be deceiving. Fig. 3 (right) shows
the evolution of non-dimensional average diameters for the same initial
log-normal distribution subject to particle removal. As expected, mean
diameters are seen to increase as a result of smaller particles being
removed quickest.

4. Noble metal particle size spectra with both source and sink

The previous two sections have identified two typical times, i.e., the
typical time of particle growth 𝑇𝑔 and the typical time of particle
removal 𝑇𝑟. These two time scales control the problem which, when
𝑇𝑔 ≪ 𝑇𝑟 or 𝑇𝑔 ≫ 𝑇𝑟, is multi-scale. In the first inequality we have fast
article growth producing large particles while in the second we have
fficient removal of particles such that they do not grow to be large. In
his section, we will combine the models for growth and removal and
tudy the dependence of the result on its parameters.

.1. Combined model for particle growth and removal

Continuing with the log-normal PNDF, the model for particle growth
s given by (21) and the model for particle removal by (34). The time
cale of both sets of equations differs by a factor 𝛱 = 𝑇𝑔∕𝑇𝑟, and are

thus readily combined into

d𝑚0
d𝜏

= 1 − 𝑚2
0
(

1 + 9
√

𝑞
)

−𝛱 𝑚0
9

√

√

√

√

𝑚5
0𝑚

2
2

7 , (35a)

𝑚1
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Fig. 3. Time evolution of the non-dimensional moments scaled by their initial value (left) and non-dimensional diameters (right), for a log-normal distribution of which the initial
ount mean diameter 𝑑0 is 20𝑏 and which has a moderate width of 𝜎 = 1

2
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d𝑚1
d𝜏

= 1 −𝛱 𝑚1
9

√

𝑚2
0

𝑚1𝑚2
(35b)

nd
d𝑚2
d𝜏

= 1 + 2𝑚2
1
(

1 + 9
√

𝑞
)

−𝛱 𝑚2
9

√

√

√

√

𝑚5
1

𝑚0𝑚4
2

, (35c)

where we recall that 𝑞 = 𝑚0𝑚2∕𝑚2
1. Clearly, for 𝛱 → 0, growth is much

uicker than removal and (35) reduces to (21). Conversely, for 𝛱 → ∞
emoval is much quicker than growth and (35) reduces to (34) instead.
hus, the equilibrium solution for 𝜏 → ∞ is only a function of 𝛱 .
ntroducing the definitions of 𝑇𝑔 , 𝑇𝑟 and 𝐵, we find

=
𝑇𝑔
𝑇𝑟

=
𝜆𝑎𝑖
𝑏

√

𝐾
𝐹
. (36)

Fig. 4 (top left) shows the time evolution of the non-dimensional
mass mean diameter for a range of values of 𝛱 . The solution was
numerically calculated using the same approach as before, where the
source terms are treated using the forward Euler scheme and the
sink terms using the backward Euler scheme, the latter for stability.
Again, a logarithmic transformation of time is applied to achieve better
accuracy. See Appendix for more details. For the largest value of
𝛱 shown in Fig. 4 (top left), the equilibrium distribution is attained
quickly at relatively low mass mean diameter. For smaller values of 𝛱 ,
a successive increase in both the time needed to achieve steady state as
well as the mass mean diameter at equilibrium, is observed. Fig. 4 (top
right) shows how the equilibrium mean diameters are a function of the
reciprocal of 𝛱 , with a linear dependence being observed. A first order
polynomial fit shows that 𝑑𝑚 ∼ 1∕𝛱0.74, 𝑑 ∼ 1∕𝛱0.35 and 𝑑𝑚𝑚 ∼ 1∕𝛱1.5.
ig. 4 (bottom) shows the equilibrium size distributions for a range of
alues of 𝛱 , that is obtained by evaluation of Eq. (16) using (23) for 𝜎
nd (17) for 𝑣𝑔 evaluated for 𝛾 = 2.

