N
EURAMET

e EMPIR

The EMPIR initiative is co-funded by the European Union's Horizon 2020
research and innovation programme and the EMPIR Participating States

17RPTO3 - DIG-AC
A DIGITAL TRACEABILITY CHAIN FOR AC VOLTAGE AND
CURRENT

Deliverable 4
Report on the integrated software for data processing and

uncertainty estimation of dynamic measurements, including
related methods and algorithms

Leader
CMI

Contributors
IPQ, CEM, NPL

Due date
1. 2022

Delivered
31. 5. 2022

This project 17RPT03 DIG-AC has received funding from the EMPIR programme cofinanced
by the Participating States and from the European Union’s Horizon 2020 research and innovation

programme.

Contents

Introductiod

Errors and uncertainties of an quantity estimating algorithn{
D.1 General descriptionl

D.2 Case of areal measurementl
2.3 Pre-calculation of uncertaintie4
0.4 Overall plad

|3 Software for calculation and propagation of uncertainties{
B.1 Q-Wave TOOIbOX . . .« o v oo e e e e e

3.2 TracePQM wattmeteﬂ
3.3 QWTB VArAOl . . « o o o oo e e e e e e e e
|4 QWTBvar interfacd
4.1 Variation of quantities{
4.2 Plotting of resultsi
4.3 Generation of Look Up Tablel
4.4 Interpolating ook Up Tablel
4.5 Input Variablesi
4.6 Output Variablesi
4.7 Structure Varied date{
4.8 Structure Calculation settingd
4.9 User functiod
4.10 Documentation of inner structurel
4.11 Examples of QWTBvar usel
|S Comparison of two algorithmsI
5.1 Algorithms
5.2 Method overview|
5.3 The testing signai
5.4 Comparison results|

5.4.1 Influence of noisel
5.4.2 Influence of signal frequencﬂ
5.4.3 Influence of signal lengtﬂ
5.4.4 Influence of TH]j
|5.5 Comparison Conclusioﬂ

k Example: Uncertainties of SFDRI

6.1 Preparation of waveform generatoﬂ
6.2 Selecting values of quantitiesi
6.3 Calculation of uncertainty propagation through algorithni
6.4 Generation of LUT and adding into the algorithd e

|7 SFDR algorithm validation and uncertainty estimatioﬂ
|7.1 Algorithm error dependence on input quantitied

|7. 1.1 Algorithm error dependence on frequency, spurious component|

|and SFDR Value|
|7.1.2 Algorithm error dependence on noise Value| s

|7.2 Algorithm error and uncertainty dependence on uncertainty in each sam-|

bled Valuel
7.3 Algorithm error for non-coherent sampling
7.4 SFDR conclusiod

|8 INL-DNL algorithm validation and uncertainty estimatiod
8.1 INL-DNL algorithmin QWTB
8.2 Algorithm error and uncertaintﬂ
8.3 Algorithm uncertainty dependence on input quantities{ ..

|8.3.1 Examplesi
|8.4 INL-DNL validation and calculation tipsl

|9 Conclusiod

10 Bibliography
A alg_compare.m
C make_lut.m

b alg_generator.n{

29
30

31
34
36

39
40
41
44
45

47

48

50

51

55

57

61

gen_and_calc.rd

alg_wrapper.nﬂ

F.I TWM-THDWEFEFT - THD from Windowed FFTI
F.1.1 TWM wrapper parameters|
F.1.2 Algorithm description and uncertainty evaluatiod
F.1.3 Validationo
IF.2 TWM-MESF - Multi-Frequency Sine FiII
F.2.1 TWM wrapper parameterd
F.2.2 Algorithm descriptiod
F2.3 Validationo

SFDR_test.nJ

SFDR_repeat_test.nJ

SFDR_unc_test.n"

PosIntHist.nJ

= =1 ™ =

ProcessHistogramTest.n4

65

66
69
69
73
79
82
82
87
93

96

98

100

103

104

Chapter 1

Introduction

This document focuses on the errors and uncertainties of quantity estimation algorithms
and propagation of uncertainties through algorithms. It provides description of basic
problems, shows several examples and discussion on properties of selected algorithms.

