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ABSTRACT
This paper describes the performance optimisation of a state-of-the-
art relational database to more efficiently serve data for multimedia
visualisations in the ViRMA prototype. We describe the baseline
database and queries, along with two major optimisation steps that
improve query efficiency, at the cost of slowing down dynamic up-
dates. We evaluate the optimisations with a case study of a lifelog
collection of 182K images, showing that the time to produce com-
plex visualisations is reduced by orders of magnitude.
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1 INTRODUCTION
As multimedia collections grow in both importance and scale, so
grows the need to run complex queries and tasks against these col-
lections. Historically, much emphasis has been placed on similarity
search, but recently an argument has been made that more interac-
tive and exploratory approaches would serve users better [14, 18].
Such applications must eventually be served by a database sys-
tem of some sort with the necessary query processing capabilities.
Given the prevalence of relational database know-how in industry
and academia, and the ability of relational systems to optimise and
serve complex queries in other contexts, it is a tempting first step to
employ relational systems to the extent possible. It is well known
that relational systems support high-dimensional indexing poorly,
if at all, but surely they must work for some of the metadata queries
we might like to answer. The question considered here is: how well?
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Figure 1: Browsing state visualisation in ViRMA, with axes
showing European time zones and different dog breeds.

The Multidimensional Media Model (M3, pronounced “emm-
cube”) is an example of a metadata-based approach to serving mul-
timedia applications [9]. In its first incarnation, M3 is a relatively
direct adaptation of OLAP technologies to multimedia, which con-
siders multimedia to reside in a multi-dimensional metadata space,
and uses a variant of faceted search to (a) filter the metadata space
and (b) project it to a 3D visual representation that can explored
by the user (Figure 1). The M3 model can be easily described using
an ER-diagram and translated into relational tables, and queries to
project the metadata space to the visual representation are concep-
tually simple. The ViRMA system [5], which is the latest implemen-
tation of the M3 model, therefore queries a relational system.

Running complex interactions efficiently, however, is not a triv-
ial task. In this paper, we describe the process of optimising a
state-of-the-art relational database to serve visualisations for the
ViRMA system. We outline the steps taken to denormalise tables
and rewrite queries, and analyse the resulting query plans. Through
these optimisation steps, the time to produce complex visualisations
is improved by orders of magnitude in a lifelog collection of 182K
images, 107K distinct tags, and 6.3M image-tag associations. The
results indicate that even for complex visualisations, performance is
sufficient for interactive exploration at this scale. The performance
improvements, however, come at a significant cost of updates to the
collection. We therefore conclude that the state-of-the-art relational
server is overall not suitable for the ViRMA system.

2 BACKGROUND
In this section, we first present the LSC collection which is the topic
of our case study.We then outline theM3 model [9], and describe the
database implementation of the M3 model in the ViRMA prototype.

Case Study: Lifelog Search Challenge. The Lifelog Search Chal-
lenge (LSC) is an annual live event for media retrieval systems. Before
the competition, an image collection is distributed to competitors,
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along with its metadata. The teams can then augment the metadata
with analysis methods of their choice. During the competition, tasks
are given as text descriptions that are gradually disclosed, and the
teams have 5-7 minutes to find one of the images that are considered
ground truth to the tasks. An example task, that we use as a running
example in this paper, involves looking for images from a weekend
garden party with friends in Dublin, where there was a dog. The score
for each task is based on the time needed to solve it and the number
of incorrect attempts, and scores of teams are then aggregated across
tasks to determine the winner. A variety of systems compete in LSC
each year [7], focusing on a variety of approaches, including event
detection [16], multimodal retrieval [8, 12], temporal queries [11],
relevance feedback [10, 11], and VR interfaces [6, 15].

Brief Overview of the M3 Model. Several approaches from the liter-
ature have explored media collection in a multi-dimensional man-
ner [1–4, 17]. The foundation of the M3 model is media metadata,
which is used to define the dimensions of a hypercube, a multidi-
mensional space that organises media items into related groups.
Browsing and drilling down into these dimensions allows the user
to explore media collections by interactively defining the set of
relevant images and visualising them on screen.

In the model, media items are referred to as objects, metadata
items as tags, and the association of a tag to an object as a tagging.
In an effort to organise media items into groups, distinct tags are
arranged into tagsets. Tagsets can either be generated manually or
derived from existing structures in the metadata. Hierarchies are
then defined over tagsets to add structure to their tags. Tagsets and
hierarchies together form the dimensions of the media hypercube.