We conclude from these results that in order to establish a size
istribution of noble metal particles with particle sizes reaching the mi-
rometer scale, we have two requirements. First, the non-dimensional
umber 𝛱 must be smaller than unity. As can be seen from the defini-
ion of 𝛱 , Eq. (36), this can be realized by having a small interfacial
rea concentration, a small coagulation constant 𝐾 or a large noble
etal particle production rate 𝐹 . Second, the system must be given

ufficient time to evolve, for particles to grow substantially. The typical
ime of growth, given by 𝑇𝑔 = 1∕

√

𝐹𝐾, must thus be much smaller than
he macroscopic time scale of the system, e.g., the time of operation
f the reactor. Small time scales for growth are established by a large
oble metal particle production rate 𝐹 or large coagulation constant
. This latter observation is opposed by the requirement for small 𝛱 ,
hich demands a small coagulation constant 𝐾.
7

a

Finally, another relevant quantity to analyze is the typical time of
emoval of particles, i.e., the cycle time constant 𝜏𝑐 . The cycle time is

a measure for how quickly noble metal mass is extracted by bubbles
and removed from the system. At equilibrium, the rate of removal is
balanced by the rate of production, so that there is no net removal of
mass. If we were to instantly stop particle formation at equilibrium,
then the particle mass would slowly be removed by bubbles and decay
in time. The time scale contained in this particle mass decay function
is representative of the cycle time. Without any particle formation, the
balance equation of the volume moment (35b), which is representative
of particle mass up to a constant factor of mass density, is given by

d𝑚1
d𝜏

= −𝑠𝛱𝑚1 with 𝑠 =
9

√

𝑚2
0

𝑚1𝑚2
. (37)

The factor 𝑠 will vary only weakly due its power 1
9 . If we approximate

𝑠 as a constant, then its solution (scaled by its initial value) is given by
̃ 1(𝜏) = exp(−𝑠𝛱𝜏), from which we infer that the cycle time is given
y 𝜏𝑐 = 1∕(𝑠𝛱), with 𝑠 calculated from the equilibrium values of the
hree moments. Fig. 5 shows the cycle time for a range of values of

, directly calculated from the solutions presented in Fig. 4. The trend
s linear in the double logarithmic plot, suggesting that a first order
olynomial fit matches the solution well. Such a fit is shown in Fig. 5,
nd is described by

𝑐 = 2.02∕𝛱2.12, (38)

.e., the dependence of the cycle time on 𝛱 is close to inversely
uadratic. Note that 𝜏𝑐 is non-dimensional and scaled by 𝑇𝑔 .

.2. Application to the MSFR

In order to calculate estimates of actual size distributions in the
SFR [2], we must specify the time scale of growth, 𝑇𝑔 , and the time

cale of removal, 𝑇𝑟. Estimates of the relevant quantities for the MSFR
re shown in Table 1 and are mainly taken from [21,22]. The noble
etal particle production rate is based on a benchmark simulation of

he MSFR inventory. The total number of noble metal atoms present at
quilibrium was taken, and divided by the cycle time of noble metal
emoval that was used in the simulation, which equaled 30 s. The
nitial particle diameter, being the average atomic diameter, is a rough
stimate but should reasonably represent the order of magnitude. Also
he bubble diameter is not known, but we will study the sensitivity
f the model to this parameter later and initially assume it is 1 mm,
hich should also reasonably reflect its order of magnitude and is in
greement with that chosen by Caruggi et al. [23].
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Fig. 4. Top left: time evolution of the non-dimensional mass mean diameter for a range of values of 𝛱 . Top right: equilibrium mass mean diameter as a function of 1∕𝛱 . Bottom:
size distribution of particles at equilibrium for a range of values of 𝛱 .
Fig. 5. The non-dimensional cycle time as a function of 𝛱 .

The volume flow of bubbles, controlling the void fraction 𝛼, is an
operational parameter that can be leveraged to achieve optimal particle
removal. We note, however, that when bubbling is applied directly to
the reactor core, high voids in the system can lead to problems with
reactivity control, so the volumetric flow of bubbles will have an upper
8

Table 1
Estimate of the values of key parameters of the MSFR, controlling the shape of the
noble metal particle spectrum. Void fraction 𝛼 has been left undefined.

Quantity Value

Particle production rate 𝐹 2.2×1018 1/m3/s
Salt temperature 𝑇 1000 K
Salt dynamic viscosity 𝜇 0.01 kg/m/s
Salt mass density 𝜌 4215 kg/m3

Helium mass density 𝜌𝑏 0.048 kg/m3

Initial particle diameter 𝑏 1 Å
Salt volume 𝑉 18 m3

Bubble diameter 𝑑𝑏 1 mm

Calculated values

Coagulation constant 𝐾 9.2×10−19 m3/s
Particle Schmidt number Sc 1.6×106
Bubble Reynolds number Re 35
Sherwood number Sh 421
Removal coefficient 𝐵 [4.02×108 m−2]×𝛼

Resulting time scales

Time scale of growth 𝑇𝑔 0.703 s
Time scale of removal 𝑇𝑟 [0.270 s]∕𝛼
Non-dimensional parameter 𝛱 2.60 × 𝛼
Non-dimensional cycle time 𝜏𝑐 2.02∕(2.60 × 𝛼)2.12

