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 A multilevel compression method, for magnetic resonance imaging (MRI) 

images, is presented in this paper. First, the image is segmented into frames 

of equal size. Then, the sparsity of each frame is computed. Based on the 

sparsity index value, each frame is compressive sensing (CS) 

compressed/reconstructed at one level of four. Particle swarm optimization 

(PSO) is used to optimize the amount of information to be used in the CS 

reconstruction process, and to optimize the sparsity thresholds, that separate 

the different compression levels. Two-dimensional sigmoid function is 

suggested as a fitness function for the PSO. Six MRI images are used to 

evaluate the performance of the proposed method. The results show 

considerable gain in both peak signal to noise ratio (PSNR) and compression 

level (CL), when compared to single level compression, which is commonly 

considered in the literature. 
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1. INTRODUCTION 

Compressive sensing (CS) is a very efficient tool for signal compression, since it can sample the 

signal under the Nyquist rate as stated in [1] and [2]. However, this is only possible if the signal is sparse, 

where the incoherence property is satisfied. The magnetic resonance imaging (MRI) images as other types of 

images require compression. These images are not necessarily sparse in the time domain, but they are sparser 

in other domains like the discrete cosine transform (DCT), the discrete Fourier transform, or the wavelet 

transform (WT) [3], [4]. An MRI image has different nature other than ordinary images, it contains areas of 

high sparsity and areas of low sparsity, where high details occur. From image compression perspective, it is 

not wise to compress the whole image as one frame, using the same compression ratio. A multilevel 

compression is more proper to compress each frame in the image with respect to its sparsity content. 

The CS method has many applications in different trends in previous studies. A comparative 

analysis of different transforms is presented in [4], the analysis shows that the DCT outperforms other 

transforms for grey images, while the Haar WT is better for coloured images. A hybrid method for MRI CS-

based compression is presented in [5], the method employs the Walsh Hadamard transform and the discrete 

WT, to provide a sparse domain for the CS. A CS and deep learning method are employed for quantitative 

MRI reconstruction [6]. A CS MRI image reconstruction is presented in [7], the method adopts the empirical 

WT as a sparse feature domain and the grey wolf optimizer, to tune the method parameters. The CS is used 

with dual-tree complex WT to reconstruct an image, by comparing the distorted image measurements to a 

reference image [8]. A CS-based compression is suggested in [9], the algorithm divides the images into 

blocks, each block location is found optimally, then sampled differently using specific measurement matrix. 

https://creativecommons.org/licenses/by-sa/4.0/
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A high speed compression is proposed, by reducing the optical signal size using CS [10]. A projection driven 

block-based CS recovery algorithm is proposed in [11], to provide more sparsity in the wavelet domain, the 

algorithm is designed to achieve a focused image among other unfocused images. A CS-based compression 

for video and image is suggested in [12], the sparsity is adaptively measured in this method. A hyper-chaotic 

algorithm with 2D CS is used for encryption-compression scheme [13]. Rearranged wavelet coefficients are 

used with CS for image compression in [14]. An image compression algorithm that employs CS for infrared 

image, is suggested in [15]. First, block-sparsity is used to represent the small target image, then the 

correlated source vector of the image is modeled using Bayesian framework. Three recovery methods are 

explored for CS-based MRI image recovery, Basis Pursuit, Matching Pursuit and Orthogonal Matching 

Pursuit [16]. CS is used in 3D multi-channel data method for MRI image reconstruction in [17], due to the 

parallel reconstruction, the processing time gain is the main advantage of the method. Many compression 

methods as mentioned above use fixed compression ratio for the entire image [18]-[20]. A non-uniform 

sparsity constraint methods are proposed in [21], [22], the methods suggest splitting the MRI image in the 

frequency domain to 5 regions, based on the sparsity level of each region. In [23], another algorithm that uses 

adaptive sparsity CS per block is proposed. Two approaches are considered to set the samples number per 

block, where the data presented in the DCT domain. Tahsan and Azawi [24] propose a multi-level MRI 

image compression using CS, six different MRI images are considered, each image is segmented into blocks, 

then the DCT is computed, based on the sparsity in the block, the compression CS level is chosen. The results 

show significant better compression, when compared to linear compression for the whole image. 

