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In this paper we study equilibria of differential equation models for networks. When interactions
between nodes are taken to be piecewise constant, an efficient combinatorial analysis can be
used to characterize the equilibria. When the piecewise constant functions are replaced with
piecewise linear functions, the equilibria are preserved as long as the piecewise linear functions are
sufficiently steep. Therefore the combinatorial analysis can be leveraged to understand a broader
class of interactions. To better understand how broad this class is, we explicitly characterize how
steep the piecewise linear functions must be for the correspondence between equilibria to hold.
To do so, we analyze the steady state and Hopf bifurcations which cause a change in the number
or stability of equilibria as slopes are decreased. Additionally, we show how to choose a subset of
parameters so that the correspondence between equilibria holds for the smallest possible slopes
when the remaining parameters are fixed.
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1. Introduction

An analysis of dynamics of systems of differential equations (ODE) forms a bedrock of modeling of complex
systems ranging from natural sciences to social sciences and, most recently, in data science. General ques-
tions are notoriously difficult, as three dimensional ODE systems can exhibit chaotic dynamics. Fortunately,
in many applications in biology the structure of interactions between chemical species or organisms is cap-
tured by a directed graph, called a regulatory network, and each pairwise interaction can be modeled by a
monotone bounded function. However, there is usually not much additional information about the precise
shape of these nonlinearities; they do not come from first principle physical models. Matching quantitative
predictions of such models to experimental data and/or predicting outcomes of an experiment therefore
requires precise experimental measurements of all interaction nonlinearities or sufficient preliminary data
to fit parameters. Another approach is to predict qualitative features of the dynamics from the structural
constraints given by the network and which are valid for an entire class of uncertain nonlinearities. The
aim of this paper is to further develop mathematical methods used in the latter approach.

This paper uses a methodology based on a particular class of interaction nonlinearities called switching
functions. These functions are piece-wise constant with a single threshold θ and take either a lower value
L or an upper value U . These switching systems of differential equations have been used as models of gene
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regulatory networks since the 70’s [Glass & Kauffman, 1973; Glass & Pasternack, 1978; de Jong, 2002;
Thomas, 1991; Edwards, 2001; Cummins et al., 2016; Ironi et al., 2011; Gedeon, 2020]. However, using
these functions as the right hand side of an ODE system presents several technical challenges, especially
how to deal with the fact that the vector field is not defined at thresholds θ. The idea of the newer DSGRN
(Dynamic Signatures Generated by Regulatory Networks) approach [Cummins et al., 2016; Gedeon et al.,
2018; Gedeon, 2020], supported by a suite of corresponding software [Cummins et al., 2020], is to capture
information about the network dynamics given by switching system models in the form of combinatorial
(finite) data, and then use this data to rigorously establish results about well-defined dynamics of ODE’s
with continuous right hand side that are a small perturbation of the switching functions. We have shown in
a previous paper [Duncan et al., 2021] that when switching functions are replaced with smooth sigmoidal
functions which are within a C0 neighborhood of the switching functions, all equilibria and their stability
of the resulting system can be inferred from the combinatorial data.

This work is devoted to addressing the quantitative question of how big this neighborhood is, i.e. how
far sigmoidal functions can be perturbed from switching functions and still maintain the same equilibria
and their stability. We formulate this problem as bifurcation problem: how far can we perturb switching
functions before there must be a bifurcation resulting in loss of stability or a loss of an equilibrium? The
immediate challenge is that this question, as stated, is too broad since there is no good parameterization of
all sigmoidal functions. We therefore restrict our attention to a particular subclass of sigmoidal functions
that are easy to parameterize and where bifurcations are easier to track - ramp functions. Ramp functions
have two constant parts which have values (in agreement with the corresponding switching function) L and
U , and the sharp transition at the threshold of the switching function is replaced by a linear ramp that

joins these two parts over an interval of length 2ε. This ε, or alternatively the slope of the ramp |U−L|2ε , are
natural parameters that measure how far a ramp function is from a switching function.

Our results provide, for a given network structure, explicit bounds on ε across all ramp nonlinearities
that guarantee the persistence of all switching system equilibria and their stability. Using theory of bifurca-
tions of piecewise linear systems we explicitely describe the steady-state bifurcations (i.e saddle node and
pitchfork) and Hopf bifurcations that lead to disappearance of the equilibria or a change in their stability
as the steepness of the linear portion of the ramp functions decrease. We also solve an optimization problem
where we fix values of L and U for all switching nonlinearities but optimize the placement of thresholds θ
that maximizes the critical ε across all such placements.

There are two areas of applications of this work. One is in the area of gene regulatory networks. As an
example, we mention epithelial-mesenchymal transition (EMT) [Jolly et al., 2016; Hong et al., 2015] which
is responsible for phenotype switching between epithelial phenotype where cells are a part of well organized
tissue, and mesenchymal phenotype in which cells can travel to other tissues trough the bloodstream. EMT
is thought to be responsible for emergence of cancer metastasis. In an earlier work [Xin et al., 2020] we
used DSGRN to scan over the entire 42 dimensional space of parameters of the EMT network and found
parameters where the switching system ODE has up to 8 stable equilibria. While two of these equilibria
correspond to pure epithelial and mesenchymal states, the others correspond to so called intermediate
states. The number and characterization of these states is a hotly debated issue in cancer systems biology,
since they may correspond to phenotypes that are more aggressive and have poorer clinical outcomes.
Results of this paper can be used to establish how many of these intermediate states occur in ODE models
with ramp function nonlinearities with moderate steepness. This is motivated by the fact that biologically
realistic exponents in Hill function models are usually asssumed to be in the range of 2− 4.

Our result may be of interest in deep learning community. Echo state networks [Jaeger & Haas, 2004]
have roots in recurrent artificial neural networks (rANN), that were introduced by Hopfield [Hopfield,
1982] and Grossberg [Grossberg, 1988] almost 40 years ago. While there are many implementations of echo
state networks under many different names, the main structure is a network whose nodes are connected
by weighted directed edges, where each node processes the collection of input through a nonlinear function
(binary, sigmoidal, or a ramp). For these networks, our work provides a characterization of the number
and stability of equilibria for steep ramp functions, with explicit bounds on their steepness, based on the
structure of the network.
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2. The Regulatory Network and Switching Systems

[Cummins et al., 2016]. A regulatory network RN = (V,E) is an annotated finite directed graph with
vertices V = {1, . . . , N} called network nodes and directed edges E ⊂ V × V × {1,−1}. An annotated
edge (j, i,+1) represents an activation of node i by node j and is denoted j → i; annotated edge (j, i,−1)
represents repression of node i by node j and is denoted j a i. We write sij = 1 if j → i and sij = −1 if
j a i. We indicate either j → i or j a i without specifying which by writing (j, i) ∈ E. We allow self edges,
but admit at most one edge between any two nodes. The set of sources and targets of a node are denoted
by

S(k) = {j | (j, k) ∈ E} and T(k) = {j | (k, j) ∈ E}.

To an RN we associate a switching system of the form

ẋ = −Γx+ Λ(x) (1)

where Γ is a diagonal matrix with entries Γjj = γj and Λ is a nonlinear function of the form

Λi(x) :=

pi∏
`=1

∑
j∈I`

σij(xj) (2)

with I1, . . . , Ipi a partition of S(i). Each σij is a switching function of the form

σij(xj) :=


Lij , sij = 1 and xj < θij or sij = −1 and xj > θij

Uij , sij = 1 and xj > θij or sij = −1 and xj < θij

undefined, if xj = θij .

(3)

The parameter Z = (L,U, θ,Γ), where L := (Lij), U := (Uij), θ := (θij) are vectors indexed by (ij), is
the switching parameter. We denote a switching system parameterized by Z by SWITCH(Z).

To the same network RN we also associate a ramp system, R(Z, ε), where Z is a switching parameter
and ε ∈ RN×N is a perturbation parameter. We say ε′ ≤ ε or ε′ < ε when the component-wise comparisons
ε′ij ≤ εij or ε′ij < εij hold for each (j, i) ∈ E, respectively. The dynamics of a ramp system are defined by

ẋ = −Γx+ R(x; ε) (4)

where R is defined by

Ri(x; ε) :=

pi∏
`=1

∑
j∈I`

Rij(xj ; εij) (5)

and Rij is a ramp function of the form

Rij(xj ; εij) :=


Lij , sij = 1 and xj < θij − εij or sij = −1 and xj > θij + εij

Uij , sij = 1 and xj > θij + εij or sij = −1 and xj < θij − εij
Uij+Lij

2 + sijmij(xj − θij), θij − εij ≤ xj ≤ θij + εij
(6)

and mij :=
Uij−Lij

2εij
. We call the pair (Z, ε) a ramp parameter.

Example. Throughout the paper we will illustrate the concepts on a simple example of a two node network
we call the positive toggle switch, where the two nodes mutually activate each other, i.e.

RN = (V,E) = ({1, 2}, {(1→ 2), (2→ 1)}).
We chose the name positive toggle switch for its resemblance to the toggle switch introduced in [Gardner
et al., 2000], in which the nodes mutually repress each other rather than activate. The associated switching
system has the form

ẋ1 = −γ1x1 + σ12(x2)

ẋ2 = −γ2x2 + σ21(x1)
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where s12 = s21 = 1. The associated ramp system has the form

ẋ1 = −γ1x1 +R12(x2; ε12)

ẋ2 = −γ2x2 +R21(x1; ε21).

3. Equilibria of Ramp Systems

Both switching systems and a ramp systems have an associated cell complex which we call the switching
complex and ramp complex, respectively. As defined in [Duncan et al., 2021], a cell complex is a partition

of phase space R
N
+ generated by a threshold set. Each cell in a cell complex is defined by choosing either

an interval with end points defined by consecutive thresholds or a threshold singleton for each direction.
The threshold sets and corresponding complexes for switching and ramp systems are defined below. See
Figure 1 for the switching and ramp complexes for the positive toggle.

Definition 3.1.

(1) For each j ∈ V , we define θ−∞j := 0, θ∞j :=∞, ε−∞j := 0, ε∞j := 0, and

Θj(Z, ε) := {θij ± εij > 0 | i ∈ T(j)} ∪ {θ∞j , θ−∞j}.
The ramp threshold set is the collection Θ(Z, ε) := (Θ1(Z, ε), . . . ,ΘN (Z, ε)) and Θ(Z, 0) is the threshold
set for a switching system.

(2) A cell τ associated to the threshold set Θ(Z, ε) is a product of k ≤ N thresholds and N − k open
intervals whose end points are consecutive thresholds. That is, after reordering the variables a cell can
be written as

τ =
k∏
j=1

{ζijj} ×
N∏

j=k+1

(ζajj , ζbjj).

where ζijj , ζajj , ζbjj ∈ Θj(Z, ε) for each j. The cell is regular if k = 0 and singular otherwise. We let
πj(τ) denote the projection of τ onto the jth direction and say j is a singular direction of τ if πj(τ) is
a singleton and a regular direction if πj(τ) is an interval. We denote the set of singular directions by
sd(τ).

(3) The ramp complex χ(Θ(Z, ε)) is the collection of cells associated to the threshold set Θ(Z, ε). When
ε = 0, we call the cell complex χ(Θ(Z, 0)) the switching complex. When the switching parameter Z is
clear from context we will write χ(ε) for the ramp complex and χ(0) for the switching complex.

Given a ramp system, we are interested in determining the location of equilibria by identifying the
regular cell they belong to. That is, we are not concerned with determining the precise value of an equilib-
rium but rather in which cell τ the equilibrium is contained. Note that since the ramp system is affine in
each regular cell, each such cell can contain at most one equilibium.

Definition 3.2. Let (Z, ε) be a ramp parameter. If τ ∈ χ(ε) contains an equilibrium of R(Z, ε), then τ is
a R-equilibrium cell.

For switching systems, equilibrium cells are defined differently because making an arbitrarily small
perturbation of a switching system into a system with a continuous right hand side may introduce new
equilibria. Therefore we define SWITCH-equilibrium cells to be those cells for which the equilibria of a
continuous system, where this system is taken from some class of continuous systems, limits to. These cells
τ ∈ χ(0) can be singular. In this paper we take the class of continuous systems in the definition to be
ramp systems, although in [Duncan et al., 2021] a larger class of sigmoidal systems were used. Theorem 11,
together with the characterization of SWITCH-equilibrium cells given by Theorem 3.11 of [Duncan et al.,
2021], imply that the collection of equilibrium cells defined by using these two classes of systems is the
same.

Definition 3.3. [Duncan et al., 2021] Let τ ∈ χ(0). If there is an A ∈ RN×N
+ so that for all ε < A, a ramp

system R(Z, ε) has a fixed point xε satisfying xε → τ as ε→ 0, then τ is a SWITCH-equilibrium cell. If τ
is a singular cell, then xε is a singular stationary point (SSP).
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Fig. 1. Complexes χ(0), χ(ε), and neighbors in the positive toggle switch example. (a): Complex χ(0). Each box,
line, and point is a cell. The cell τ = {θ21} × (0, θ12) is indicated by the orange line. For τ , the direction 1 is singular and
the direction 2 is regular. The 2-neighbors of τ , (see Definition 5.5) τ+2 and τ−2 , are indicated by the blue circles while the

1-neighbors, τ−1 and τ+1 , are the labeled two dimensional cells. (b): Complex χ(ε). Cell τ(ε) is indicated by the orange box

and τ+2 (ε) by the blue box. The cell τ−2 (ε) = τ(ε)−2 is the labeled blue line. Cells τ(ε)+1 and τ(ε)−1 are the labeled vertical
lines.