Given the large number of potentially interesting dimensions
of media metadata, the hypercube is a conceptual construct that
can only be visualised by projecting some of its dimensions to
a 1D, 2D or 3D exploration cube. Figure 1 shows an example of
a 2D visualisation, described in more detail below. Exploring a
collection thus requires the user to decide which of the available
dimensions should be visualised on each of the three available axes
of the exploration cube at any given time. Since the content of
the exploration cube changes dynamically, as the user makes new
decisions on which dimensions to project, we refer to the structure
of the exploration cube at each time as the browsing state. Each
projected dimension has a set of tags on its axis, which are either
the tags of a tagset or the children of one node of a hierarchy.
The combinations of these tags then form cells, where each cell
represents the images associated with that combination of tags.

Projecting a hierarchy dimension allows the user to traverse
up and down the chosen hierarchy, always projecting the children
of one node to the exploration cube. These actions, referred to
as rolling up or drilling down, directly correspond to applying a
hierarchy filter on the parent node at each time, limiting the images
presented in each cell to those associated with any of the tags
present in the corresponding subtree. Likewise, projecting a tagset
corresponds to applying a tagset filter, which restricts the visible
images to those associated with one or more of the tags in the tagset.
The user can dynamically decide to change the projected dimension
on one of the axes, which is referred to as pivoting. During pivoting,
any filters applied to the replaced dimension are maintained, and
a new tagset or hierarchy filter is applied to the newly projected
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Figure 2: Simplified ER diagram for the M3 model.

CREATE FUNCTION get_subtree_from_parent_node(INT)
RETURNS SETOF Nodes

AS $$
WITH RECURSIVE all_sub_nodes AS (

SELECT N.id, N.tag_id, N.hierarchy_id, N.parentnode_id

FROM Nodes N

WHERE N.id = $1

UNION ALL
SELECT N.id, N.tag_id, N.hierarchy_id, N.parentnode_id

FROM Nodes N JOIN all_sub_nodes A ON A.id = N.parentnode_id

) SELECT * FROM all_sub_nodes

$$ LANGUAGE SQL;

Listing 1: Recursive query for the subtree of a parent node.

dimension. Furthermore, tag filters, requiring association with a
specific tag, and range filters over some tagsets can be used to slice
the collection even further without requiring projection to an axis.

During exploration, the user can apply a multitude of filters, and
dynamically decide which dimensions to project to the exploration
cube, thus continually updating the current browsing state.

Case Study: Lifelog Database. From the metadata collection asso-
ciated with the LSC collection, we have extracted tags for each image
into 10 different tagsets, of which the most important are date, time,
time zone, and location. From the image date and time of creation,
we have then derived tags into 9 tagsets with more details, such as
day of week, day of month, month, year, and hour. Finally, we have
generated an entity tagset, extracted using ImageNet Shuffle [13]. This
tagset contains the semantics tags (e.g., Corgi and Coffee table) used
to describe the visual contents of each image. For each of the images,
all relevant concepts are retained as tags, resulting in 9,456 different
tags. Finally, we created a hierarchy for the concept tagset using the
WordNet Python API.

Consider the example task of looking for images from a weekend
garden party with friends in Dublin, where there was a dog. As a
starting point, the user might apply filters to only show images where
the day of week tag is Saturday or Sunday. The user might then
create a visualisation with all children of the Dog node from the
entity hierarchy on one axis, and the time zone hierarchy on another
axis. The resulting visualisation, with the different dog types on one
axis and time zones in Europe on the other, only showing images
taken on weekends, is the one shown in Figure 1. The user can further
interact with the collection, e.g., drilling deeper into the semantic label
hierarchy, adding a filter to focus on images from Dublin, or projecting
another tagset or hierarchy node to the third visual axis.

The ViRMA Database. Figure 2 shows a simplified ER-diagram for
the M3 model. As the figure shows, there are entities for Objects
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SELECT S.idx AS x, S.idy AS y, S.idz AS z, S.object_id AS id, O.file_uri AS fileURI, S.cnt AS cnt

FROM (SELECT R1.id AS idx, R2.id AS idy, 1 AS idz, MAX(R1.object_id) AS object_id, COUNT(DISTINCT R1.object_id) AS cnt

FROM (SELECT R.object_id, H.id AS id

FROM (SELECT N.parentnode_id, N.id, (get_subtree_from_parent_node(N.id)).tag_id FROM Nodes N) H

JOIN Taggings R ON R.tag_id = H.tag_id

WHERE H.parentnode_id = 732) R1

JOIN (SELECT R.object_id, R.tag_id AS id

FROM Tags T

JOIN Taggings R ON R.tag_id = T.id

WHERE T.tagset_id = 13) R2 ON R1.object_id = R2.object_id

JOIN (SELECT R.object_id FROM Taggings R WHERE R.tag_id IN (10567,22)) R3 ON R1.object_id = R3.object_id

GROUP BY idx, idy, idz) S

JOIN Objects O ON X.object_id = O.id;

Listing 2: Baseline query for returning the browsing state of Figure 1.