The work here presents a continuation of the proposed algorithm in [24], where the thresholds that 

define the different four compression levels are selected experimentally, and the amount of information for 

CS in each level also experimentally selected. The contribution in this paper is by automatically computing 

these thresholds using the particle swarm optimization (PSO) algorithm, which searches for the optimal value 

of these thresholds, based on the best fitness function. The fitness function can be either a target compression 

level, where the PSO tends to find the thresholds of the highest PSNR, or the fitness function can be a target 

PSNR, where the PSO tends to find the thresholds of the highest compression level. 

The rest of the paper is organized as follows: section 2 addresses the CS theoretical background, 

section 3 explains the PSO theory, section 4 presents the proposed method, section 5 describes the fitness 

function, section 6 adresses the results and discussion, while section 7 presents the main conclusions. 

 

 

2. CS THEORY 

The CS simply means sampling the signal under the Nyquist rate and can be described 

mathematically as follows: Assuming that 𝑋 is a discrete signal, which can be expressed in different sparse 

domain 𝑆 using transformation matrix Φ as shown in (1). 

 

𝑆 = Φ 𝑋 (1) 

 

where 𝑋 is the discrete signal of 𝑁 elements, Φ is the transformation matrix of 𝑁 × 𝑁 in size, and 𝑆 is the 

signal in the sparse domain. There are 𝐾 non-zero components in 𝑆, where 𝑁 ≫ 𝐾. The CS theory states that 

𝑀 samples can be randomly selected from 𝑆, i.e., the matrix Φ is sub-sampled by choosing some random 

rows/columns. If the sub-matrix chosen from the matrix Φ is Λ𝑀×𝑁 where 𝑁 ≫ 𝑀, then 𝑌𝑀×1contains the 

measurements of the CS [25]. 

 

𝑌 = Λ 𝑆 = Λ Φ 𝑋 (2) 

 

𝑌 = Θ 𝑋 (3) 

 

where Θ𝑀×𝑁 = Λ Φ represents the CS matrix. The size of 𝑌 is much less the size of 𝑋. The choice of Φ must 

guarantees the property of incoherence, where small number of measurements can provide the reconstruction. 

In (3) contains more unknowns than equations. An optimization algorithm must be used to reach a solution. 

Greedy algorithms are commonly used such as convex relaxation [26], orthogonal matching pursuit (OMP) 

[27], and matching pursuit (MP) [28]. Here, the 𝑙1-minimization is considered, where it expressed as: 

 

min‖𝑋‖𝑙1
 subject to 𝑌 = Θ 𝑋 (4) 

 

where the 𝑙1 norm of 𝑋 represents the absolute sum of the components of 𝑋 

min‖𝑋‖𝑙1
= ∑ |𝑋𝑖|

𝑁
𝑖=1  (5) 
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3. PSO THEORY 

The PSO is widely used in optimization problem, due to its simplicity of implementation [29], [30]. 

In PSO, several elements in the swarm scan the d-dimensional problem space for new solutions. A vector of 

position Pi (the particle's indicator), and a velocity vector indicate each particle's position and velocity, 

respectively. After each iteration, the swarm's best position vector is saved in a vector. In (6) determines the 

velocity update from the original velocity to the current velocity. In (7) is then used to calculate the current 

position, which is equal to the sum of the new velocity and the old position [31]. 