Theorem 3.11 of [Duncan et al., 2021] shows that SWITCH-equilibrium cells can be identified solely from
a list of inequalities between parameters. In Theorem 1, we give an explicit upper bound on the size of
the perturbation parameter ε so that there is a one-to-one correspondence between R-equilibrium cells
and SWITCH-equilibrium cells. Together, these theorems can be used to identify all R-equilibrium cells
provided ε satisfies the bound.

3.1. Weak Equivalence of Ramp and Switching Parameters

This section describes a relationship between the ramp complex and switching complex that holds when
ε is small enough. Small enough is made precise by the notion of weak equivalence, which we define after
the following non-degeneracy condition which we will assume throughout the remainder of this paper.

Definition 3.4. [Duncan et al., 2021]. The switching parameter Z is threshold regular if

• For all (j, i) ∈ E, θij > 0, and
• for all j ∈ V , i1, i2 ∈ T(j), θi1j 6= θi2j .

Definition 3.5. Consider a threshold regular switching parameter Z. For j ∈ V , denote the ordering of
the thresholds {θij ± εij | i ∈ T(j)} by Oj(Z, ε). The order parameter is the collection of these orders,
O(Z, ε) = (O1(Z, ε), . . . , ON (Z, ε)). We say the ramp parameter (Z, ε) is weakly equivalent to the switching
parameter Z, denoted Z ∼W (Z, ε), if O(Z, ε) = O(Z, ε′) for all ε′ < ε.

Weak equivalence implies the existence of a bijection between the regular cells of the ramp complex
and the cells of the switching complex. Let

χ0 = χ(0) \ {τ ∈ χ(0) | ∃j ∈ V, πj(τ) ⊂ {θ−∞j , θ∞j}}

be the cells that do not lie on the boundary of the positive orthant RN
+ . When Z ∼W (Z, ε), there is a

bijection that maps cells in χ0 to N -dimensional cells in χ(ε)(N)

φε : χ0 → χ(ε)(N), φε = (φε1, . . . , φ
ε
n)



August 16, 2021 10:27 paper2

6

defined by

φεj(τ) 7→

{
(θijj − εijj , θijj + εijj), j ∈ sd(τ), πj(τ) = {θijj}
(θajj + εajj , θbjj − εbjj), j /∈ sd(τ), πj(τ) = (θajj , θbjj).

See Figure 1(b) for illustration. Note that if O(Z, ε) = O(Z, ε′), then φε,ε
′

:= (φε)−1 ◦ φε′ is a bijection
between χ(ε)(N) and χ(ε′)(N).

While φε is a bijection, the map φε,ε
′

can be extended to a homeomorphism. The map φε preserves the
following property: if τ is a neighbor (defined precisely in Definition 5.5) of κ in χ0 then N dimensional
cells φε(τ) and φε(κ) share an N − 1 dimensional boundary in χ(ε).

We can extend φε to all cells, τ ∈ χ(0), through the map φ̃ε : χ(0)→ χ(ε) defined by

φ̃εj(τ) 7→

{
πj(τ), πj(τ) ⊂ {θ−∞j , θ∞j}
φεj(τ), otherwise.

(7)

Given τ ∈ χ(0), we define τ(ε) := φ̃ε(τ). For a cell τ ∈ χ(0) of a two node regulatory network, Figure 1(a)
shows its neighbors. The corresponding cell τ(ε) and its neighbors are depicted in 1(b).

3.2. The Combinatorial Parameter and Strong Equivalence

Having provided a relationship between the switching and ramp complexes, we now proceed to relate the
dynamics of the two systems. This is accomplished by generalizing the notion of combinatorial parameter,
introduced in [Cummins et al., 2016] for switching systems, to ramp systems. In [Cummins et al., 2016],
combinatorial parameters are equivalence classes of switching parameters which generate the same global
dynamics of (1) as described by a state transition graph for the system. Here we extend combinatorial
parameters to include ramp parameters with non-zero ε such that the equilibrium cells are the same within
each equivalence class. To do so, we first define the set of non-degenerate ramp parameters over which the
equivalence classes will be defined.

Definition 3.6.

(1) The ramp parameter (Z, ε) is regular if

• Z is threshold regular,
• for all (j, i) ∈ E, 0 < Lij < Uij ,
• for all k ∈ V , γk > 0, and
• for all κ ∈ χ(0)(N) and (j, i) ∈ E, γj(θij ± εij) 6= Λj(κ) for each threshold θij which defines κ.

(2) The switching parameter Z is regular if (1) holds with ε = 0.

This definition for regular switching parameters coincides with the definition for regular parameters in
[Cummins et al., 2016]. We now proceed to define combinatorial parameters.

Definition 3.7. Consider a regular ramp parameter (Z, ε).

(1) The input combinations of the ith node is the Cartesian product

Ini :=
∏
j∈S(i)

{off, on}.

The indicator function, 1i : R
S(i)
+ → Ini, is defined component-wise by

1ij(x) :=


off, sij = 1 and xj < θij or sij = −1 and xj > θij

on, sij = 1 and xj > θij or sij = −1 and xj < θij

undefined, otherwise.
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The σ-valuation function, vi : Ini → RS(i), is defined by

vij(A) :=


Lij , Aj = off

Uij , Aj = on

undefined, otherwise.

Note that σij = vij ◦ 1ij . The Λ-valuation function, ωi : Ini → R, is defined by

ωi(A) :=

pi∏
`=1

∑
j∈I`

vij(A).

Note that Λi = ωi ◦ 1i.
Define Lj : Inj ×T(j)× {−,+} ×RN×N

+ → {−1, 1} by

Lj(A, i,±; ε) := sgn(−γj(θij ± εij) + ωj(A)).

When ε = 0 we drop the ’±’ argument. The logic parameter is the collection L(Z, ε) :=
(L1(·, ·, ·; ε), . . . , LN (·, ·, ·; ε)).

(2) We define an equivalence relation (Z, ε) ∼ (Z ′, ε′) whenever (L(Z ′, ε′), O(Z ′, ε′)) = (L(Z, ε), O(Z, ε)).
The combinatorial parameter is an equivalence class under ∼ and is denoted by P(Z, ε). In other words,
(Z ′, ε′) ∈ P(Z, ε) whenever (L(Z ′, ε′), O(Z ′, ε′)) = (L(Z, ε), O(Z, ε)).

We use the combinatorial parameter to define a notion of strong equivalence between a ramp parameter
and a switching parameter.

Definition 3.8. Let (Z, ε) be a regular ramp parameter. The switching parameter Z and (Z, ε) are strongly
equivalent, denoted Z ∼S (Z, ε), if for all ε′ < ε, P(Z, ε) = P(Z, ε′).

Note that strong equivalence implies weak equivalence. The power of strong equivalence is that it not only
allows identification of cells in χ(0) with cells in χ(ε), but in addition allows us to use knowledge about
the dynamics of SWITCH(Z) to make inferences about the dynamics of R(Z, ε). This is made precise in
Section 7.
Example. Consider a two node regulatory network defined by

RN = (V,E) = ({1, 2}, {(1, 2), (2, 1), (2, 2)})

at a switching parameter Z satisfying

L12 < θ21 < U12 and L21L22 < θ12 < L21U22 < θ22 < U21L22 < U21U22.

For strong equivalence Z ∼S (Z, ε) to hold, all of the thresholds of the ramp system must obey the same
inequalities, i.e.

L12 < θ21 − ε21 < θ21 + ε21 < U12, and

L21L22 < θ12 − ε12 < θ12 + ε12 < L21U22 < θ22 − ε22 < θ22 + ε22 < U21L22 < U21U22.

For weak equivalence Z ∼W (Z, ε) to hold, only the inequalities between thresholds need to be satisfied,
i.e.

θ12 + ε12 < θ22 − ε22.

Weak equivalence but not strong equivalence can be satisfied if, for example,

θ21 − ε21 < L12 < θ21 + ε21 < U12, and

L21L22 < θ12 − ε12 < θ12 + ε12 < L21U22 < θ22 − ε22 < U21L22 < θ22 + ε22 < U21U22.
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3.3. Characterization of R-Equilibrium Cells

First we note that the proof of Theorem 3.11 in [Duncan et al., 2021] could be modified to show that
there is a unique ramp equilibrium limiting to each SWITCH-equilibrium cell. However, the structure of
ramp systems allows us to improve on the theorem by obtaining an explicit upper bound on ε so that the
correspondence between SWITCH-equilibrium cells and ramp equilibria is maintained. The proof can be
found in Section 7.

Theorem 1. Let Z ∼S (Z, ε). Then σ ∈ χ(ε) is an R-equilibrium cell if and only if σ = τ(ε) for some
SWITCH-equilibrium cell τ ∈ χ(0).

Moreover, if an equilibrium exists in a cell τ(ε), or in a cell τ , then it is unique. If τ ∈ χ(0) is a
regular equilibrium cell then the equilibrium of SWITCH(Z) in τ , as well as the corresponding equilibrium
of R(Z, ε) in τ(ε), are stable.

4. Stability and Bifurcations of Equilibria in Cyclic Feedback Networks

In this section we study a special class of systems called cyclic feedback systems (CFS). As shown in
[Duncan et al., 2021], any switching system can be locally decomposed into a product of cyclic feedback
systems. A key theorem in Section 5 shows that a similar decomposition holds for weakly equivalent ramp
systems. This allows us to generalize results for ramp CFS to general ramp systems. Therefore, we first
study stability and bifurcations of equilibria in CFS in this section and then generalize the results to general
networks in Section 5.

Definition 4.1. A cyclic feedback network (CFN) is a regulatory network RN = (V,E) with N nodes
such that E = {(1, 2), (2, 3), . . . , (N − 1, N), (N, 1)}. A cyclic feedback system (CFS) is switching or ramp
system associated to a CFN. The network RN is a positive (resp. negative) CFN if RN is a CFN and∏
j s(j+1)j = 1 (resp.

∏
j s(j+1)j = −1).

Given a RN is a CFN, we assume without loss of generality that each edge (j, j + 1) of a CFN is
activating, i.e. s(j+1)j = 1, except possibly for the edge (N, 1). This can be done because every CFN can be
put into this form via a change of variables [Gedeon & Mischaikow, 1994]. Given a ramp CFS, R(Z, ε), we
let M(ε) :=

∏
jm(j+1)j(ε(j+1)j) denote the product of the magnitude of the slopes of the ramp functions.

Vital to this discussion of equilibrium cells is the notion of a loop characteristic cell, defined below.

Definition 4.2. [Duncan et al., 2021]. Given τ ∈ χ(0) we associate a map

ρτ : V → V, ρτ (j) =

{
ij , j ∈ sd(τ)

j, otherwise

and say τ is a loop characteristic cell if ρτ is a permutation on sd(τ). We denote the set of loop characteristic
cells by LCC. Note that all N -dimensional cells κ ∈ χ(0) are automatically loop characteristic cells, since
sd(κ) = ∅. Therefore χ(N) ⊂ LCC.

We note that SWITCH-equilibrium cells are a subset of loop chararacteristic cells [Veflingstad & Plahte,
2007; Duncan et al., 2021].

4.1. Stability of Equilibria for CFS

If strong equivalence holds for a ramp parameter, i.e. Z ∼S (Z, ε), then Theorem 1 implies that if τ ∈ χ(0)
is a regular equilibrium cell, then the equilibrium in the cell τ(ε) of the ramp system is stable. Here we
address the case that τ is a singular cell. If τ(ε) contains an equilibrium and Z ∼S (Z, ε) then τ is a
SWITCH-equilibrium cell and in particular τ ∈ LCC. The only singular loop characteristic cell of a CFS
is the cell defined by the intersection of all thresholds, τ =

∏
{θ(j+1)j}. If τ is an equilibrium cell, then

for ε small enough the equilibrium contained in τ(ε) is stable if RN is a negative CFN with N ≤ 2 and
unstable otherwise [Ironi et al., 2011; Duncan et al., 2021]. In the case of a positive CFN, strong equivalence
characterizes how large ε can be so that instability is maintained.
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Proposition 1. Let RN be a positive CFN and Z be a switching parameter such that τ ∈ χ(0) is a singular
equilibrium cell of SWITCH(Z). If Z ∼S (Z, ε) then the equilibrium of R(Z, ε) in τ(ε) is unstable.

Proof. Let x ∈ τ(ε). According to Lemma 4.6 of [Duncan et al., 2021], the characteristic polynomial of
the Jacobian J(x; ε) satisfies

p(λ;x, ε) := (−1)N (det(J(x; ε)− λI) =

N∏
i=1

(γi + λ)−M(x, ε).

The coefficients of λk in the polynomial p(λ;x, ε) are all positive for k > 0. The coefficient of λ0 is negative
when

N∏
j=1

γj < M(ε).

Therefore, by Descartes’ Rule of Signs, p(λ;x, ε) has a positive real root when the above inequality holds.
By Proposition 4.8 of [Duncan et al., 2021], there is an ε0 ≤ ε small enough so that p(λ;x, ε) has a positive
real root.