Cycle time 𝑇𝑐 0.703 × 𝜏𝑐 s

limit set by neutronic considerations. The parameter 𝐵 is related to the
product of the interfacial area and the mass transfer coefficient. For
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Fig. 6. Numerical solution and fit (according to (44)) of the dependence of the bubble
Reynolds number on bubble diameter.

diffusional flotation of particles by bubbles, we have

𝜆 = Sh
2𝜋𝑑𝑏

(39)

with Sauter mean bubble diameter 𝑑𝑏 and Sherwood number Sh. The
Sauter mean diameter satisfies the relation

𝑎𝑖 =
6𝛼
𝑑𝑏

, (40)

which results in

𝐵 = 𝜆𝑎𝑖 =
3Sh𝛼
𝜋𝑑2𝑏

, (41)

showing that 𝐵 strongly depends the bubble diameter. For the Sher-
wood correlation of bubbles, we leverage the analogy with heat and
mass transfer that was observed in the MSRE experiments, such that it
is given by the Ranz–Marshall [24] correlation, i.e.,

Sh = 2 + 0.6
√

Re 3
√

Sc, (42)

ith bubble Reynolds number Re and Schmidt number Sc.
The Reynolds number is defined as Re = |𝐮𝑟|𝑑𝑏𝜌∕𝜇 with 𝐮𝑟 the

relative velocity between bubbles and salt, which is a function of the
bubble size. The magnitude of the relative velocity can be estimated
well by the equilibrium bubble rise velocity 𝑈 resulting from a balance
between gravity and drag, i.e.,
(

𝜌
𝜌𝑏

− 1
)

𝑔 =
𝐶𝑑Re
24𝜏St

𝑈, (43)

with bubble mass density 𝜌𝑏, gravity 𝑔, drag coefficient 𝐶𝑑 and Stokes
relaxation time 𝜏St = 𝜌𝑏𝑑2𝑏∕(18𝜇). For spherical bubbles, the drag
coefficient is given by the Schiller–Naumann correlation, e.g., see [25].
It is a non-linear function of the bubble Reynolds number, and holds
for spherical bubbles having Reynolds numbers below 103 [25]. It is
expected that this shall be the case in the MSFR, although we note that
other drag correlations may be readily used too. Eq. (43), subject to
its parameters as reported in Table 1, can be solved for 𝑈 numerically
using a simple iterative scheme, for a range of bubble diameters. In
turn, the solution for 𝑈 provides the Reynolds number as function of
𝑑𝑏. Fig. 6 shows the solution for Re for bubbles in the size range of
0.1 mm to 1 cm. The solution appears as a mildly curved line in the
double logarithmic plot, which suggests that a second order polynomial
regression in that space is accurate. Such a regression is shown in Fig. 6.
It is given by

2

9

log(Re) = 10.74 − 0.1009 log(𝑑𝑏) − 0.1649 log (𝑑𝑏). (44)
Fig. 7. Dependence of the non-dimensional parameter 𝛱 on the void fraction and
bubble diameter.

This function can be conveniently used to estimate the bubble Reynolds
number, and is applicable to the conditions of the MSFR. For bubbles
of 1 mm, the Reynolds number is about 35.

The Schmidt number is defined as Sc = 𝜇∕(𝜌𝐷) and is, through
, a function of the particle diameter. This complicates the situation

omewhat, as it makes the parameter 𝐵, through Sh, a function of
article diameter and can therefore not be assumed constant, as was
one in the previous sections. However, this dependence is quite weak
ecause in the limit of large Sc we have Sh ∼ 3

√

Sc ∼ 3
√

1∕𝐷 ∼ 3
√

𝑑. Thus,
on a large particle size range of three decades, the Schmidt number
will only vary by a factor 10. Subsequently, we compute the Schmidt
number based on a particle diameter of 100 nm. Given the parameters
in Table 1, its value is Sc = 1.6×106. This gives, for bubbles with a
diameter of 1 mm, a Sherwood number of Sh = 421.

With these values, we obtain the time scales and non-dimensional
parameters as listed at the bottom of Table 1. At void fractions of
(10−2), the value of 𝛱 is still quite low suggesting that if particle
agglomeration is to establish equilibrium, then large particles will arise
in the process, growing significantly towards the micrometer scale.
However, this is only likely to occur at large time scales, see Fig. 4.
The typical time of growth, with which time is made non-dimensional
in this Figure, is in the order of 1 s, so that when 𝛱 is around 4 × 10−2

(corresponding to a void fraction of about 1.5%), it would require
minutes to form particles with a mass mean diameter in the order of
tens of nanometers and days to reach beyond hundreds of nanometers.
Finally, the non-dimensional cycle time at the same value for 𝛱 is
1858, and the dimensional cycle time is about 22 min. Note that a void
fraction twice as high will decrease the cycle time more than fourfold,
thus achieving much higher removal rates.