 

𝑣𝑖(𝑡) = 𝑤 ∗ 𝑣𝑖(𝑡 − 1) + 𝐶1𝑅1 (𝑃𝐵𝑒𝑠𝑡 𝑖
(𝑡) − 𝑃𝑖(𝑡 − 1)) + 𝐶2𝑅2(𝐺𝐵𝑒𝑠𝑡 𝑡

− 𝑃𝑖(𝑡 − 1)) (6) 

 

𝑃𝑖(𝑡) = 𝑃𝑖(𝑡 − 1) + 𝑣𝑖(𝑡 − 1) (7) 

 

Where 𝑣𝑖 is the ith particle velocity, 𝑤 represents the inertia, 𝑃𝐵𝑒𝑠𝑡𝑖
 is the best position for the ith 

particle, 𝐺𝐵𝑒𝑠𝑡  is the best position up to the tth iteration, 𝐶1and 𝐶2 are acceleration factors, and 𝑅1 and 𝑅2 are 

two random numbers uniformly distributed in the interval between 0 and 1. The size and range of the 

particles are defined according to the problem. The best fitness must have a lower value than a pre-set 

threshold [31]. A summary of how a PSO works can be addressed in five steps as follows: 

Step 1: Initialize for each particle with velocity and location.  

Step 2: Determine the optimal solution; if it is best than Pbest, the current value is equal to Pbest.  

Step 3: Gbest is the best fitness value for particles.  

Step 4: Calculate the new velocity and position for each particle according to velocity and position update 

equations.  

Step 5: While the minimum error criteria are not attained, the steps 2 to 4 are repeated until the required 

target is obtained. 

 

 

4. PROPOSED METHOD 

The proposed compression method in this paper is a modified version of the method previously 

presented in [24]. The main difference is that the experimentally tunned thresholds in [24] are PSO optimized 

in this paper. Figure 1 illustrates the flowchart of the proposed method. The method starts with dividing the 

image into frames. The DCT is then calculated for each frame, and the sparsity index (SI) is computed for 

that frame as described in [24]. The next step is compressing each frame using CS, based on its SI value, high 

SI refers to higher compression level, since the frame contains high sparsity. While low SI refers to low 

compression level, since is contains low sparsity, i.e., high information. 

 

 

 
 

Figure 1. Flowchart of the proposed method 
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In the reconstruction stage, the CS is considered to recover each frame using a percentage 𝑅𝑒𝑐𝑖 of 

the DCT information, which represents the compressed data of that frame. It can be noticed from Figure 1 

that 𝑆𝐼1, 𝑆𝐼2, 𝑅𝑒𝑐1, 𝑅𝑒𝑐2 and 𝑅𝑒𝑐3 are all experimentally chosen in [24]. While in this paper, these 

parameters are optimized using PSO, to provide a fitness criterion. 

 

 

5. FITNESS FUNCTION 

The PSO in this paper is designed to maximize a fitness function that considers two main 

parameters, the peak signal to noise ratio (PSNR) and the compression level (CL). To model such fitness 

function it is tricky task, since the better solution of the five parameters 𝑆𝐼1, 𝑆𝐼2, 𝑅𝑒𝑐1, 𝑅𝑒𝑐2 and 𝑅𝑒𝑐3 must 

satisfy a higher PSNR and higher CL. It is well known that in image compression higher PSNR can be only 

obtained with low CL. While higher CL can be only obtained with low PSNR value. In the proposed method, 

it is up to the user to decide which parameter to set and which to optimize. For example, the user can set a 

specific CL value, and the PSO optimizes the five parameters to maximize the PSNR. Alternatively, the user 

can set a desired PSNR value, and the PSO optimizes the five parameters to maximize the CL. To meet the 

previous conditions, in this paper a two-dimensional sigmoid function is suggested as follows: 

 

𝐹1 =
500

1+𝑒−𝑡1(𝐶𝐿−𝑚1)+𝑒𝑡1(𝐶𝐿−𝑚1)+𝑒−𝑡2(100−𝑃𝑆𝑁𝑅)+𝑒0.75𝑡2(100−𝑃𝑆𝑁𝑅) (8) 

 

Where 𝐹1 is the fitness function, that maximizes the PSNR after the user pre-set the CL to a desired value of 

𝑚1. 