Let ε̃ : [0, 1] → RN×N
+ be a continuous function such that ε̃(0) = ε0, ε̃(1) = ε, and ε0 ≤ ε̃(s) ≤ ε

for all s. By Theorem 1, for each s, R(Z, ε̃(s)) contains a unique equilibrium in τ(ε̃(s)). Since R(Z, ε̃(s))
is a linear system, the assumption det(J(ε̃(s))) = 0 would imply that there are infinitely many equilibria
in κ(ε̃(s)). Therefore we conclude that for all s ∈ [0, 1], det(J(ε̃(s))) 6= 0. Since the coefficient of λ0 in
p(λ;x, ε̃(s)) is (−1)N det(J(ε̃(s))), the constant term of p never vanishes as s is varied and in particular it
doesn’t change sign. Therefore, the constant term of p(λ;x, ε̃(1)) is negative so that p has a positive real
root. So, if x ∈ τ(ε) is an equilibrium, J(x; ε) has a positive eigenvalue and the equilibrium is unstable.
�

In the case that RN is a negative cyclic feedback system with N > 2, it is possible that the unstable
equilibrium undergoes a Hopf bifurcation for some choice of ε with Z ∼S (Z, ε). Therefore for negative
CFN, although strong equivalence guarantees the existence of an equilibrium, as ε is increased the stability
of the equilibrium may change before strong equivalence fails.

4.2. Border Crossing Bifurcations in CFS

We now address how the stability or existence of an equilibrium of a ramp CFS can change when it crosses a
cell boundary. Our first two results address bifurcations that can occur at the point strong equivalence fails
in a positive CFS. Proposition 2 shows that a saddle node bifurcation occurs when a regular equilibrium
meets the singular equilibrium at a corner of τ(ε) while Proposition 3 shows that a pitchfork bifurcation
occurs when the regular equilibria meet opposite corners of τ(ε). After these results, we address the non-
degenerate case of an equilibrium crossing a codimension one boundary of a cell. The proofs can be found
in Section 8.

Proposition 2. Let Z be a switching parameter and RN be a positive cyclic feedback network such that
τ ∈ χ(0) is a singular equilibrium cell. Suppose ε0 satisfies one of the following conditions

(1) γj(θ(j+1)j − ε0(j+1)j) = Lj(j−1) and γj(θ(j+1)j + ε0s(j+1)j) < Uj(j−1) or

(2) γj(θ(j+1)j + ε0(j+1)j) = Uj(j−1) and γj(θ(j+1)j − ε0(j+1)j) > Lj(j−1)

for each j. Then R(Z, ε) has two stable equilibria and an unstable equilibrium for ε < ε0 and one stable
equilibrium for ε > ε0 when ε− ε0 is sufficiently small. That is, R(Z, ε) has a saddle node-like bifurcation
at ε = ε0.

While the previous proposition is a local result since we prove there is a single equilibrium when ε > ε0

if ε is close enough to ε0, the next is a global one as it applies to all values of ε as long as all components
of ε and ε0 satisfy the required inequality.
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0
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θ12 + ε12

(c) (d)

Fig. 2. Nullclines for the positive toggle switch at a parameter Z with a central singular equilibrium cell τ .
The switching parameter Z is chosen so that there are three SWITCH-equilibrium cells. (a): Z ∼S (Z, ε) so there are three
R-equilibrium cells by Theorem 1. (b): The top right corner of the nullcline γ2x2 = R21(x1; ε) is at the right boundary of
τ(ε), resulting in a non-smooth saddle node by Theorem 2. (c): The bottom left corners of both nullclines are at the bottom
left corner of τ(ε), resulting in a saddle-like bifurcation by Proposition 2. (d): Both corners of both nullclines are at a corner
of τ(ε), resulting in the pitchfork-like bifurcation of Proposition 3.

Proposition 3. Let RN be a positive cyclic feedback network. Suppose ε0 satisfies

γj(θ(j+1)j − ε0(j+1)j) = Lj(j−1) and γj(θ(j+1)j + ε0(j+1)j) = Uj(j−1)

for each j. Then if ε < ε0, R(Z, ε) has two stable equilibria and one unstable equilibrium and if ε > ε0,
R(Z, ε) has exactly one stable equilibrium. That is, R(Z, ε′) has a pitchfork-like bifurcation at ε = ε0.

To address the non-degenerate case, we use the theory of discontinuity induced bifurcations in piecewise
smooth systems found in [Di Bernardo et al., 2008]. Let (Z(s), ε(s)) be a smooth parameterization of ramp
parameters with ε(s) > 0 for all s. Based on results in [Di Bernardo et al., 2008], there are two possibilities:

(1) The border crossing bifurcation is persistent : the equilibrium exists for both s < s0 and s > s0 although
the stability may change at s0.

(2) The border crossing bifurcation is a non-smooth saddle-node. This bifurcation is analogous to a smooth
saddle node bifurcation and occurs when an unstable equilibrium and a stable equilibrium collide and
annihilate each other at the boundary.

Theorem 2. Let RN be a CFN. Consider a parameterization of ramp parameters (Z, ε) by a parameter s,
(Z(s), ε(s)). Suppose R(Z(s), ε(s)) has a non-degenerate border crossing bifurcation at x when s = s0. Let
τ ∈ χ(0) be the singular loop characteristic cell of SWITCH(Z(0)).
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(1) If x /∈ ∂τ(ε(s0)) then the bifurcation is persistent and stability does not change.
(2) If x ∈ ∂τ(ε(s0)), and RN is a positive CFN, then the bifurcation is a non-smooth saddle node if

M(ε(s0)) >
∏
γi and a stability preserving persistent bifurcation if M(ε(s0)) <

∏
γi.

(3) If x ∈ ∂τ(ε(s0)), Γ(s0) = I, and RN is a negative CFN, then the bifurcation is a stability chang-
ing persistent bifurcation if N > 2 and M(ε(s0)) > sec(π/N)N and a stability preserving persistent
bifurcation if N ≤ 2 or M(ε(s0)) < sec(π/N)N .

Figure 2 shows all possible bifurcations in a positive CFS which are given by Propositions 2 and 3, and
Theorem 2. For the figure, we have chosen parameter Z in such a way that τ is an equilibrium cell. For
such Z the saddle node bifurcation in Figure 2(b) results in the annihilation of the unstable equilibrium
in τ and a stable equilibrium as the slopes are decreased. If parameter Z is chosen so that τ is not an
equilibrium, but only a singular loop characteristic cell, there can be saddle node bifurcations which create
a stable and unstable equilibrium as the slopes are decreased.

On τ(ε), all ramp functions R(j+1)j are operating in their linear regimes and we may write the dynamics
as

ẋ = J(ε)x+ b, x ∈ τ(ε) (8)

where J(ε) is the Jacobian matrix of R(Z, ε) evaluated at any x ∈ τ(ε) and b is a vector depending on L,
U , and θ. Generically, J(ε) is full rank so that J(ε)x = −b has a solution, x(ε). If x(ε) ∈ τ(ε), then x(ε) is
an equilibrium of R(Z, ε). If x(ε) /∈ τ(ε), then, following [Di Bernardo et al., 2008], we call x(ε) a virtual
equilibrium. A consequence of Theorem 2 is that to detect steady state bifurcations in R(Z(s), ε(s)),
one only has to track this possibly virtual equilibrium x(ε(s)) and the value of M(ε(s)). Knowledge of
the equilibria in other cells is not necessary. In particular, we are often interested in ramp parameter
parameterizations of the form (Z, ε(s)) where ε(0) = 0 and ε(s) is monotone increasing. In this context
we ask for the minimum value of s, say s0, so that the number or stability of equilibria of R(Z, ε(s))
changes. Theorem 2 implies that s0 is given by the minimum value of s so that x(ε(s)) ∈ ∂τ(ε(s)) or
M(ε(s)) =

∏
γi if the CFN is positive or M(ε(s)) = sec(π/N)N if the CFN is negative and Γ = 1. The

perturbation parameter at s0, ε(s0), is then the largest value of ε, under the parameterization, such that
the equilibria of R(Z, ε) agree with those of SWITCH(Z).

5. Stability and Bifurcations in General Networks

In this section we extend the results of Section 4, which apply to cyclic feedback systems, to any regulatory
network. This is done by first showing that near any loop characteristic cell τ , there is a decomposition of
R(Z, ε) into a product of CFS and a diagonal system. Given this decomposition, the extensions immediately
follow.

5.1. Local Decomposition into Cyclic Feedback Systems

The following definition allows us to precisely define the region of phase space on which the decomposition
corresponding to a particular loop characterstic cell is valid.

Definition 5.1. For τ ∈ χ(0), the cell neighborhood of τ , denoted N (τ) is defined by

N (τ) := {κ ∈ χ(0) | τ ⊂ κ}

where κ is the closure of κ. We define the closure of the cells in χ(ε) corresponding to N (τ) by

N (τ ; ε) := {κ(ε) | κ ∈ N (τ)}.

Although N (τ ; ε) is a set of cells, we will often write x ∈ N (τ ; ε) to indicate x ∈ κ for some κ ∈ N (τ ; ε).

Statements 1,2,4, and 5 of the following lemma were proven in [Duncan et al., 2021], while statements
3 and 6 are implied by Lemma 6.

Lemma 1. Let τ ∈ χ(0) and (j, i) ∈ E with i 6= ρτ (j). Assume Z ∼W (Z, ε). Then
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(1) σij(τ) is well defined,
(2) for all κ ∈ N (τ), we have σij(κ) = σij(τ) is independent of κ,
(3) for all x ∈ N (τ ; ε), Rij(x; ε) = σij(τ).

Consequently if i 6∈ {ρτ (j) | j ∈ sd(τ)}, then

(4) Λi(τ) is well defined,
(5) for all κ ∈ N (τ) we have Λi(κ) = Λi(τ) is independent of κ,
(6) for all x ∈ N (τ ; ε), Ri(x; ε) = Λi(τ).

In [Duncan et al., 2021], it was shown that given a loop characteristic cell τ ∈ LCC, on the cell
neighborhood N (τ), a switching system decomposes into a product of cyclic feedback systems and a
diagonal system. The same holds for ramp systems R(Z, ε) for which weak equivalence holds, i.e. Z ∼W
(Z, ε). The CFNs associated to this decomposition can be determined from the cycles generating ρτ . Let
ρτ |sd(τ) = (c1, . . . , cn) be the cycle decomposition of ρτ restricted to the singular directions. Let `d :=
length(cd) and sd :=

∑
j<d `j . We reorder the variables so that cd acts on {sd + 1, sd + 2, . . . , sd + `d} and

cd(sd + i) = sd + i+ 1 for i < `d and cd(sd + `d) = sd + 1. To each cycle cd we associate the CFN

RNd := (V d := {sd + 1, . . . , sd + `d}, Ed := {(j, cd(j)) | j ∈ V d})

which is positive or negative according to

sgn(cd) :=

sd+`d∏
j=sd+1

scd(j)j .

To construct the CFS associated to each CFN, let `n+1 := N−sn+1 be the number of regular directions
and for each d = 1, . . . , n+ 1 define projections of the cell neighborhood N (τ ; ε) and cells κ ∈ N (τ ; ε) by

N d(τ ; ε) :=

sd+`d∏
j=sd+1

πj(N (τ ; ε)) and κd :=

sd+`d∏
j=sd+1

πj(κ).

We set R(·; ε, τ) := R(·; ε)|N (τ ;ε) to be the restriction of R onto N (τ ; ε). We then define

Rd(·; ε, τ) := (Rsd+1(·; ε, τ), . . . ,Rsd+`d(·; ε, τ))

to be the projection of the resulting function onto the directions of the d-th subsystem. Let Γd be the
`d × `d diagonal matrix with entries Γii = γsd+i for i = 1, . . . , `d. The dynamics for the dth system, which
we denote Rd(Z, ε; τ) is then given explicitly by

ẋd = −Γdxd + Λd(xd; ε, τ), xd ∈ N d(τ ; ε)

where xd = (xsd+1, . . . , xsd+`d). Note that for d ≤ n, Rd(Z, ε; τ) is a CFS, while Rn+1(Z, ε; τ) is a diagonal
system describing the dynamics of the regular variables. The following theorem is now a consequence of
Lemma 1. For a full argument in the case ε = 0, see [Duncan et al., 2021].

Theorem 3. Let (Z, ε) be a ramp parameter with Z ∼W (Z, ε) and τ ∈ χ(0) be a loop characteristic cell.
For x ∈ N (τ ; ε),

R(Z, ε) =

n+1∏
d=1

Rd(Z, ε; τ).

It is important to note that if Rd(Z, ε; τ) has an equilibrium, the equilibrium may not lie in N d(τ ; ε)
so there may not be a corresponding equilibrium of R(Z, ε). A characterization of when an equilibrium of
the switching system Rd(Z, 0; τ) corresponds to an equilibrium of SWITCH(Z) is given in [Duncan et al.,
2021]. It is straightforward to generalize these conditions to ramp systems, but for brevity we do not do so
here. For the purpose of this paper we need only the following definitions which extend similar definitions
for switching systems given in [Duncan et al., 2021].
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Definition 5.2. Given a loop characteristic cell τ with permutation ρ = ρτ , the cone C(κ; τ) rooted in τ
and induced by a cell κ ∈ N (τ) is defined by its N projections. For a regular direction, r, of τ

πr(C(κ; τ)) := πr(τ).