CREATE MATERIALIZED VIEW Nodes_Taggings AS
SELECT H.parentnode_id, H.id AS node_id, H.tag_id, R.object_id

FROM (SELECT N.parentnode_id, N.id, (get_subtree_from_parent_node(N.id)).tag_id FROM Nodes N) H

JOIN Taggings R ON R.tag_id = H.tag_id;

Listing 3: Materialised view that stores flattened hierarchies, along with related tags and objects.

CREATE MATERIALIZED VIEW tagsets_taggings AS
SELECT T.tagset_id AS tagset_id, R.tag_id, R.object_id

FROM Tags T

JOIN Taggings R ON R.tag_id = T.id;

Listing 4: Materialised view that stores relations between tagsets and objects.

SELECT S.idx AS x, S.idy AS y, S.idz AS z, S.object_id AS id, O.file_uri AS fileURI, S.cnt AS cnt

FROM (SELECT R1.id AS idx, R2.id AS idy, 1 AS idz, MAX(R1.object_id) AS object_id, COUNT(DISTINCT R1.object_id) AS cnt

FROM (SELECT N.object_id, N.node_id AS id FROM Nodes_Taggings N WHERE N.parentnode_id = 732) R1

JOIN (SELECT T.object_id, T.tag_id AS id FROM Tagsets_Taggings T WHERE T.tagset_id = 13) R2 ON R1.object_id = R2.object_id

JOIN (SELECT R.object_id FROM Taggings R WHERE R.tag_id IN (10567,22)) R3 ON R1.object_id = R3.object_id

GROUP BY idx, idy, idz) S

JOIN Objects O ON S.object_id = O.id;

Listing 5: Optimised baseline query for the browsing state of Figure 1, rewritten to use the materialised views.

(here, images), Tagsets, Tags, Hierarchies and Nodes, along with a
many-to-many relationship for Taggings, resulting in a textbook
mapping to 6 relations with the appropriate PRIMARY KEY and
FOREIGN KEY declarations. We note that since the Nodes relation
implements the actual hierarchies, the recursive query in Listing 1
is needed to extract information about subtrees of parent nodes.

Case Study: Lifelog Browsing State. Listing 2 shows a baseline
query to return a variant of the browsing state in Figure 1. This
query has one subquery for each projected dimension and each direct
filter. For the hierarchy projection of the Dog node, the first subquery
returns all objects tagged to the subtree of the parent node, along with
identifiers of the relevant child nodes used to locate the image in the
browsing state visualisation. On the second axis we have introduced a
time zone tagset projection; the second subquery returns objects tagged
with any tag from the tagset, along with the identifiers of all associated
tags. The last subquery applies the weekday filter, returning only
images taken on weekends. The outer query then joins the subqueries
and groups the resulting images into browsing state cells, where they
are counted and an image chosen as a representative. Finally, the URLs
of the representative images are obtained from the Objects table.

Note that as the user progresses in the interactive exploration,
a query like the one shown in Listing 2 must be issued for each
browsing state. The costliest operation in this baseline query is
clearly the recursive query to identify all the nodes in a subtree. In

the following section, we therefore explore the available options to
reduce the cost of this operation and tune the performance

3 TUNING STEPS
In this section, we describe the steps taken to improve the perfor-
mance of the baseline cell query from the previous section. We first
describe the optimisation of the existing relations, then present a
denormalisation approach to reduce/remove the cost of dynami-
cally computing subtrees, and finally describe indexes created on
the materialised views that result in more efficient execution.

Step 0: Indexes and Statistics. To facilitate efficient computation of
subtrees for the baseline query, we created a clustered index on
the Nodes(parentnode_id) attribute, which groups together all chil-
dren of each node. We also created an index on Taggings(object_id,
tag_id) to facilitate efficient computation of tag filters. Finally, we
analysed statistics for the collection, using default settings, to im-
prove query optimisation. These basic steps were taken before
measuring the performance of the baseline query of Listing 2.