Basic theory on uncertainties is described in Guide to the Expression of Uncertainty
in Measurement [|1]]. This approach is called GUF. Due to limitations, other approaches
were studied. A Monte Carlo method (MCM) was summarized in [2], [3]. Methods
presented in this document utilize both approaches.

Chapter [describes errors and uncertainties of any quantity estimation algorithm.
First, general theory is presented, next, application to an actual algorithm is discussed.
Chapter @ discuss existing software QWTB and TWM, and also describes a newly de-
veloped software QWTBvar including its interface, usage and presents two examples.
Chapter [/ presents the results from uncertainty estimation and validation of algorithm
for estimation of Spurious Free Dynamic Range (SFDR). Chapter E presents the results
from uncertainty estimation and validation of algorithm for estimation of Integral and
Differential non-linearity (INL-DNL).

This document fulfills deliverable 4 (Activity 3.4.6) of the EMPIR project 17RPT03
- DIG-AC, A digital traceability chain for ac voltage and current. Chapter @ describes
the newly developed software with its inner structure, presented examples serves as a
handbook of utilisation, and source code is presented in public repository [#4].

Chapter 2

Errors and uncertainties of an quantity
estimating algorithm

2.1 General description

Output quantities O; are related to input quantities /; by a general function:
(O1,...,0,) = f(L1,...,In) . 2.1

An algorithm A estimates output quantities O’ based on the input quantities ;.
(01,...,0) = A(I,...,I,) . (2.2)

Algorithm adds unknown error € 4. The algorithm error is a function of input quantities:

ea=fIy,.... 1) (2.3)

The algorithm error manifests as a bias of the output quantities and the estimated quan-
tities differ from the true value of output quantities:

Ol =0;+ea,. (2.4)

As an example, one can take the Discrete Fourier Transformation (DFT) algorithm
used for estimation of signal amplitude and phase from sampled record. A digitizer
samples an AC waveform and record is obtained. DFT is applied to the signal and
amplitude and phase of the main component is obtained. The input quantities are the
record itself, the quantization properties of the digitizer, measurement coherency, noise,
amplitudes, phases and frequencies of interference signals etc. The output quantities
are the amplitude and phase of the main signal component. In the case of coherent
measurement, record of infinite length and zero quantization error, without noise and
interference, one can obtain true values of output quantities O;. However, for the case

6

of non-coherent measurement, the DFT algorithm will result in O} estimates burdened
by error ¢;.

The description can be extended to a case with uncertainties. Every input quantity
has got an unknown error ¢y, that is represented by uncertainty of the input quantity
u(I;). In calculations, the uncertainty is often represented by a probability distribution
function (PDF) g7, (&;). Uncertainties of output quantities are related to input quantities
and its uncertainties:

(w(O1),...,u(0y)) = f(I1,..., Ln,u(ly),...,u(ly)) . (2.5)

The uncertainty of output quantities calculated by algorithm A is a function of input
quantities, its uncertainties, and algorithm error:

W(O0L), ..., u(OL)) = AL, ..., I, u(L1), ..., u(L)) . (2.6)

Because of the PDFs of input quantities and equation @, the error of the algorithm will
variate according to PDF g.(§).

The error of the algorithm can be obtained exactly only if both input and output
quantities and uncertainties are known. Using A, one can calculate O’ from /; and obtain
e. Another possibility is to know the inverse function f~!. Using the inverse function,
input quantities can be obtained using following equation:

(I1,.... 1) = fHOy,...,0,), 2.7)

and again O/ can be obtained using A and ¢ can be evaluated.
For the case of DFT, a knowledge of both signal and true value of amplitude would
show out the error of the amplitude estimation.

2.2 Case of a real measurement

In the case of a real measurement, neither the true values of all input quantities X; nor
the true values of output quantities Y; are known and the value of the error € cannot be
obtained.

The algorithm error can be estimated for another set of input and output quantities
X;, Y;, that are near to the measured quantities. It is based on the assumption that the
error of the algorithm is changing linearly and only a little with little change of quantities.

Thus, first output quantities Y; are calculated using A and measured values X;. Next,
the values of the Y; are selected to be as near as possible to ;. Using A%, the input
quantities X, are obtained, and using A the error of the algorithm € is calculated. Based
on the assumption one can suppose that:

ERE. (2.8)

3

The method is shown in figure . The case can be more complex due to required
input quantities. It can be required to estimate multiple quantities not required by simple
application of A.