For a singular direction, s ∈ sd(τ),

πs(C(κ; τ)) :=


{θρ(s)s}, if πs(κ) = {θρ(s)s}
(θρ(s)s,∞), if πs(κ) = (θρ(s)s, θρ+(s)s)

(0, θρ(s)s), if πs(κ) = (θρ−(s)s, θρ(s)s).

The perturbed cone C(κ; τ, ε) is defined by φ̃ε(C(κ; τ)) where φ̃ε is defined in Section 3.1. For σ ∈ N d(τ)

define a d-cone in R`d
+ by

Cd(σ; τ, ε) :=

sd+`d∏
j=sd+1

πj(C(σ; τ, ε)).

The perturbed cones {Cd(σ; τ, ε) | σ ∈ N (τ)}, consist of all the cells in the ramp complex of Rd(Z, ε; τ)

except for the cells which lie on the boundary of R`d
+ .

Definition 5.3. Given a perturbation parameter ε and loop characteristic cell τ , the d-candidate equilibrium
cells of (τ, ε) are defined by

Eqd(τ ; ε) := {σd | σ ∈ N (τ) and Cd(σ; τ, ε) is an equilibrium cell of Rd(Z, ε; τ)}.

The candidate equilibrium cells of (τ, ε) are Eq(τ ; ε) :=
∏n+1
d=1 Eqd.

It is clear that if σ ∈ N (τ ; ε) is an R-equilibrium cell then σ ∈ Eq(τ ; ε). This is proven for ε = 0 in [Duncan
et al., 2021].

5.2. Stability of Equilibria

The decomposition in Theorem 3 implies that in R(Z, ε), the stability of a R(Z, ε) equilibrium x ∈ N (τ)
is determined by the stability of xd as an equilibrium of Rd(Z, ε; τ) for d = 1, . . . , n+ 1. We formally state
this observation as a theorem after the following definition.

Definition 5.4. An equilibrium x of R(Z, ε) is d-stable if xd is stable as an equilibrium of Rd(Z, ε; τ) and
d-unstable otherwise. If Rd(Z, ε; τ) undergoes a bifurcation at xd then we say R(Z, ε) has a d-bifurcation
at x.

Theorem 4. Let Z ∼W (Z, ε) and x ∈ N (τ ; ε) be an equilibrium of R(Z, ε). Then x is stable if and only
if x is d-stable for each d.

Proposition 1 now immediately generalizes.

Theorem 5. Let Z ∼S (Z, ε) and κ ∈ N (τ) be an equilibrium cell. If cd is a positive cycle then the
equilibrium of R(Z, ε) in κ(ε) is d-stable if, and only if, κd is a regular cell of Rd(Z, ε).

5.3. Border Crossing Bifurcations

Extending Propositions 2 and 3 to a general network is straightforward once we understand the values
of Ldj(j−1) and Udj(j−1) corresponding to the CFS Rd(Z, ε; τ) in the decomposition of R(Z, ε) at loop

characteristic cell τ . To do so, we introduce the concept of a neighbor of a cell. An example of neighbors
in the positive toggle switch can be found in Figure 1.
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Definition 5.5. Let τ ∈ χ(ε) be a cell in the ramp complex and j ∈ V . If j is a singular direction j ∈ sd(τ)
let πj(τ) = {ζijj} and ζi1j j

< ζijj < ζi2j j
be consecutive thresholds. The left k-neighbor of the cell τ is a cell

τ−k , defined by

πj(τ
−
k ) :=


πj(τ), j 6= k

(ζi1j j
, ζijj), j = k, k ∈ sd(τ)

inf(πj(τ)), j = k, k /∈ sd(τ).

Similarly, the right k-neighbor, τ+k , is defined by

πj(τ
+
k ) :=


πj(τ), j 6= k

(ζijj , ζi2j j
), j = k, k ∈ sd(τ)

sup(πj(τ)), j = k, k /∈ sd(τ).

A k-neighbor of τ is either a left or right k-neighbor of τ . A neighbor of τ is any k-neighbor.

Note that if j is a singular direction of τ ∈ χ(0), then j is a regular direction of τ±j . On the other hand,

every singular direction s ∈ sd(τ) \ {j} is a singular direction of τ±j . Suppose τ is a loop characteristic cell,

let ρ = ρτ and j′ = ρ(j). Since j is the unique direction which maps to j′ under ρ, i.e. ρ−1({j′}) = {j},
Lemma 1 implies that Λρ(j)(τ

±
j ) is well defined. We state this observation as the following lemma, which

was first stated in [Duncan et al., 2021].

Lemma 2. [Duncan et al., 2021]. Let τ ∈ χ(0) be a loop characteristic cell. If s is a singular direction of
τ then Λρ(s)(τ

±
s ) is well defined.

Lemmas 1 and 2 now imply that Λdρ(j)(·; τ) can only take two possible values: Λdρ(j)(τ
−
j ; τ) and

Λdρ(j)(τ
+
j ; τ).

So, if RNd(τ) is treated as an independent cyclic feedback network with switching parameter Zd =
(Ld, Ud, θd,Γd), then since we have assumed RNd(τ) has activating edges except perhaps for (sd + `d, 1),
for a positive cyclic system (sgn(cd) = 1)

Ldcd(j)j = Λcd(j)(τ
−
j ), and Udcd(j)j = Λcd(j)(τ

+
j )

for sd+1 ≤ j ≤ sd+`d. For a negative CFS (sgn(cd) = −1) the above equations hold for sd+1 ≤ j < sd+`d
and for the last equation we have

Ld(sd+1)(sd+`d)
= Λsd+1(τ

+
(sd+`d)

), and Ud(sd+1)(sd+`d)
= Λsd+1(τ

−
(sd+`d)

).

Applying Proposition 2 to Rd(Z, ε; τ) now yields an explicit condition for a d-saddle node when cd is
a positive cycle.

Theorem 6. Let Z ∼W (Z, ε) and let τ be a loop characteristic cell with ρτ |sd(τ) = (c1, . . . , cn). Suppose

R(Z, ε) has a cycle in N (τ ; ε). Suppose cd is a positive cycle and the ramp parameter (Z, ε0) satisfies one
of the following conditions

(1) γj(θcd(j)j − ε
0
cd(j)j

) = Λj(τ
−
c−1
d (j)

) and γj(θcd(j)j + ε0cd(j)j) < Λj(τ
+

c−1
d (j)

) or

(2) γj(θcd(j)j + ε0cd(j)j) = Λj(τ
+

c−1
d (j)

) and γj(θcd(j)j − ε
0
cd(j)j

) > Λj(τ
−
c−1
d (j)

)

for each j ∈ {sd + 1, . . . , sd +`d}. If ε < ε0 then R(Z, ε; τ) has two d-stable candidate equilibrium cells and
one d-unstable candidate equilibrium cell. If ε > ε0 then R(Z, ε; τ) has one d-stable candidate equilibrium
cell when ε− ε0 is sufficiently small. That is, R(Z, ε) has a d-saddle node bifurcation at ε = ε0.

Applying Proposition 3, yields a condition for a d-pitchfork when cd is a positive cycle.
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Theorem 7. Let (Z, ε) ∼W (Z, 0) and τ be a loop characteristic cell with ρτ |sd(τ) = (c1, . . . , cn). Suppose

cd is a positive cycle and the ramp parameter (Z, ε0) satisfies

γj(θcd(j)j − ε
0
cd(j)j

) = Λj(τ
−
cd(j)−1) and γj(θcd(j)j + ε0cd(j)j) = Λj(τ

+
cd(j)−1).

Then for ε < ε0, R(Z, ε; τ) has two d-stable candidate equilibrium cells and one d-unstable candidate
equilibrium cell. If ε > ε0 then R(Z, ε; τ) has one d-stable candidate equilibrium cell. That is, R(Z, ε) has
a d-pitchfork bifurcation at ε = ε0.

To extend Theorem 2, we define the product of the slopes of the ramp functions appearing inRd(Z, ε; τ)
for a given loop characteristic cell τ . Defining ρ = ρτ this product is given by

Md(ε; τ) :=

sd+`d∏
j=sd+1

∂

∂xρ(j)
Rj(x; ε), x ∈ τ.

Theorem 8. Let RN be a regulatory network and consider a parameterization of ramp parameters (Z, ε) by
a parameter s, (Z(s), ε(s)) with ε(s) = 0 and Z(0) ∼W (Z(s), ε(s)). Let τ be a singular loop characteristic
cell and suppose R(Z(s), ε(s)) has a non-degenerate border crossing d-bifurcation at x ∈ N (τ ; ε) when
s = s0.

(1) If xd /∈ ∂τd(ε(s0)) then the bifurcation is persistent and stability does not change.
(2) If xd ∈ ∂τd(ε(s0)) and sgn(cd) = 1, then the bifurcation is a non-smooth saddle node if Md(ε(s0)) >∏sd+`d

j=sd+1 γj and a stability preserving persistent bifurcation if Md(ε(s0)) <
∏sd+`d
j=sd+1 γj.

(3) If xd ∈ ∂τd(ε(s0)), Γ(s0) = I, and sgn(cd) = −1, then the bifurcation is a stability chaning persistent
bifurcation if N > 2 and Md(ε(s0)) > sec(π/`d)

`d and a stability preserving persistent bifurcation if
N ≤ 2 or Md(ε(s0)) < sec(π/`d)

`d.

To see the significance of this theorem, we make a similar observation as the one following Theorem 2.
Theorem 8 implies that if weak equivalence holds, detection of steady state bifurcations in R(Z, ε), requires
tracking the (possibly virtual) equilibrium in each loop characteristic cell τ but not any other equilibria.
If the equilibrium is not virtual, then Md(ε) for each cycle cd in the cycle decomposition of ρτ needs to be
tracked as well to detect smooth bifurcations. Given a ramp parameterization of the form (Z, ε(s)) where
ε(0) = 0 and ε(s) is monotonically increasing function, we can therefore use Theorem 8 to determine the
minimum value of s where the number or stability of R(Z, ε(s)) changes, provided that this change happens
while Z ∼W (Z(s), ε(s)).

6. Preserving Equilibria while Minimizing Slopes

Our goal in this section is to understand what is the minimal slope of ramp functions Rij at which the
collection of equilibria and their stability for the ramp system R(Z, ε) is the same as the collection and
stability of equilibria, both regular and SSPs, of the switching system SWITCH(Z). As observed in Section
5, given a parameterization of ramp parameters (Z, ε(s)) so that ε(0) = 0 and ε(s) monotone increasing,
Theorem 8 can be used to find the value of s which attains the minimal slope of the linear portion of the
ramp functions for this parameterization. In this section we seek to find the minimal slope independent of
any parameterization.

Recall that the slope of the ramp function Rij is denoted by mij(ε). Then we seek to find

m∗ := max
j=1,...,N

mmin(Z, j) where (9)

mmin(Z, j) := min
ε∈E(Z)

max
i∈T(j)

{mij(εij)} (10)

and the set

E(Z) = {ε | Z ∼S (Z, ε)}
is the collection of all ε for which the parameter (Z, ε) is strongly equivalent to Z. By Theorem 1 and
Proposition 1, m∗ is an upper bound on the minimal slope of all ramp functions such that the stability
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of all equilibria are maintained. The value m∗ is this minimal slope unless there is an equilibrium within
a loop characteristic cell τ such that R(Z, ε) decomposes into exclusively negative CFSs and a diagonal
system. Such an equilibrium may be stable for R(Z, ε) and unstable for SWITCH(Z) even when the slopes
of the corresponding ramp functions are larger than m∗. If Γ = I, stability of these equilibria of R(Z, ε) at
m∗ can be determined using Proposition 4.11 of [Duncan et al., 2021]. Note that this optimization problem
assumes that the parameter Z is fixed and seeks to optimize selection of εij .

After we address this problem we assume that the values of Lij , Uij within the parameter Z are fixed,
but we allow the set of threshold values to change. In this situation, the solution of the optimization
problem (9) depends on the collection {θij}; thus m∗ = m∗({θij}). We then discuss minimization of m∗

over all such choices of thresholds.

6.1. Minimizing Slope for Fixed Parameter Z

This subsection solves the problem of computing m∗ when Z = (L,U, θ,Γ) is fixed by providing an explicit
choice of ε which achieves m∗. Our strategy is to divide the optimization problem (9) into two parts. First
we split the set E(Z) into sets of ε that correspond to each variable xj

E(Z) =
N⊕
j=1

Ej(Z)

where

Ej(Z) := {ε ∈ E(Z) | εik = 0 if k 6= j}

is the set of ε ∈ E(Z) such that for a fixed j only the entries εij , i ∈ V , are non-zero. We can think of a
perturbation parameter ε as an N ×N matrix where non-zero elements are in the positions ij when there
is a network edge from node j to node i. Then Ej(Z) contain only those matrices ε where only the jth
column of ε is non-zero.

First, in Proposition 4 for each j we find an εj ∈ Ej(Z) which achieves mmin(Z, j). Then in Theorem
9 we combine the optimal εj to find the minimizer ε.

We further subdivide the problem of finding εj by splitting the set Ej(Z) further and optimizing over
each subset in this decomposition. Recall that ωj is the Λj-evaluation function and Inj is the set of input
combinations for the jth node (Definition 3.7). The ωj depends on the fixed parameter Z.

Definition 6.1.