Fig. 7 shows the dependence of the non-dimensional parameter 𝛱
on the void fraction and the bubble diameter. The dependence on the
void fraction is linear, but the dependence on the bubble diameter is
more complicated through the non-linear dependence of the bubble
Reynolds number on the bubble diameter. It is shown that for bubbles
of 1 mm, void fractions beyond 10% will result in small particle growth
with 𝛱 approaching unity. For significantly larger bubbles, the value
of 𝛱 will always be much smaller than unity assuring that particle
growth will be substantial, for the considered reactor parameters. For
very fine bubbles, relatively small void fractions are needed to achieve
limited particle growth. For example, 1 cm bubbles at about 10%
void fraction will achieve the same equilibrium particle distribution as
0.1 mm bubbles will at just 0.1% void fraction. This encourages an MSR
design with a bubbling system that produces small bubbles, to keep

void fractions low. However, we note that turbulent bubble coalescence
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and break-up tend to drive bubble populations to a mean diameter that
is independent of inlet conditions.

Thus far, we have only considered removal of particles by bubbles.
The model can be easily extended to include a sink term which captures
removal of particles by wall deposition. In short, a second sink term
should be added with a proportionality to the mass transfer coefficient
of the wall and the interfacial area concentration of the wall. However,
the interfacial area concentration of the wall is likely to be smaller than
that presented by bubbles, as already explained in the introduction.
An increase of the reactor volume will further decrease the interfacial
area concentration of the wall, while the bubbly interfacial area con-
centration (at uniform void fraction) remains the same. Thus, with the
MSFR salt volume of about 18 m3, the total area of depositories is likely
o be predominantly that of bubbles. This makes the above analysis
pplicable to reactors with walls.

. Conclusions

In this work, we studied the formation and removal of noble metal
articles in an MSR by considering particle kinetics in a homoge-
eous reactor. The only considered mechanism of removal was that
y bubbles, through diffusional nano-flotation. It was assumed that
oble metal atoms do not decay, or only decay into other noble metal
toms, therewith keeping the noble metal mass roughly constant. A
opulation balance equation, describing the evolution of noble metal
gglomerates, was solved using the method of moments. More specif-
cally, the log-normal PNDF was used to close a set of three moment
quations. While this reduces the complexity of the model significantly,
t preserves the fundamental dynamics inherent to the problem and
hus provides estimates of the scales involved in the process. The
roblem is essentially governed by the parameter 𝛱 which is the ratio

of the time scale of growth by coagulation and time scale of removal
by flotation. On one hand, small values of 𝛱 lead to rapid particle
growth, yielding an equilibrium particle size distribution containing
large particles up to, or even beyond, the micrometer scale. This
would invoke a transition from diffusional flotation to hydrodynamic
flotation. However, it was shown that the time to establish equilibrium
also increased proportionally to the reciprocal of 𝛱 , suggesting that
large particles can only be significantly generated in the reactor at long
operational times. On the other hand, large values of 𝛱 lead to an
efficient particle removal by flotation and limit the growth of particles
significantly.

The parameter 𝛱 is proportional to the interfacial area concen-
tration, the square root of the coagulation constant and the square
root of the reciprocal of the formation rate of noble metal atoms.
The coagulation constant and formation rate are properties subject
to the operational conditions of the reactor, and cannot be easily
controlled. To the contrary, the interfacial area concentration can be
easily manipulated by controlling the flow of bubbles. The interfacial
area concentration is directly related to the void fraction, which, in
turn, is proportional to 𝛱 . Thus, through the developed theory, we
can readily deduce the behavior of noble metal particles solely from
the void fraction. For example, in the MSFR a void fraction of 1%
of 1 mm bubbles would give a cycle time of roughly one hour and
would produce particles with a mass mean diameter of about 200 nm.
However, it would require years of steady-state operation to achieve
such particle sizes. A doubling of the void fraction would reduce the
cycle time to about 15 min and decrease the mass mean diameter to just
60 nm which would be achieved in a matter of months of steady-state
operation.