X,— Y/
- AL ¥
A

~ / ~
vi—é

Figure 2.1: Method for estimation of algorithm error. Quantities in blue are obtained by
measurement. Quantities in red are simulated.

In the example presented before, the measured signal and sampling frequency is used
as inputs for DFT algorithm (A). The output quantities are amplitudes and phases of the
signal components. To reconstruct the signal, also level of noise have to be estimated.
These parameters can be used to construct a simulated sampled signal (A™") with known
properties. Algorithm is applied to the simulated signal and output quantities obtained.
The error € is calculated and using the approximation in equation @ is used to obtain
error of the algorithm for real measurement.

2.3 Pre-calculation of uncertainties

The described method can be used to estimate algorithm errors and algorithm uncer-
tainties. The method is time consuming, especially if the Monte Carlo method has to be
used. The issue can be solved by pre-calculating algorithm errors and by propagating
uncertainties for a predefined values of input and output quantities and uncertainties.

For a selected number of points in the phase space of Y, the algorithm’s error uncer-
tainties can be estimated using the method described previously. This leads to a lookup
table Y, — u(Y/). For the case of actual measurement, the uncertainties u(0;) can be
estimated using interpolation of the lookup table. The whole method is represented in
figure @

2.4 Opverall plan

1. Select ranges for all input quantities and its uncertainties.
2. Calculate output quantities using A.

3. Plot output quantities and uncertainties on values of input quantities and uncer-
tainties.

. Find out most influential input quantities and uncertainties.
. Select ranges and spacing of most influential output quantities and uncertainties.

. For all variations of output quantities in selected range, construct input quantities
according to A1,

. Calculate output quantities and uncertainties in the selected range for selected
spacing.

. Make lookup table for fast calculation of uncertainties of output quantities.

Select limits of the
Y, phase space

' Calculate Y; using A
For VY construct X; from X, u(X;)
v

v

Use table interpolation

\ to quickly estimate u(Y))
Build table of relations/

Y; = u(Yy)

For VX; calculate u(Y;)

Figure 2.2: Method for pre-calculation of uncertainties

Chapter 3

Software for calculation and
propagation of uncertainties

3.1 Q-Wave Toolbox

A common situation in the data processing of sampled signal is the estimation of multiple
quantities using the same record. The user is interested in the amplitude and the phase
of the main signal component, in a spectrum and stability of these quantities during
multiple records. For the case of evaluating a properties of a digitizer, spurious free
dynamic ratio (SFDR), total harmonic distortion (THD) and effective number of bits
(ENOB) are important quantities. Algorithms exists for all of these quantities, but it is a
complex task to learn how to use every single algorithm.

Q-Wave toolbox (QWTB) can help with this situation. It is a software toolbox writ-
ten in M-code and is running in Matlab [5] or GNU Octave [§]. It aims for aggregation of
high-quality algorithms required for data processing of sampled measurements. QWTB
consist of data processing algorithms from different sources, unifying application inter-
face and graphical user interface.

The toolbox gives the possibility to use different data processing algorithms with one
set of data and removes the need to reformat data for every particular algorithm. Toolbox
is extensible.

3.2 TracePQM wattmeter

The QWTB was designed to help using general quantity estimating algorithm. However,
it was not tailored for actual metrological measurements. Therefore, during development
of TWM (TracePQM Wattmeter) an extension of the QWTB interface was formulated.

TWDM is a transparent, metrology grade measurement system for traceable measure-
ment of Power and Power Quality (PQ) parameters. It is designed to allow recording

10

of voltage and current waveforms using various digitizers and processing the measured
waveforms using any algorithm.

TWM defined name space for quantities needed for transducers, errors of connecting
transducers to digitizers. During the TracePQM project [[7], new versions of algorithms
were developed capable of using the defined quantities. The core of TWM relies on
QWTB.

3.3 QWTB variator

The estimation of algorithm errors was not solved successfully in QWTB nor in the
TWM extension. Therefore, a Q-Wave toolbox variator QWTBvar was developed. It is
a system that can:

* variate input quantities or its uncertainties,
e calculate errors of output quantities to the nominal values,

* plot dependence of output quantities on the varied input quantities or its uncer-
tainties,

* create lookup table of uncertainties of output quantities,
* interpolate the lookup table for quick estimation of uncertainties.