Given parameter Z, we write the range of the Λj-evaluation function ωj as
ωj(Inj) = {w1, . . . , wn−1} with 0 =: w0 < w1 < . . . < wn−1 < wn :=∞ and define

Wj := ωj(Inj) ∪ {0,∞}. (11)

Let

Bj,p(θ) := {i ∈ T(j) | wp−1 < γjθij ≤ wp}

be the set of indices of target nodes of node j, for which the thresholds θij associated to edges (j, i),
weighted by γj , fall between wp−1 and wp, and

Ej,p(Z) := {ε ∈ Ej(Z) | εij = 0 if i /∈ Bj,p(θ)}

be the set of ε where the only nonzero entries are those that correspond to thresholds indexed by Bj,p(θ).
Then we can decompose Ej(Z) as a sum

Ej(Z) =

n⊕
p=1

Ej,p(Z).

In Lemma 3, we find an optimal choice of εj,p ∈ Ej,p(Z). An optimal choice of εj ∈ Ej(Z) and then

of ε ∈ E(Z) will then follow from this result. The idea of how to choose εj,p is simple but the notation
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is complicated by the generality of the result. The main insight, which we justify in the proof, is that an
optimal εj,p can always be chosen so that the relevant slopes mij are identical. Once we have assumed that
the slopes are equal, the multi-variable optimization problem becomes a single variable problem.

To state the lemma, we define the difference between the values realized by the switching function σij
to be ∆ij := Uij − Lij .

Lemma 3. Let Z be a switching parameter and Bj,p(θ) = {i1, . . . , ik} with θiq−1j < θiqj. Let

D`(Z) :=
γjθi1j − wp−1

γj∆i1j
, Dmid(Z) = min

q>1

θiqj − θiq−1j

∆iq−1j + ∆iqj
, Dr(Z) :=

wp − γjθikj
γj∆ikj

,

and

D(Z) =


min{Dmid(Z), Dr(Z)} p = 1

min{D`(Z), Dmid(Z)} p = n

min{D`(Z), Dmid(Z), Dr(Z)} otherwise

(12)

Let εj,p ∈ Ej,p(Z) be such that its non-zero elements are given by

εj,pij = ∆ijD(Z). (13)

Then

min
ε∈Ej,p(Z)

max
i∈Bj,p(θ)

{mij(εij)}. (14)

is achieved at εj,p.

Proof. To simplify notation let ε = εj,p. By the definition of D(Z) and ε, for all q > 1 the distances
between the consecutive thresholds between wp−1 and wp satisfy

θiqj − εiqj − (θiq−1j + εiq−1j) = θiqj −∆iqjD(Z)− (θiq−1j + ∆iq−1jD(Z))

= θiqj − θiq−1j − (∆iqj + ∆iq−1j)D(Z)

≥ θiqj − θiq−1j − (θiqj − θiq−1j) = 0.

Note that the last line holds with equality when D(Z) = Dmid(Z). Now we compute the distance between
wp−1 and the first threshold in Bj,p(θ), which only makes sense when p 6= 1

γj(θi1j − εi1j)− wp−1 = γj(θi1j −∆i1jD(Z))− wp−1
= γjθi1j − wp−1 − γj∆i1jD(Z)

≥ γjθi1j − wp−1 − (γjθi1j − wp−1) = 0

and the last line holds with equality when D(Z) = D`(Z). Finally, we compute the distance between the
last threshold in Bj,p(θ) and wp which only makes sense when p 6= n.

wp − γj(θikj + εikj) = wp − γjθikj − γj∆ikjD(Z)

≥ wp − γjθikj − (wp − γjθikj) = 0

and the last line holds with equality when D(Z) = Dr(Z). We have shown

wp−1 ≤ γj(θi1j − εi1j), if p 6= 1 and

θiq−1j − εiq−1j ≤ θiqj − εiqj , for all q > 1, and

θikj − εikj ≤ wp, if p 6= n

(15)

and that at least one of the above equations holds with equality. If ε′ij < εij whenever εij 6= 0, then ’≤’ is

replaced with ’<’ in each of the above equations. This implies (Z, ε′) ∼S Z so that ε′ ∈ Ej,p(Z). We can
therefore construct a sequence of ε` such that ε` ∈ Ej,p(Z) for each ` and ε` → ε as ` → ∞ which shows

ε ∈ Ej,p(Z).
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Now we show that (14) is achieved at ε. First, we note that for each i ∈ Bj,p(θ),

mij(εij) =
∆ij

2εij
=

∆ij

2∆ijD(Z)
=

1

2D(Z)

so that at ε, all the slopes are identical. Now suppose (14) is achieved at ε′ ∈ Ej,p(Z). We must have ε′ ≥ ε
as mij is a decreasing function of εij . If (14) is not achieved at ε, then ε′ij > εij for all i ∈ Bj,p(θ) because
all the slopes are identical at ε. But one of the equations in (15) is satisfied with equality by ε. Therefore,
if we replace ε with ε′ in (15), one of the ’≤’ must be replaced with a ’>’. Indeed this is true for all ε′′ with
ε < ε′′ ≤ ε′ so that (Z, ε′′) is not strongly equivalent to Z. This implies there is an open neighborhood of

ε′ which does not intersect Ej,p(Z) and ε′ /∈ Ej,p(Z), a contradiction. �

0 = w0 w1 w2 w3 w4
θ1j θ2j θ3j

θ1j − εj1j θ2j − εj2j θ3j − εj3j θ3j + εj3ja

Fig. 3. Example of εj for a node j with two sources and three targets. Since j has two sources, Λj takes 4 values
and Wj = {0 = w0 < w1 < w2 < w3 < w4 < w5 = ∞}. The vertical lines indicate the values of w0, . . . , w4. We assume

γj = 1 and T(j) = {1, 2, 3} with θ1j < θ2j < θ3j . The sets Bj,1 = ∅, Bj,2 = {1, 2}, Bj,3 = ∅, Bj,4 = {3}, and Bj,5 = ∅ so

that Ej,1 = Ej,3 = Ej,5 = {0}. The filled circles indicate the values of the thresholds. The unfilled circles indicate the values

of θij ± εij for the optimal value of εj = εj,2 + εj,4 that is chosen as in Proposition 4. In particular, εj,2 ∈ Ej,2 is chosen so

that θ1j + εj,21j = θ2j − εj,22j at the unfilled circle labeled a. All remaining entries of εj,2 are zero. The optimal value εj,4 ∈ Ej,4

is achieved when θ3j − εj,43j = w3. All other entries of εj,4 are zero.

See Figure 3 for an example of εj,p for each p and a node j with two sources and three targets. Note
that for distinct choices of p1 and p2, any entry of εj,p1 is zero when the corresponding entry in εj,p2 is
non-zero. To find a value εj which achieves mmin(Z, j), this structure allows us to sum over the values εj,p.
Figure 3 indicates the value of εj as defined in the following proposition.

Proposition 4. Let Z be a regular switching parameter and j ∈ V . Let εj,p ∈ Ej,p(Z) be defined as in

Lemma 3. Then mmin(Z, j) is achieved at εj ∈ Ej(Z) where

εj =

n∑
p=1

εj,p.

Proof. For i0 /∈ Bj,p(θ), maxi∈Bj,p(θ){mij(εij)} is independent of εi0j . Therefore, by Lemma 3, for each p,

min
ε∈Ej,p(Z)

max
i∈Bj,p(θ)

{mij(εij)}

is achieved at εj . So, if ε′ ∈ Ej(Z),

max
i∈Bj,p(θ)

{mij(ε
′
ij)} ≥ max

i∈Bj,p(θ)
{mij(ε

j
ij)}.

Since T(j) =
⋃n
p=1B

j,p(θ) we have

max
i∈T(j)

{mij(ε
′
ij)} ≥ max

i∈T(j)
{mij(ε

j
ij)}.

�

Note that for distinct choices of j1, j2 ∈ V , an entry of εj1 is zero whenever the corresponding entry of
εj2 is non-zero. Therefore to construct a value of ε which achieves m∗, we sum over the εj .
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Theorem 9. Let Z be a regular switching parameter. For each j ∈ V let εj be defined as in Proposition 4.
Then m∗ is achieved at ε ∈ E(Z) defined by

ε =

N∑
j=1

εj .

Proof. For k 6= j, maxi∈T(j){mij(εij)} is independent of εik. Therefore, by Proposition 4, ε attains
mmin(Z, j) for each j ∈ V so that m∗ is achieved at ε. �

6.2. Minimizing Slope for Fixed L, U, and Γ

For each fixed arrangement of thresholds, the previous section constructed a collection ε that minimizes
slopes. Here we further minimize the slopes over all possible arrangements of thresholds θ within the fixed
order given by Z. Specifically, let Z0 = (L,U, θ0,Γ) be a fixed switching parameter and define

Θ′(Z0) = {θ | ((L,U, θ,Γ), 0) ∼S (Z0, 0)} and

Q(Z0) =
{

(θ, ε) | θ ∈ Θ′(Z0), ε ∈ E((L,U, θ,Γ))
}
.

We solve

m∗ := max
j=1,...,N

inf
(θ,ε)∈Q(Z)

max
i∈T(j)

{mij(εij)}. (16)

Typically the infimum is in fact a minimum for at least one node j = 1, . . . , N . In this case we provide
an explicit choice of (θ, ε) ∈ Q(Z) which achieves (16). However, there is a case wherein the infimum is
not achieved for any node. In this case, we provide a sequence (θ`, ε`) so that the value of (16) is 0 in the
limit `→∞.

As in the previous subsection, we divide the problem into parts. Define

Qj(Z0) := {(θ, ε) ∈ Q(Z0) | θik = θ0ik if k 6= j and ε ∈ Ej((L,U, θ,Γ))}.

We solve

inf
(θ,ε)∈Qj(Z0)

max
i∈T(j)

{mij(εij)} (17)

in Propositions 6 and 5. This is done by first partitioning the thresholds according to the set Wj , which
was defined in Definition 6.1.

Define

Qj,p(Z0) := {(θ, ε) ∈ Qj(Z0) | θij = θ0ij if i /∈ Bj,p(θ0) and ε ∈ Ej,p((L,U, θ,Γ))},

where we fix all thresholds outside of the set Bj,p(θ0). Most of the work lies in finding the optimal solution
in the set Qj,p(Z0), which is a joint optimization over thresholds indexed by Bj,p(θ0) and ε ∈ Ej,p(Z0)

inf
(θ,ε)∈Qj,p(Z0)

max
i∈Bj,p(θ)

{mij(εij)} (18)

which we do in Lemmas 4 and 5.
To begin, we fix p < n and describe how to choose the thresholds which lie between wp−1 and wp (i.e.

in the set Bj,p(θ0)) in the following definition. The definition is split based on whether p = 1 or not because
θij − εij < 0 = w0 does not make strong equivalence fail whereas for p > 0 the relation θij − εij < wp
when θij > wp does. The lemma that follows the definition proves that this choice is optimal. The case
that p = n is another edge case which is handled differently from p = 1 and is addressed later.

Definition 6.2. Let θ be a threshold parameter, j ∈ V , and p < n. Let Bj,p(θ) = {i1, . . . , ik} with
θi1j < · · · < θikj .



August 16, 2021 10:27 paper2

20

(1) If p 6= 1 we define

Dj,p =
wp − wp−1

2γj
∑k

`=1 ∆i`j

.

and set the value of the first threshold θi1j so it satisfies

γjθi1j = wp−1 + γj∆i1jD
j,p.

(2) If p = 1 we define

Dj,p =
wp

γj

(
∆i1j + 2

∑k
`=2 ∆i`j

)
and set θi1j = 0.

We say θ maximally separates the interval (wp−1, wp) if θ satisfies (1) or (2) and for q > 1

θiqj = θiq−1j + (∆iq−1j + ∆iqj)D
j,p.

Lemma 4. Let p < n and j ∈ V . Let (θj,p, εj,p) ∈ Qj,p(Z0) such that θj,p maximally separates (wp−1, wp)
and the non-zero entries of εj,p satisfy

εj,pij = ∆ijD
j,p.

Then the optimal solution of the problem (18) is achieved at (θj,p, εj,p).

Proof. To simplify notation, let (θ, ε) = (θj,p, εj,p) and Z = (L,U, θ,Γ). We first consider the case p 6= 1.
Since θ maximally separates (wp−1, wp), we have

γj(θi1j − εi1j) = γjθi1j − γj∆i1jD
j,p

= wp−1 + γj∆i1jD
j,p − γj∆i1jD

j,p = wp−1.

and, for q > 1,

θiqj − εiqj = θiq−1j + (∆iq−1j + ∆iqj)D
j,p − γj∆iqjD

j,p

= θiq−1j + ∆iq−1jD
j,p = θiq−1j + εiq−1j .

It also follows from the inductive definition of maximal separation that

γjθikj = wp−1 + γj∆ikjD
j,p + 2γj

k−1∑
q=1

∆iqjD
j,p

so that

γj(θikj + εikj) = γjθikj + γj∆ikjD
j,p

= wp−1 + γj∆ikj + 2γj

k−1∑
q=1

2∆iqjD
j,p + γj∆ikjD

j,p

= wp−1 + 2γjD
j,p

k∑
q=1

∆iqj

= wp−1 + (wp − wp−1) = wp.