To develop the theory, a number of simplifications were made. First,
the reactor was assumed to be completely homogeneous without any
walls. Particle removal was modeled to only occur by deposition onto
bubbles. In practice, however, particles will also deposit onto the walls
of the reactor vessel and probably more so on the large surface of the
10

heat exchanger, potentially amplified by thermophoresis. The influence
of solid walls on the particle population can be integrated into the
presented model by including another sink term which will depend
on the interfacial area concentration of the wall and a suitable model
for the mass transfer coefficient. Noble metals can also be removed by
decay, which can potentially also be accommodated in the presented
model. What cannot be implemented easily in the model, on the other
hand, is the non-uniformity of the flow in an MSR, which will affect
the coagulation and mass transfer processes, as well as the behavior of
bubbles subject to turbulent coalescence and break-up, and expansion
as they rise to the top of the reactor vessel or as the result of local
temperature changes. Such spatial effects can only be considered using
advanced computational fluid dynamics codes, and must be assessed
quantitatively. Once the fully detailed spatial behavior of the bubble
size distribution, subject to coalescence, break-up, pressure or temper-
ature changes, is known, an appropriate spatial averaging technique
should be used to calculate the mean bubble size that can then act as
input to the present model. This is part of ongoing work.

A major challenge that remains is the appropriate validation of
the present model, under relevant conditions. This would require ex-
periments that operate using real molten salts subjected to neutron
irradiation, in order to produce realistic fission rates of noble metal
atoms. Nevertheless, the theory developed in this work contributes
significantly to a qualitative understanding of the behavior of noble
metals in an MSR which, as a result of the complex interplay of forma-
tion, coagulation and flotation, is certainly non-trivial. The theory can
potentially help to explain certain phenomena observed in the MSRE
and can assist in the future design of noble metal flotation experiments
and, eventually, safe and reliable MSRs.
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Appendix. Numerical solution algorithm for a general system of
moment equations

If we let 𝐦 ∈ R𝑛 be a vector of 𝑛 scalar moments, then we can
generally write the non-linear system of coupled moment equations as

d𝐦
d𝜏

= 𝐀𝐦 + 𝐟 , (45)

where the right-hand side is split into a part that is proportional to
𝐦 with coefficient matrix 𝐀 ∈ R𝑛×𝑛 a function of 𝐦, and a remainder
𝐟 ∈ R𝑛 that is a function of 𝐦 too. As we will see below, by making
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this split we can apply a mixed form of forward and backward Euler
discretization which will guarantee positivity of the moments and, thus,
promote stability. While not a strict requirement, it is convenient to let
𝐀 be a diagonal matrix, such that the first term in the right-hand side
introduces no coupling between moments. This can always be enforced
by the choice for 𝐟 .

The solution to Eq. (45) is likely to introduce exponential behavior
s a result of its non-linearity. Therefore, it is numerically advantageous
o apply the transformation

= 10 log(𝜏) ⟺ 𝜏 = 10𝑥 (46)

which assures that time increases with powers of 𝑥. The modified
system becomes
1
𝑇

d𝐦
d𝑥

= 𝐀𝐦 + 𝐟 . (47)

ith 𝑇 = log(10)𝜏. Applying a backward Euler discretization to the first
ight-hand side term and a forward Euler discretization to the second,
ith numerical time step size 𝛥𝑥, we find

𝐦𝑖+1 −𝐦𝑖

𝛥𝑥
= 𝑇

(

𝐀𝑖𝐦𝑖+1 + 𝐟 𝑖
)

, (48)

r,
𝑖+1 =

(

𝐈 − 𝑇𝛥𝑥𝐀𝑖)−1 (𝐦𝑖 + 𝑇𝛥𝑥𝐟 𝑖
)

, (49)

ith 𝐈 the 𝑛 × 𝑛 identity matrix and where the superscripts signify the
iscrete time step number 𝑖 ∈ (0, 1,…). If we choose 𝐀 and 𝐟 in such
way that the diagonal components of 𝐀 satisfy 𝐴𝑗𝑗 ≤ 0, and that

he source term components satisfy 𝑓𝑗 ≥ 0, then the iterative Eq. (49)
trivially reveals that it preserves positivity of the moments, i.e., 𝑚𝑖

𝑗 ≥ 0
for all 𝑖, 𝑗.

Using Eq. (49), the discrete solution of (45) is obtained by recursion,
with initial value 𝐦0 = 0. The initial value for the power 𝑥 is set to −2,
which corresponds to 0.01 time units, and it was found that a value of
𝛥𝑥 = 1∕20, resulting in 20 steps per time unit decade, was sufficient for
numerically converged results. The final value for the power 𝑥 was set
according to the dynamics of the system at hand.
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