The application interface is described in chapter E]

11

Chapter 4

QWTByvar interface

QWTBvar is a Matlab [5]/GNU Octave [f] script with following use.

4.1 Variation of quantities

[jobfn] = qwtbvar(algid, datain, datainvar, calcset)

Variates inputs datain according to datainvar and applies them one by one into QWTB
with settings calcset. Returns path to the calculation plan jobfn.

[jobfn] = gwtbvar(jobfn)

Continues interrupted calculation according to calculation plan jobfn.

[H] = qwtbvar(jobfn, varx, vary)
[H, x, y] = qwtbvar(jobfn, varx, vary)

Plots 2D figure vary vs varx with uncertainties for both axes, if available, using results
of calculation described in jobfn.

4.2 Plotting of results

[H] = qwtbvar(jobfn, varx, vary, varz)
[H, x, y, z] = qwtbvar(jobfn, varx, vary, varz)

Plots varz versus varx and vary from results of calculation described in jobfn.

12

[x, y] = qwtbvar(jobfn, varx, vary)
[x, y, z] = qwtbvar(jobfn, varx, vary, varz)

Returns only data, the plot is not generated.

4.3 Generation of Look Up Table

lut = qwtbvar('lut’, jobfn, ax_set_lut, rqset_lut)

Generates Look Up Table (LUT) based on the calculated results in jobfn using settings
of LUT axes ax_set_lut and settings of result quantities rq_lut. The lut is a stan-
dalone structure with all required data.

4.4 Interpolating Look Up Table

unc = qwtbvar('interp’', lutfn, axip);

Interpolates LUT from file 1utfn at a point axip.

4.5 Input variables
* algid —id of the algorithm, as in QWTB.
* datain — input data, the same as described in QWTB.
* datainvar — input data that will be varied, see below.

* calcset — calculation settings, the same as described in QWTB, with additional
structure .var . *, see below.

* jobfn — path and name of a file containing description of the calculation.

* varx,vary,varz—input or output quantities. Strings should contain name of input
or output quantity and optionally the field, e.g.x,y,x.v,y.v,y.u etc.

13

4.6 Output variables

* jobfn — path and name of a file containing description of the calculation
* H - handle to the 2D/3D figure

* x,y, z— vectors of the requested values used for plot.

4.7 Structure Varied data

This structure should contain only quantities (Q) with fields (f) that will be varied. Q.f
in datainvar should have size of one dimension larger than Q.f in datain, and this
dimension in datain must be one.

Examples:

e Scalar:

datain.x.v = 6
datainvar.x.v = [6 7]

Sizes of dimensions of x.v in datain are: [1 1], and in datainvar are [1 2].

¢ Vector:

datain.x.v = [6 6]
datainvar.x.v = [6 6; 7 7]

Sizes of dimensions of x.v in datain are: [1 2], and in datainvar are [2 2].

e Matrix

datain.x.v = [6 6; 6 6]
datainvar.x.v = cat(3, [6 6; 6 6], [7 7; 7 7])

Sizes of dimensions of x.v in datain are: [2 2 1], and in datainvar are [2 2
2]. The following is also valid:

datain.x.v = [6 6; 6 6]
datainvar.x.v = cat(5, [6 6; 6 6], [7 7, 7 7])

Sizesare [2 2 1 1 1]Jand [2 2 1 1 2];

14

4.8 Structure Calculation settings

As described in QWTB, it can contain additional optional fields:

e .var — that is a structure with following optional fields (nominal value):

.dir — (.) directory for variation jobs and results.

.fnprefix —('") filename prefix for variation jobs and results.

.cleanfiles (0) if 1, delete old jobs and results with colliding filenames
during preparation of calculation (but not during continuation)

.smalloutput — (1) large data of quantities in datain and dataout are not
saved. This affects fields . ¢ (correlation matrix) and . r (randomized values).

method — (singlecore) one of: singlecore, multicore, multistaion.

procno — (1)

chunks_per_proc — (1) number of calculation jobs for one process

4.9 User function

Input variable algid does not have to be full QWTB algorithm but can be a user function.
The function must have two inputs: datain and calculation_settings, and three
outputs: dataout, datain and calculation_settings.