This shows that θ ∈ Θ′(Z0) and ε ∈ Ej,p(Z). Moreover, it shows that Dj,p = D(Z) where D(Z) is defined
as in (12) so that by Lemma 3,

min
ε∈Ej,p(Z)

max
i∈Bj,p(θ)

{mij(εij)}

is achieved at ε.
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We now show that θ is the optimal choice. Let (θ′, ε′) ∈ Qj,p(Z0) with θ′ 6= θ. Let Z ′ = (L,U, θ′,Γ).

We may assume that ε′ ∈ Ej,p(Z ′) is chosen according to Lemma 3. We claim

γjθ
′
ip1j
− wp−1 < γjθip1j − wp−1, or

θ′ipqj − θ
′
ipq−1j

< θipqj − θipq−1j
for some q > 1, or

wp − γjθ′ipkpj
< wp − γjθipkpj .

By a way of contradiction, suppose that this is not the case. Then

γjθ
′
ip1j
− wp−1 ≥ γjθip1j − wp−1, and

θ′ipqj − θ
′
ipq−1j

≥ θipqj − θipq−1j
for all q > 1, and

wp − γjθ′ipkpj
≥ wp − γjθipkpj .

and at least one of the inequalities is strict as θ′ does not maximally separate (wp−1, wp). Summing over
each of the relations above then implies wp −wp−1 > wp −wp−1, which is a contradiction. This proves the
claim.

From the definition of D(Z), the claim implies that D(Z ′) < D(Z) = Dj,p so that ε′ < ε. Therefore

max
i∈Bj,p(θ)

{mij(ε
′)} > max

i∈Bj,p(θ)
{mij(ε)}.

For p = 1, we have to resolve a technical issue because θi1j = 0 implies Z is not regular so that there
are no ε such that (Z, ε) ∼S Z. To resolve this issue, we need to show that (θ, ε) actually belongs to the

set Qj,1(Z0). To do so, we describe a sequence (θ`, ε`) ∈ Qj,1(Z0) which converges to (θ, ε) as `→∞. For
i ∈ Bj(w0, w1; θ) \ {i1} we define θ`ij = θij and let ε`ij < εij with ε`ij → εij . We then define θ`i1j and ε`i1j so

that θ`i1j > 0, θ`i1j → 0, ε`i1j → εi1j , and

0 < θ`i1j + ε`i1j <

{
w1, Bj(w0, w1; θ) = {i1}
θi2j − εi2j , otherwise

for each `. Since θ`ij − ε`ij > θ`i′j + ε`i′j whenever θ0ij > θ0i′j and θ`ij + ε`ij < w1 for each i ∈ Bj(w0, w1; θ
0),

θ` ∈ Θ′(Z0) and ε` ∈ Ej((L,U, θ`,Γ), w0, w1). Therefore, (θ`, ε`) ∈ Qj,1(Z0) so that (θ, ε) ∈ Qj,1(Z0).
The fact that (θ, ε) is an optimal choice when p = 1 follows now from a similar argument as the case

p 6= 1. �

We now address the case that p = n. In this case, the infimum is never achieved because there is no
upper bound on θij . The thresholds can therefore be spaced arbitrarily far apart and the perturbations
εij can be made arbitrarily large so that the slopes mij can be made arbitrarily small. The following
proposition formalizes this observation.

Lemma 5. Let j ∈ V and p = n. Then

inf
(θ,ε)∈Qj,n(Z0)

max
i∈Bj,n(θ0)

{mij(εij)} = 0.

Proof. Let Bj,n(θ0) = {i1, . . . , ik} with θi1j < · · · < θikj . Define a sequence (θ`, ε`) ∈ Qj,n(Z0) so that for
each q ∈ {1, . . . , k},

γjθ
`
iqj = wn−1 + q` and γjε

`
iqj =

`

4
.

Note that γjθ
`
iqj
− γjθ`iq−1j

= ` and γjθ
`
i1j
− wn−1 = ` so that (Z`, 0) ∼S (Z0, 0). We also have

γj(θiqj − εiqj)− γj(θiq−1j + εiq−1j) = γj(θiqj − θiq−1j)− γj(εiqj + εiq−1j)

= `− `
2 = `

2



August 16, 2021 10:27 paper2

22

and

γj(θi1j − εi1j)− wn−1 = `− `
4 = 3`

4 .

Therefore, (Z`, ε`) ∼S (Z0, 0) and (θ`, ε`) ∈ Qj,n(Z0). As ` → ∞, ε`iqj → ∞ so miqj(ε
`
iqj

) → 0 for each q.
�

If all thresholds θ0ij are greater than the largest value of Λj , then all slopes mij can be made arbitrarily
small. Therefore, j does not play a role in the optimization. We state this formally after the following
definition.

Definition 6.3. If θij > wn−1 for all i ∈ T(j), that is, Bj,n(θ) = T(j), then we say j is redundant.
Otherwise, j is irredundant.

Proposition 5. Let j be redundant. Then

inf
(θ,ε)∈Qj,n(Z0)

max
i∈T(j)

{mij(εij)} = 0.

Proof. Bj,n(θ) = T(j) so the result follows from Lemma 5. �

Corollary 6.1. Suppose every node is redundant. Then

max
j=1,...,N

inf
(θ,ε)∈Q(Z0)

max
i∈T(j)

{mij(εij)} = 0.

If j is irredundant, we would still like to make an explicit choice of (θj,n, εj,n) ∈ Qj,n(Z0) so that we
can construct an optimal θj explicitly. The following definition describes such a choice and the proposition
that follows constructs θj from the θj,n.

Definition 6.4. When j is irredundant, we define

Dj,n = min
p<n
{Dj,p}.

Letting Bj,n(θ0) = {i1, . . . , ik} with θ0i1j < · · · < θ0ikj , we define (θj,n, εj,n) ∈ Qj,n(Z0) to be consistent with
Definition 6.2 and Lemma 3. That is,

θj,ni1j = wn−1 + ∆i1jD
j,n

θj,niqj = θj,niq−1j
+ (∆iq−1j + ∆iqj)D

j,n, if q > 1, and

εj,niqj = ∆iqjD
j,n.

Proposition 6. Let j ∈ V be irredundant. Define (θj , εj) ∈ Qj(Z0) by

θjij = θj,pij , i ∈ Bj,p(θ0)

εj =

n∑
p=1

εj,p.

Then (17) is achieved at (θj , εj).

Proof. For i0 /∈ Bj,p(θ0), (18) is independent of θi0j and εi0j . Therefore, by Lemma 4, for all p < n

min
(θ,ε)∈Qj,p(Z0)

max
i∈Bj,p(θ)

{mij(εij)}

is achieved at (θj , εj). From the definition of (θj,n, εj,n),

max
i∈Bj,n(θj,n)

{mij(ε
j,n
ij )} = max

p<n
max

i∈Bj,p(θj)
{mij(ε

j
ij)}.

Since T(j) =
⋃n
p=1B

j,p(θ0), (17) is then achieved at (θj , εj). �
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See Figure 4 for the optimal pair (θj , εj) as defined in Proposition 6 where j is an irredundant node.
Finally, we construct the optimal θ from the θj . First, we need to define θj when j is redundant. As the
slopes mij can be made arbitrarily small, by Proposition 5, we may choose (θj , εj) ∈ Qj(Z0) so that

max
i∈T(j)

{mij(ε
j
ij)} < max{mik(ε

k
ik) | k is irredundant and i ∈ T(k)}.

0 = w0 w1 w2 w3 w4θj1j θj2j θj3j

θj1j − ε
j
1j θj2j − ε

j
2j θj3j − ε

j
3j θj3j + εj3ja

Fig. 4. Optimal pair (θj , εj) for a node j with two sources and three targets. Since j has two sources, Λj takes 4
values and Wj = {0 = w0 < w1 < w2 < w3 < w4 < w5 =∞}. The vertical lines indicate the values of w0, . . . , w4, which are

identical to the values in Figure 3. We assume γj = 1, T(j) = {1, 2, 3} with θ01j < θ02j < θ03j , and ∆1j = ∆2j . The filled circles

indicate the values of the thresholds. The unfilled circles indicate the values of θjij ± ε
j
ij where (θj , εj) ∈ Qj(Z0) is chosen as

in Proposition 6. The pair (θj , εj) is obtained from the optimal pairs (θj,2, εj,2) ∈ Qj,2(Z0) and (θj,4, εj,4) ∈ Qj,4(Z0). The
pair (θj,2, εj,2) is chosen so that the two disjoint open intervals (w1, a) and (a,w2) have equal length, where the endpoints are

related to (θj,2, εj,2) by w1 = θj,21j − ε
j,2
1j , a = θj,21j + εj,21j = θj,22j − ε

j,2
2j , and θj,22j + εj,22j = w2. The pair (θj,4, εj,4) is chosen so

that (w3, w4) = (θj,43j − ε
j,4
3j , θ

j,4
3j + εj,43j ).

Theorem 10. Suppose there is an irredundant node. Define (θ, ε) ∈ Q(Z0) by

θij = θjij and ε =
N∑
j=1

εj .

Then the optimal solution of (16) is achieved at (θ, ε).

Proof. For k 6= j, (17) is independent of θik and εik. Therefore, by Proposition 6, (θ, ε) achieves (17) for

each irredundant j. For j redundant, we have chosen (θj , εj) so that mij(ε
j
ij) is less than the maximum of

the slopes over the irredundant nodes. Therefore, (16) is achieved at (θ, ε). �

We finish by noting that degenerate bifurcations can occur at the optimal (θ, ε) defined in Theorem
10. For example, the pitchfork-like bifurcation described in Proposition 3 occurs at such (θ, ε) whenever
R(Z, ε) is a positive CFS and Z is chosen so that the loop characteristic cell τ is an equilibrium cell. This
was how the pair (θ, ε) used to create Figure 2(d) was chosen.

7. Proof of Theorem 1

To prove Theorem 1, we extend the notion of labeling map and flow direction map, defined in [Duncan et al.,
2021] for switching systems, to ramp systems. For a regular switching parameter Z and loop characteristic
cell τ , the labeling map describes the crossing direction of trajectories across a given neighbor of τ (see
Figure 5). Regular parameters were defined precisely so that these crossing directions are well defined. The
flow direction map then summarizes the labeling map across all neighbors of τ . The extended maps have
an identical role in ramp systems. The main insight is that the perturbed flow direction map defined for
ramp systems agrees with the unperturbed flow direction map when Z and (Z, ε) are strongly equivalent
(Theorem 11). Since Theorem 3.11 of [Duncan et al., 2021] gives a characterization of SWITCH-equilibrium
cells through the flow direction map, this allows us to prove the correspondence between equilibrium cells.

Definition 7.1. Let Z be a switching parameter and Z ∼W (Z, ε).

(1) The labeling map L : LCC×V ×{−,+}×RN×N
+ → {−1, 1} describes the sign of the right hand side of

the ramp system on the cells that are neighbors of τ ∈ LCC in a particular direction. Letting ρ = ρτ ,



August 16, 2021 10:27 paper2

24

we first consider regular directions j /∈ sd(τ). Here we look at the sign of the j-th equation of the ramp
system (4) on the boundary in the j-th direction

L(τ, j, β; ε) :=

{
sgn(−γj(θaτj j + εaτj j) + Λj(τ)), j /∈ sd(τ), β = −
sgn(−γj(θbτj j − εbτj j) + Λj(τ)), j /∈ sd(τ), β = +

For singular direction j ∈ sd(τ), we look at a j-neighbor of τ and ask for the sign of the ρ(j)-th equation
of the ramp system because Λρ(j) is guaranteed to be well defined on a j-neighbor (see Lemma 2):

L(τ, j, β; ε) :=

{
sgn(−γρ(j)(θρ2(j)ρ(j) − βερ2(j)ρ(j)) + Λρ(j)(τ

−
j )), j ∈ sd(τ), β = −

sgn(−γρ(j)(θρ2(j)ρ(j) + βερ2(j)ρ(j)) + Λρ(j)(τ
+
j )), j ∈ sd(τ), β = +.

(2) The flow direction map, Φ(·; ε) : LCC ×RN×N
+ → {−1, 0, 1}N summarizes the degree of agreement in

the labeling map between the neighbors of τ in a given direction. It is defined component-wise by

Φj(τ ; ε) :=


1, L(τ, j,−; ε) = 1 = L(τ, j,+; ε)

−1, L(τ, j,−; ε) = −1 = L(τ, j,+; ε)

0, L(τ, j,−; ε) = −L(τ, j,+; ε).

Theorem 11. Let Z ∼S (Z, ε). Then for each τ ∈ LCC, j ∈ V , and β ∈ {−,+},

L(τ, j, β; 0) = L(τ, j, β; ε).

Consequently, Φ(τ ; ε) = Φ(τ ; 0).

Proof. First suppose j is a regular direction of τ . Let A ∈ Inj be the input combination such that the
Λ-valuation function evaluated at A satisfies ωj(A) = Λj(τ). Strong equivalence implies the following list
of equivalent statements

Lj(A, a
τ
j ,+; ε) = Lj(A, a

τ
j ,+; 0),

sgn(−γj(θaτj j + εaτj j) + Λj(τ) = sgn(−γjθaτj j + Λj(τ)),

L(τ, j,−; ε) = L(τ, j,−; 0).