 

𝐹2 =
500

1+𝑒−𝑡1(𝑃𝑆𝑁𝑅−𝑚2)+𝑒𝑡1(𝑃𝑆𝑁𝑅−𝑚2)+𝑒−𝑡2(100−𝐶𝐿)+𝑒0.75𝑡2(100−𝐶𝐿) (9) 

 

Where 𝐹2 is the fitness function, that maximizes the CL after the user pre-set the PSNR to a desired 

value  of 𝑚2, 𝑡1 and 𝑡2 are the temperatures factors of the two-dimensional sigmoid function and their values 

are 10 and 0.04 respectively. Figure 2(a) shows the graph of the suggested fitness function as stated in (8), 

while Figure 2(b) shows the fitness function as stated in (9). 

 

 

 
 

(a) (b) 

 

Figure 2. Fitness functions by (a) setting CL to 60% and maximize PSNR and (b) setting PSNR to 40 dB and 

maximize CL 

 

 

6. RESULTS AND DISCUSSION 

The same six images, which are previously used in [24] are considered here. These images are 

named as 𝐻𝑒𝑎𝑑720×720, 𝑁𝑒𝑐𝑘600×600, 𝐵𝑟𝑎𝑖𝑛840×840, 𝐴𝑛𝑘𝑙𝑒720×720, 𝐻𝑎𝑛𝑑460×720, and 𝐾𝑛𝑒𝑒720×720 as 

shown in Figures 3(a)-(f). A segmentation of 10 × 10 pixels is applied on each image, then the CS 

compression is performed as explained in Figure 1. Each MRI image has a trade-off curve between the CL 

and the PSNR. Here, 𝐹2 as expressed in (9), is considered as the fitness function for the PSO. The PSO 

parameters are listed in Table 1. 
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Table 1. PSO parameters 
Parameter Value 

𝐶1 1.5 

𝐶2 2.5 

𝑤 0.6 

Swarm size 10 

Iterations 10 

 

 

  

(a) 
 

(b) 

   
(c) (d) 

 

  
(e) (f) 

 

Figure 3. MRI images, (a) head, (b) neck, (c) brain, (d) ankle, (e) hand, and (f) knee 

 

 

Figures 4(a)-(f) (see in Appendix) shows the trade-off curve for each image, in the case of using 

uniform compression (i.e., compressing the whole image with one CL), and in the case of using the proposed 

method, where multilevel CS compression is used, and the tuneable parameters 𝑆𝐼1, 𝑆𝐼2, 𝑅𝑒𝑐1, 𝑅𝑒𝑐2 and 

𝑅𝑒𝑐3 are optimized using the PSO for each image, at a desired PSNR. 

It can be noticed from Figure 4(a)-(f) (see in Appendix) that the proposed method has superior 

performance at high PSNR values, when compared to uniform compression. However, the difference in CL 

decreases between the two at low PSNR values. Practically, the user of the compression proposed method 

can decide the desired PSNR value, while the method optimizes for highest possible CL value. 

 

 

7. CONCLUSIONS 

This paper presents a modification on the compression method, previously presented in [24]. The 

proposed method employs PSO, to optimize the amount of information for the CS reconstruction, at each 

level of compression 𝑅𝑒𝑐1, 𝑅𝑒𝑐2 and 𝑅𝑒𝑐3. In addition, the PSO optimizes the thresholds of the sparsity, that 

separate the levels of compression 𝑆𝐼1 and 𝑆𝐼2. A two-dimensional sigmoid function is suggested, as fitness 

function for the PSO. The main advantage of the proposed method, is the flexibility in setting different PSNR 

value, to achieve the highest possible CL. 
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APPENDIX 

 

  

(a) (b) 
 

  
(c) (d) 

  

  
(e) (f) 

 

Figure 4. Proposed method performance versus uniform compression (a) head, (b) neck, (c) brain, (d) ankle, 

(e) hand, and (f) knee  
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