Example of user function working with quantity ():

function [dataout, datain, cs| = userfunction(datain, cs)
dataout.x.v = 2.xdatain.x.v;
end

4.10 Documentation of inner structure

The QWTBvar is internally fully documented inside of the script itself. The overview
of the inner structure is shown in figure .

4.11 Examples of QWTBvar use

Chapter [shows how to use the QWTBvar for comparison of two algorithms.
Chapter § shows the use of QWTBvar for variation of input quantities, generation of
LUT and interpolating the output uncertainties.

15

™
qutb

‘ b D

s

.‘
tbvar)

prepare_caleulation_directory ‘cenerate_results._filenames
(qwibvan) (qwibvar)
(qw

A

Figure 4.1: Inner structure of the QW TBvar. The blue ovals represents script files, white
ovals represents sub functions, black arrows represents function calls, red arrow repre-
sents recursions. Blue rectangle encompass sub functions of the QWTBvar script.

16

Chapter 5

Comparison of two algorithms

5.1 Algorithms

Two algorithms have been selected:
e TWM-THDWFFT

* TWM-MFSF

The TWM-THDWFFT algorithm is designed for calculation of the harmonics and THD
of the non-coherently sampled signal. It uses windowed FFT to detect the harmonic
amplitudes, which limits the achievable accuracy of the harmonics detection due to the
window scalloping effect.

TWM-MEFSF is an algorithm for estimating the frequency, amplitude, and phase of
the fundamental and harmonic components in a waveform. Amplitudes and phases of
harmonic components are adjusted to find minimal sum of squared differences between
the sampled signal and the multi-harmonic model.

A detailed description of both algorithms can be found in TWM project documenta-
tion [8] and is copied for reference into this document, Annex and in [F.2.

5.2 Method overview

First a simulated signal is constructed. Next both algorithms are used to calculate THD
value using GUF (GUM uncertainty framework, [[1]]) and Monte Carlo [2] methods. Both
results are plotted into figures.

The framework used to run the simulations is QWTB. Script alg_compare.m is
used to set values and plot figures. For every dependence (e.g. THD on noise or THD
on signal frequency) script calls function qwtbvar that is responsible for variation of
inputs. qwtbvar calls the script thdtest.m that constructs a signal and calls qwtb to
calculate results.

17

alg_compare.m

dependence A

qwtbvar gwtbvar
4)
thdtest.m thdtest.m

|TW""""'F5F ‘TWM—THDWFFT

qwtb qwtb gwtb gwtb

The scripts developed in this project are shown in blue and are listed in annexes @
and

5.3 The testing signal

The following properties of the testing signal were used during comparison. Acquisition
quantities:

* sampling frequency: 50 kHz;

* record length 100kSa.

* resolution of the digitizer: 24 bit;
Signal quantities:

* frequency: 50.01 kHz,

* main signal component amplitude: 1V,

* number of signal components: 5,

* amplitudes of harmonics 2 — 4: 0.01 'V,

* signal components phases: Orad,

e offset: 0V,

* standard deviation of noise: 10 uV,

18

5.4 Comparison results

5.4.1 Influence of noise

Following figures show out the dependence of the THD value on the sigma of the noise
simulated in the signal. The first figure was generated for uncertainties calculated using
GUF, the second figure with uncertainties calculated using MCM.

The value of THD calculated using THDFFT algorithm shows out a small offset,
compared to the results of the MFSF algorithm. The uncertainties are mostly cover-
ing the error of the THD for both methods. However the WFFT algorithm does not
implement MCM uncertainties correctly and only uncertainties calculated by GUF are
relevant.

The uncertainties are affected by the noise and increased linearly with increasing
noise, as can be expected.

gufyoise/qVjob.mat
50 —

—x— wfft

pos

THD (percent to main harm.)

20 ‘ ‘

signal noise sigma

19

guf_noise

mcmpoise/qVjob.mat

THD (percent to main harm.)

signal noise sigma

5.4.2 Influence of signal frequency

Following figure shows out the dependence of THD value on the frequency of the main
signal component with uncertainties calculated using GUF.