A similar computation shows L(τ, j,+; ε) = L(τ, j,+; 0).
Now suppose j ∈ sd(τ). Let ρ = ρτ and A ∈ Inρ(j) such that ωρ(j)(A) = Λρ(j)(τ

+
j ). Strong equivalence

implies

Lρ(j)(A, ρ
2(j),+; ε) = Lρ(j)(A, ρ

2(j),+; 0),

sgn(−γρ(j)(θρ2(j)ρ(j) + ερ2(j)ρ(j)) + Λρ(j)(τ
+
j )) = sgn(−γρ(j)θρ2(j)ρ(j) + Λρ(j)(τ

+
j )),

L(τ, j,+; ε) = L(τ, j,+; 0).

A similar computation shows L(τ, j,−; ε) = L(τ, j,−; 0). �

7.1. Technical Lemmas

To prove Theorem 1, we will need some technical lemmas. The following lemma implies statements 3 and
6 of Lemma 1.

Lemma 6. Let (Z, ε) ∼W Z and τ ∈ χ(0). If σij(τ) is well defined, then Rij(xj ; ε) = σij(τ) for all x ∈ τ(ε).
Consequently, if Λi(τ) is well defined then Ri(x, ε) = Λi(τ) for all x ∈ τ(ε).

Proof. Let ρ = ρτ and suppose σij(τ) is well defined. First suppose j ∈ sd(τ) with πj(τ) = {θi0j}. Since
σij(τ) is well defined, i0 6= i. We have πj(τ(ε)) = (θi0j − εi0j , θi0j + εi0j) and weak equivalence implies that
for x ∈ τ(ε), xj < θij − εij if θij < θi0j and xj > θij + εij if θij > θi0j . Therefore Rij(x; ε) = σij(τ).
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θ21

θ12

∞

τ

∞

κ

σ

0
0

θ21 − ε21 θ21 + ε21

θ12 − ε12

θ12 + ε12

∞

∞

τ(ε)

κ(ε)

σ(ε)

(a): χ(0) (b): χ(ε)

Fig. 5. The labeling map L represented as arrows on the cell complex. Cell complexes and the labeling map for
the positive toggle switch network at a parameter Z satisfying L12 < θ21 < U12, L12 < θ21 < U12 and (Z, ε) ∼S Z. We do
not draw the arrows on the boundary of phase space, which point inwards for any choice of parameters. (a): The blue arrow
represents L(κ, 2,+; 0) and L(σ, 2,−; 0) for which 2 is a regular direction. This arrow also represents L(τ, 1,−; 0) for LCC τ
for which 1 ∈ sd(τ). All these values are equal to −1 so the arrow points down. Since the arrows on the outer boundary of the
complex point inwards, Φ2(κ; 0) = 0 and Φ2(σ; 0) = −1. Since the arrow originating from τ+1 points up, and L(τ, 1,−; 0) = −1,
we have Φ1(τ ; 0) = 0. (b): The top blue arrow represents L(σ, 2,−; ε), while the bottom blue arrow represents L(κ, 2,+; ε)
and L(τ, 1,−; ε). These arrows point down by Theorem 11.

If j /∈ sd(τ), then πj(τ) = (θajj + εajj , θbjj − εbjj). Weak equivalence implies that for x ∈ τ(ε),
xj < θij − εij if θij < θajj and xj > θij + εij if θij > θbjj . Therefore Rij(x; ε) = σij(τ).

The function Λi(τ) =
∏∑

σij(τ) is well defined if and only if σij(τ) is well defined for all j ∈ S(i).
Since σij(τ) = Rij(x; ε) for all x ∈ τ(ε), we have Λi(τ) =

∏∑
Rij(x; ε) = Ri(x; ε). �

Next, we provide a relationship between the process of going from a cell τ ∈ χ(0) to the corresponding
cell τ(ε) ∈ χ(ε) and the process of taking a neighbor.

Lemma 7. Let Z ∼W (Z, ε), τ ∈ χ(0) and s ∈ sd(τ). If πs(τ) 6= {θ∞s} then τ(ε)+s is the left s-neighbor
of τ+s (ε). If πs(τ) 6= {θ−∞s} then τ(ε)−s is the right s-neighbor of τ−s (ε). In general, for β ∈ {−,+} and

τ ⊂ RN
+ , τ(ε)βs is an s-neighbor of τβs (ε).

Proof. For i 6= s we have πi(τ
β
s ) = πi(τ) so

πi(τ
β
s (ε)) = πi(τ(ε)) = πi(τ(ε)βs ).

Let ρ = ρτ . Since πs(τs) 6= {θ∞s}, we have

πs(τ
+
s ) = (θρ(s)s, θρ+(s)s)

πs(τ
+
s (ε)) = (θρ(s)s + ερ(s)s, θρ+(s)s − ερ+(s)s)

and

πs(τ(ε)) = (θρ(s)s − ερ(s)s, θρ(s)s + ερ(s)s)

πs(τ(ε)+s ) = {θρ(s)s + ερ(s)s}.

Notice that πs(τ(ε)+s ) is the left end point of πs(τ
+
s (ε)). All other projections agree. Therefore, τ(ε)+s is

the left s-neighbor of τ+s (ε). A similar argument shows that τ(ε)−s is the right s-neighbor of τ−s (ε). �

Finally, we prove that there are no singular R-equilibrium cells if Z and (Z, ε) are strongly equivalent.

Lemma 8. If Z ∼S (Z, ε) and σ ∈ χ(ε) is a singular cell, then σ does not contain an equilibrium of
R(Z, ε).
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Proof. For the sake of contradiction, suppose σ ∈ χ(ε) is a singular cell containing an equilibrium of
R(Z, ε). Let x be that equilibrium. For each singular direction s of σ, we write πs(σ) = {θiss + βsεiss} for
βs ∈ {−1, 1}. For each regular direction r of σ we write

πr(σ) = (θirr − εirr, θirr + εirr) or πr(σ) = (θi1rr + εi1rr, θi2rr − εi2rr).

We define a cell τ ∈ χ(0) by its projections. For each singular direction s of σ, we let θi1ss < θiss < θi2ss be
consecutive thresholds and define

πs(τ) :=

{
(θi1ss, θiss), βs = −1

(θiss, θi2ss), βs = 1

and for each regular direction r we define

πr(τ) :=

{
{θirr}, πr(σ) = (θirr − εirr, θirr + εirr)

(θi1rr, θi2rr), πr(σ) = (θi1rr + εi1rr, θi2rr − εi2rr).

We note that σ ⊂ τ(ε).
If τ is a loop characteristic cell, then for a singular direction s of σ, s is regular direction of τ . Therefore

Λs(τ) is well defined and by Lemma 1 and continuity of R, Rs(x; ε) = Λs(τ). Since x is an equilibrium, we
have −γs(θiss + βsεiss) + Λs(τ) = 0, contradicting that (Z, ε) is regular.

If τ is not a loop characteristic cell, then there is a singular direction j of τ so that j /∈ ρτ (sd(τ)). By
Lemma 1, Λj(τ) = Rj(x; ε). Since x is an equilibrium, −γjxj + Λj(τ) = 0. As xj ∈ (θijj − εijj , θijj + εijj),
we have

−γj(θijj − εijj) + Λj(τ) = 1 and − γj(θijj + εijj) + Λj(τ) = −1.

So, there is an A ∈ Inj so that Lj(A, ij ,−; ε) = 1 and Lj(A, ij ,−; ε) = −1. Strong equivalence implies this
holds for all ε so that −γjθijj + Λj(τ) = 0, contradicting that (Z, ε) is regular. �

7.2. Proof of Theorem 1

Let τ ∈ χ(0) be an equilibrium cell. By Theorem 3.11 of [Duncan et al., 2021], τ is a loop characteristic
cell so that by Lemma 1, Λr(τ) is well defined for each regular direction r and Λρ(s)(τ

±
s ) is well defined for

each singular direction s. Additionally, by Theorem 11, Φ(τ ; ε) = Φ(τ ; 0).
Let r be a regular direction of τ . By Lemma 6 the dynamics of R(Z, ε) satisfy

ẋr = −γrxr + Rr(x; ε) = −γrxr + Λr(τ) (19)

on τ(ε). Φr(τ ; ε) = Φr(τ ; 0) = 0 so πr(τ(ε)) is an invariant set for (19). Since (19) is linear on πr(τ(ε))
there is a unique stable equilibrium in πr(τ(ε)). This shows that if τ is a regular equilibrium cell, τ(ε)
contains a unique stable equilibrium.

Let s ∈ sd(τ) and ρ = ρτ . On τ(ε), Rρ(s)(x; ε) depends only on the value of xs. Since Φρ(s)(τ, ε) = 0,
for each x ∈ τ(ε)

sgn(−γρ(s)(θρ2(s)ρ(s) − ερ2(s)ρ(s))+Rρ(s)(x; ε))

= − sgn(−γρ(s)(θρ2(s)ρ(s) + ερ2(s)ρ(s)) + Rρ(s)(x; ε)).

By the intermediate value theorem and monotonicity of −γρ(s)xρ(s) + Rρ(s)(x; ε) in xρ(s), for every value of
xs there is a unique value of xρ(s), x

∗
ρ(s)(xs), so that

−γρ(s)x∗ρ(s)(xs) + Rρ(s)(x; ε) = 0.

By continuity of Rρ(s), x
∗
ρ(s)(·) can be defined on πs(τ(ε)). Define

g :
∏

s∈sd(τ)

πs(τ)→
∏

s∈sd(τ)

πs(τ), g := (g1, . . . , gN )
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by gs(x) := x∗s(xρ−1(s)). Brouwer’s fixed point theorem implies there is a fixed point of g so that −γρ(s)xρ(s)+
R(x; ε) can be solved simultaneously for each s ∈ sd(τ). This shows existence of an equilibrium of R(Z, ε)
in τ(ε) and proves the backward direction of the Theorem. We now prove the forward direction.

Let σ ∈ χ(ε) be a cell which contains an equilibrium ofR(Z, ε). Lemma 8 implies that σ is a regular cell.
Since there is a bijection between regular cells of the ramp complex χ(ε)(N) and all cells of the switching
complex χ(0), we may write σ = τ(ε) for τ ∈ χ(0).

Suppose τ is not a loop characteristic cell. Then there is an s ∈ sd(τ) so that s /∈ ρ(sd(τ)). By Lemma
1, Λs(τ) = Rs(x; ε) for each x ∈ τ(ε). Since the cell τ(ε) contains an equilibrium, there is an x ∈ τ(ε) so
that

0 = −γsxs + Rs(x; ε) = −γsxs + Λs(τ).

Since s is a singular direction, πs(τ) = {θρ(s)s}. Therefore xs ∈ πs(τ(ε)) = (θρ(s)s − ερ(s)s, θρ(s)s + ερ(s)s)
which implies

sgn(−γs(θρ(s)s − ερ(s)s) + Λs(τ)) = 1

sgn(−γs(θρ(s)s + ερ(s)s) + Λs(τ)) = −1.

Therefore, there is an A ∈ Ins such that

Ls(A, ρ(s),+; ε) = −Ls(A, ρ(s),−; ε).

Strong equivalence implies that for every ε′ ≤ ε and β ∈ {−,+}, Ls(A, ρ(s), β; ε) = Ls(A, ρ(s), β; ε′). This
can only hold if −γsθρ(s)s+Λs(τ) = 0. This contradicts the assumption that Z is a regular parameter. This
contradiction shows that τ must be a loop characteristic cell. By Proposition 11, this implies Φ(τ ; ε) =
Φ(τ ; 0).

Now we will show that Φj(τ ; ε) = 0 for each j. We consider regular and singular directions separately.
Let r be a regular direction of τ . Then for every x ∈ τ(ε), Rr(x; ε) = Λr(τ). Since the cell τ(ε) contains

an equilibrium, there is an x ∈ τ(ε) so that

0 = −γrxr + Rr(x; ε) = −γrxr + Λr(τ).

Since xr ∈ (θarr + εarr, θbrr − εbrr),
sgn(−γr(θarr + εarr) + Λr(τ)) = 1

sgn(−γr(θbrr − εbrr) + Λr(τ)) = −1

or, equivalently, L(τ, r,−; ε) = −L(τ, r,+; ε) so that Φr(τ ; ε) = 0.
Let s be a singular direction of τ . Assume, by a way of contradiction, that Φs(τ ; ε) 6= 0. This means

that either L(τ, s,±; ε) = 1 or L(τ, s,±; ε) = −1. Assume without loss that L(τ, s,±; ε) = 1. Then

sgn(−γρ(s)(θρ2(s)ρ(s) ± ερ2(s)ρ(s)) + Λρ(s)(τ
±
s )) = 1.

By Lemma 1, for every x ∈ τ±s (ε), Rρ(s)(x; ε) = Λρ(s)(τ
±
s ). By Lemma 7, τ(ε)±s ∈ χ(N−1)(ε) is a neighbor

of τ±s (ε). By continuity of R, for every x ∈ τ(ε)±s , Rρ(s)(x; ε) = Λρ(s)(τ
±
s ). Therefore we conclude that for

x ∈ τ(ε)−s or x ∈ τ(ε)+s , we have

sgn(−γρ(s)(θρ2(s)ρ(s) ± ερ2(s)ρ(s)) + Rρ(s)(x; ε)) = 1.

Since Rρ(s) is monotone in xs and depends only on xs on τ(ε), the previous equation holds for all x ∈ τ(ε).
On τ(ε), xρ(s) ∈ (θρ2(s)ρ(s) − ερ2(s)ρ(s), θρ2(s)ρ(s) + ερ2(s)ρ(s)), so for all x ∈ τ(ε)

sgn(−γρ(s)xρ(s) + Rρ(s)(x; ε)) = 1.