Step 1: Denormalisation. The main cost of the baseline query is
the recursive query to get all the tags represented in the subtree
of a node. The first step of performance tuning is therefore to
precompute, using a materialised view, the subtrees of all nodes and
their tagging information, thus denormalising the database. The
view of Listing 3 essentially results in a new table with about 32M
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Table 1: Description of browsing states used in experiments.

State Description

2D 2D browsing state of 39 cells, with the top level of the dog
hierarchy on one axis and year on the other axis.

3D 3D browsing state of 4,186 cells, with the top level of the
dog hierarchy on the first axis, location on the second axis,
and day of the week on the third axis.

3D + 2 3D browsing state of 966 cells, with location on the first
axis, day of the week on the second axis, year on the third
axis, and filters on dog and the month of September.

rows. Similarly, in Listing 4, a materialised view is created to store
relationships between tagsets and objects, resulting in table with
about 6.3M rows. Computing these views takes nearly 60 seconds.

Listing 5 shows the baseline query rewritten to take advantage
of the materialised views. As each view essentially implements the
subqueries of the baseline query in Listing 2, the resulting optimised
query is significantly simpler in its structure. Furthermore, this
optimised query runs about 75% faster than the baseline query, as
detailed in Section 4.

Step 2: Covering Indexes. Weobserve that every dimension subquery
requires three columns, in this order: (i) parentnode_id/tagset_id to
filter the relevant parent node or tagset; (ii) object_id to join with
the other dimensions/filters; and (iii) node_id/tag_id for grouping
the objects based on their location in the browsing state. To facilitate
the queries, we have therefore created two covering B+-tree indexes
for the two views, as well as a third index for implementing direct
hierarchy filters. Note that this action does not necessitate any
further changes to the browsing state query in Listing 5. By adding
these indexes, the time to retrieve the example browsing state is
further reduced by more than 90%.

4 EVALUATION
4.1 Experimental Setup
To measure the impact of the tuning actions of the previous section,
we use the three browsing states described in Table 1. The three
browsing states represent a range of browsing state complexities,
from a relatively simple 2D state to a very complex 3D state with
additional filters. For the more complex browsing states, cells tend
to have few images, which requires the baseline approach and its
variants to process a larger portion of the objects table. To avoid
software overhead, a Python benchmarking harness was developed.
The mean latency of each state query is reported as the average of
30 runs. Experiments were run on a laptop using Ubuntu LTS on
Windows 11, with an Intel i5-8600K 3.6GHz CPU and 8GB of RAM.

4.2 Results
Figure 3 shows the results of the performance measurements. The
different versions of baseline and tuned queries are on the 𝑥-axis,
while the 𝑦-axis shows the mean running time of retrieving the
entire browsing state for each query formulation. Note the loga-
rithmic scale of the 𝑦-axis, chosen because there is a wide range
from the fastest to the slowest browsing states.
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Figure 3: Performance comparison of baseline and opti-
mised queries, over three different browsing state scenarios.

Overall, Figure 3 shows that denormalising the database has a
very significant effect on the performance, improving performance
by nearly an order of magnitude compared to the baseline approach.
Furthermore, the introduction of indexes on the materialised views
improves performance by another two orders of magnitude. We
note that the additional filter on the month of September reduces
the result size of the join for the 3D+2 state, compared to the 3D
state, resulting in faster execution.

4.3 Discussion
The results indicate that denormalising and indexing the collec-
tion and modifying the baseline query correspondingly is an excel-
lent strategy for visualisation queries. These performance improve-
ments, however, required building a large materialised view, which
took nearly a minute to populate and index. Each time the collection
is updated by adding an image, a tag, or even a tagging, which will
happen frequently in many multimedia analytics scenarios, this
view must be updated. For bulk inserts, the view might be refreshed
only at the end, but nevertheless this is a significant hindrance to
interactive use of such a system to maintain a media collection. We
believe that, taking all these considerations together, the relational
back-end must be replaced by a more suitable approach.

5 CONCLUSIONS
This paper has described the process of optimising the performance
of a state-of-the-art relational database to more efficiently serve
data for the visualisation of browsing states in the ViRMA system.
Through two major optimisation steps, denormalising the database
and creating covering indexes, the time to produce complex brows-
ing states in a lifelog collection of about 182K images was reduced
by orders of magnitude. The results show that performance for
even complex visualisations is sufficient for interactive exploration.
The performance improvements come at the cost of practically
prohibiting dynamic updates to the collection, however, and we
therefore conclude that even with this relatively simple data model
and this relatively small media collection, the state-of-the-art rela-
tional server is not suitable technology and must be replaced.
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