But τ(ε) contains an equilibrium so there is an x ∈ τ(ε) so that −γρ(s)xρ(s)+Rρ(s)(x; ε) = 0, a contradiction.
A similar argument shows that the assumption L(τ, s,±; ε) = −1 also leads to a contradiction. Therefore,
Φs(τ ; ε) = 0. We have shown Φj(τ ; 0) = 0 for all singular and all regular directions, and thus for all j. By
Theorem 3.11 of [Duncan et al., 2021], τ is an equilibrium cell which proves the forward direction.

We now show that the equilibrium in τ(ε) is unique. If not, then linearity of (4) on τ(ε) implies that
there is a line segment of equilibria in τ(ε), which extends to the boundary of τ(ε). In particular, there is
a singular cell of the ramp complex containing an equilibrium, contradicting Lemma 8.
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8. Proof of Bifurcation Results for CFS

Here we prove the results stated in Section 4.2. We divide this section into two parts. The first part.
addresses the degenerate bifurcations in positive CFN, and the second part addresses non-degenerate
border crossing bifurcations.

8.1. Proof of Propositions 2 and 3

Before proving the propositions we set aside an argument used in both proofs as a lemma.

Lemma 9. Let RN be a positive CFN and Z be a switching parameter such that the singular loop char-
acteristic cell τ is an equilibrium cell. If Z ∼S (Z, ε) then R(Z, ε) has three equilibrium cells, τ(ε), κL(ε),
κH(ε) where

κL :=
N∏
j=1

(0, θ(j+1)j), and κH :=
N∏
j=1

(θ(j+1)j ,∞).

Moreover, the equilibria in κL and κH are stable and the equilibrium in τ is unstable.

Proof. By Lemma 4.4 of [Duncan et al., 2021], τ , κL, and κH are SWITCH-equilibrium cells. Theorem
1 implies τ(ε), κL(ε), and κH(ε) are R-equilibrium cells and that the equilibria in κL(ε) and κH(ε) are
stable. Proposition 1 implies the equilibrium in τ(ε) is unstable. �

Proof. [Proof of Proposition 2] First suppose ε < ε0. Note that Z ∼S (Z, ε). Then by Lemma 9, R(Z, ε)
has two stable equilibria and one unstable equilibrium.

Now we consider ε > ε0. Assume that (1) holds. The proof for case (2) is similar. Let κH be defined as
in Lemma 9. Choose ε > ε0 so that γjθ(j+1)j + ε(j+1)j < Uj−1 for each j. Then Φj(κ

H ; ε) = 0 for each j so

that κH(ε) is attracting and therefore contains a stable equilibrium. This equilibrium is unique in κH(ε)
since R(x; ε) is constant on κH(ε) by Lemma 1.

Now we show that κH(ε) is the unique equilibrium cell. For the sake of contradiction, suppose there is
an equilibrium x not contained in κH . Then xj ≤ θ(j+1)j + ε(j+1)j for some j. Since xj is an equilibrium,

−γjxj +Rj(j−1)(xj−1; ε) = 0

and xj ≤ γj(θ(j+1)j + ε(j+1)j) < Uj(j−1) implies xj−1 < θj(j−1) + εj(j−1). An induction argument then
implies xj < θ(j+1)j +ε(j+1)j for all j. Since Rj(j−1) ≥ Lj(j−1) for all j and γj(θ(j+1)j−ε(j+1)) < Lj(j−1), we
must have xj > θ(j+1)j− ε(j+1)j for each j. Therefore we must have xj ∈ (θ(j+1)j− ε(j+1)j , θ(j+1)j + ε(j+1)j)
for each j, i.e. x ∈ τ(ε).

We may choose ε > ε0 so that M(ε) >
∏
j γj . To see this, we compute

M(ε0) =
∏
j

U(j+1)j − L(j+1)j

2ε0(j+1)j

=
∏
j

U(j+1)j − γj(θj(j−1) − ε0j(j−1))
2ε0(j+1)j

>
∏
j

γj(θj(j−1) + ε0j(j−1))− γj(θj(j−1) − ε
0
j(j−1))

2ε0(j+1)j

=
∏
j

2γjε
0
j(j−1)

2ε0(j+1)j

=
∏
j

γj .

Since det(J(x, ε)) =
∏
j γj −M(ε) 6= 0, we have x is the unique equilibrium in τ(ε). Therefore x and the

equilibrium in κH are the unique equilibria of R(Z, ε).
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To arrive at a contradiction we will use the Lefschetz-Hopf theorem∑
x∈Fix(G)

i(G, x) = LG,

applied to the map G : RN → RN defined component-wise by

Gj(x) := −γjxj +Rj(j−1)(xj−1; ε).

In the Lefschetz-Hopf formula i(G, x) is the local index of the equilibrium x as a zero of a continuous
function of G, and LG is the Lefschetz number. Since the ramp system R is dissipative, the function G(x)
maps sufficiently large set [−K,K]N to itself. At the same time, the equilibrium xH in κH is locally stable
and thus the index i(xH , G) = LG. Finally, since det(J(x, ε)) 6= 0, the index i(x,G) 6= 0. This leads to a
contradiction with the Lefschetz-Hopf formula. �

Proof. [Proof of Proposition 3] First suppose ε < ε). Note that Z ∼S (Z, ε). By Lemma 9, R(Z, ε) has two
stable equilibria and one unstable equilibrium.

Now we consider ε > ε0. Observe that Uj(j−1)+Lj(j−1) = 2γj(θ(j+1)j) and Uj(j−1)−Lj(j−1) = 2γjε
0
(j+1)j

so that

γjθ(j+1)j =
Uj(j−1) + Lj(j−1)

2
, and γjε

0
(j+1)j = ∆j(j−1)/2

where ∆(j+1)j = Uj(j−1) − Lj(j−1). For any ε > 0, x ∈ τ(ε) we have

−γjxj + Rj(x; ε) = −γjxj +
Uj(j−1) + Lj(j−1)

2
+ sj(j−1)mj(j−1)(xj−1 − θj(j−1))

so that x∗ := (θ21, θ32, . . . , θ1N ) is an equilibrium. To see that the equilibrium is stable for ε > ε0, note
that

m(j+1)j(ε
0
(j+1)j) =

∆(j+1)j

2ε0(ij+1)j

= γj .

Since the slopes are decreasing in ε,

R′(j+1)j(x
∗; ε) = m(j+1)j(ε(j+1)j) < γj .

Therefore the Jacobian evaluated at the equilibrium, J(x∗; ε) is strictly diagonally dominant and all eigen-
values have negative real part.

To see that x∗ is the unique equilibrium, we first note that R(Z, ε) is linear on τ(ε) so that x is unique
in τ(ε). Consider x0 /∈ τ(ε). Then there is an j so that x0j−1 ∈ [0, θj(j−1) − εj(j−1)] ∪ [θj(j−1) + εj(j−1),∞).

By Lemma 1, Rj(x
0; ε) = Lj(j−1) or Uj(j−1). But ε > ε0 implies θ(j+1)j − ε(j+1)j < Lj(j−1) and Uj(j−1) <

θ(j+1)j + ε(j+1)j so that ẋi 6= 0 at x0. Therefore x0 is not an equilibrium. �

8.2. Proof of Theorem 2

Let (Z(s), ε(s)) be a smooth parameterization of ramp parameters. We study what happens when a fixed
point x0 = x0(s) crosses exactly one threshold θ(i+1)i(s)± ε(i+1)i(s) at s = s0. We will apply Theorem 2.7
of [Di Bernardo et al., 2008].

Let µ = s − s0 and for concreteness assume x0N (µ) = θ1N (µ) + ε1N (µ) at µ = 0. Near the border, we
localize the dynamics of R(Z, ε) as

ẋ =

{
F (x, µ), xN ≥ θ1N (µ) + εN1(µ)

G(x, µ), xN < θ1N (µ) + ε1N (µ).
(20)

We are only concerned with when an equilibrium crosses a codimension 1 boundary, so F and G differ in
only one component. Namely,we assume without loss of generality that Fj = Gj for j > 1. At the boundary,
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the ramp function R1 has a corner i.e. a discontinuity in the first derivative. F captures the regime in which
R1 is constant and G the regime in which R1 is linear. Explicitly,

F1(x, µ) = −x1 + σ1N (xN )

G1(x, µ) = −x1 + σ1N (xN ) + s1Nm1N (µ)(xN − (θ1N (µ) + ε1N (µ))).

Note that

G(x, µ)− F (x, µ) = (s1Nm1N (µ))(xN − (θ1N (µ) + ε1N (µ)))e1

where e1 is the unit vector (1, 0, . . . , 0)T . In accordance with the notation of the Theorem 2.7 of [Di Bernardo
et al., 2008], define H(x, µ) = xN − (θ1N (µ) + ε1N (µ)), A = Fx, B = Fµ, C = Hx, D = Hµ, and
E = (G− F )/H all evaluated at (x, µ) = (x0, 0). Notice that A is lower bidiagonal and we can compute

C = eTN , D = θ′1N (0) + ε′1N (0), and E = s1Nm1Ne1.

To apply the theorem, we need the non-degeneracy conditions

det(A) 6= 0, D − CA−1B 6= 0, and 1 + CA−1E 6= 0.

The first condition holds because det(A) = (−1)N . The second condition expresses that the fixed point
meets the boundary with non-zero velocity with respect to µ and holds generically. The last condition can
also be expressed as det(Gx) 6= 0 as the following lemma demonstrates.

Lemma 10.

1 + CA−1E =
det(Gx)

det(A)
.

Proof. We have G = F + EH so that

Gx = Fx + EHx = A+ EC

Define the block matrix

M =

(
A −E
C 1

)
.

Applying Schur’s formula to M (see, for example, Theorem 1.1 of [Zhang, 2006]) yields

det(A+ EC) = det(A) det(1 + CA−1E)

from which the lemma follows. �

Theorem 2.7 of [Di Bernardo et al., 2008] together with Lemma 10 implies that whether the bifurcation
is persistent or a non-smooth saddle depends on the relative sign of det(A) and det(Gx). By Theorem 2.7
of [Di Bernardo et al., 2008] and Lemma 10, the bifurcation is persistent if det(A)/det(Gx) > 0 and a
nonsmooth saddle if det(A)/ det(Gx) < 0.

First suppose x0 ∈ ∂τ(ε(s0)). We have det(A) = (−1)N
∏
γj and

det(Gx) = (−1)N

 N∏
j=1

γj −M(ε(s0)


if RN is a positive CFN or

det(Gx) = (−1)N (1 +M(ε(s0))

if RN is a negative CFN and Γ = I. This shows that if RN is a positive CFN then det(A)/ det(Gx) < 0 if
and only if M(ε(s0)) >

∏
γj . If RN is a negative CFN and Γ = I then Proposition 4.11 of [Duncan et al.,

2021] shows that Gx has an eigenvalue with positive real part if and only if M(ε(s0)) > sec(π/N)N and
N > 2. Now suppose x0 /∈ ∂τ(ε(s0)). Then det(A) = det(Gx) = (−1)N

∏
γj so the bifurcation is persistent.

Furthermore A and Gx both have eigenvalues −γj for each j = 1, . . . , N so the equilibrium is stable on
both sides of the bifurcation.
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9. Discussion

The dynamics for a switching system model of a network are efficiently computable because their structure
allows for a combinatorial (finite) analysis which avoids the need for ODE simulation. The DSGRN software
package is capable of efficiently computing the dynamics for all parameters in moderate size (O(10) nodes
and edges) networks. We therefore ask if there is a broader class of systems for which these computations
can be used to understand their dynamics. Progress was made towards answering this question in [Duncan
et al., 2021], where it was shown that these computations can be leveraged to completely understand the
equilibria and their stability for a class of a smooth sigmoidal systems as long as the sigmoids are sufficiently
steep. In this paper, we study the more restrictive class of ramp systems, whose additional structure allow
us to explicitly quantify the required steepness for the equilibrium cells of switching systems to be in
one-to-one correspondence with equilibria of ramp systems. To do so, we use the theory of bifurcations in
piece-wise smooth systems to characterize the bifurcations that occur as the steepness of the ramp functions
are decreased. This bifurcation analysis shows that the stability predicted by the switching system is also
guaranteed to be maintained when this steepness requirement is met except when negative loops in the
network lead to stabilizing Hopf bifurcations. Finally, we show how to choose a subset of parameters so that
the correspondence between switching system equilibrium cells and ramp system equilibria is maintained
for the shallowest possible ramp functions when the remaining parameters are fixed.

A natural extension of this work involves questions of non-stationary dynamics. The combinatorial
analysis of switching system produces information not only about equilibria, but also about other recurrent
dynamics exhibited by the system. We suspect that the existence of periodic orbits, for example, in steep
sigmoidal and ramp systems can be inferred from switching system dynamics. Previous work [Gedeon
et al., 2017] has shown that there is a close relationship between global switching system dynamics and
global dynamics of sigmoidal systems in two dimensional systems. The work on extending this result to
higher dimension is in progress. In this context, the characterization of steepness of the ramp functions
that preserve global dynamics information from switching system would allow further leveraging of the
efficient switching system computations in investigation of network dynamics.
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