The value of THD calculated using THDFFT shows a variation on the signal fre-
quency, that is to be expected due to principles of the implemented Discrete Fourier
Transformation. The MFSF is not affected by signal frequency because of the imple-
mented fitting method.

The uncertainties covers the THD errors for both methods.

20

mcm_noise

gufsigfreq/qVjob.mat

0.0004 —
ft
0.0003 €9
pos
mfsf
- 0.0002
€ eg
£
E 0S
c 0.0001 |-
T
E Y
(X >y BN
]
o
@ -0.0001 |-
=
2
E -0.0002 |-
-0.0003 |-
-0.0004 |
49.4 49.6 49.8 50 50.2 50.4 50.6

signal frequency

5.4.3 Influence of signal length

Following figure shows out the dependence of THD value on the length of the record
component with uncertainties calculated using GUF.

Again the value of THD error is smaller for MFSF method. The uncertainties covers
the THD errors for both methods.

gufsiglen/qVjob.mat

0.0004 —
—— wfft
neg
0.0003 |-
pos
W
£ 0.0002 |- neg [~
2 pos
£
g 0.0001 —
8
b
@ 0 ppEe=x=
&
=
[a]
2 -0.0001
E
-0.0002
-0.0003 ‘ ‘ ‘ ‘ ‘
0 2e+06 4e+06 6e+06 8e+06 1e+07

signal length

21

mcm_noise

mcm_noise

5.4.4 Influence of THD

Following figure shows out the dependence of calculated THD value on the simulated
THD value of the signal with uncertainties calculated using GUF. The errors are very
small for both methods. The most interesting fact is zero or small dependence of MFSF
uncertainty on the THD value.

gufthd/qVjob.mat
0.0003 —

—X— wfft
neg |
0.0002 — pos

0.0001

-0.0001

THD (percent to main harm.)

-0.0002

-0.0003 ‘ ‘ ‘ ‘

signal THD value

5.5 Comparison conclusion

The comparison showed out several things.

1. Both algorithms calculate GUF uncertainties correctly, i.e. the uncertainty is
greater than the error of the algorithm, for at least 95 % of results.

2. The MFSF algorithm errors are much smaller than the WFFT algorithm ones.

3. For several cases the uncertainties of the MFSF algorithm are much smaller than
the uncertainties of the WFFT algorithm.

Results validated the use of both algorithm, as described in item 1. As uncertainties
are greater than the errors originated in the algorithm, the calculation can be considered
as validated.

It seems that performance of MFSF algorithm is greater than WFFT one. However,
the algorithms differ in one important point. The WFFT algorithm only requires a maxi-
mal harmonic to be evaluated. On the contrary, the MFSF algorithm requires the knowl-

22

mcm_noise

edge of all harmonics present in the signal. In the case of incorrect input information the
results will also be incorrect. This feature has yet to be properly evaluated.

23

Chapter 6

Example: Uncertainties of SFDR

The SFDR algorithm use Discrete Fourier Transformation with Blackmann window to
calculate Spurious-Free Dynamic Range. The input to the algorithm is the sampled
waveform and time vector, the output is the SFDR value, commonly expressed as the
ratio of the main signal component to the highest spurious signal component in dBc
units (decibel relative to carrier). The input uncertainties are the uncertainty of particular
samples, and the uncertainty of time samples (or sampling frequency).

Estimation of the uncertainties by the SFDR algorithm takes a lot of time. The pre-
calculation of the uncertainties and storing them into a Look Up Table (LUT) is a way
to greatly speed up the process.

Script make_lut.m (see appendix @) shows an example of the process that is divided
into following steps:

1. Preparation of waveform generator.

2. Selecting values of quantities.

3. Calculation of uncertainty propagation through algorithm.

4. Generation of LUT and adding into the algorithm.

5. Validation.

Uncertainty of SFDR is a value depending on the following quantities:
* N,: number of main signal periods sampled in the record,

* ssr: ratio of sampling to signal frequency,

* A: Amplitude of the main signal,

* jitter: jitter of the samples,

24

* noise: standard deviation of the noise in the signal,
e SEF'DR: actual value of SFDR,
* smr: spurious to main signal frequency multiple.

Therefore the LUT table will be a n-dimensional matrix of results, where every quan-
tity will form one dimension of the matrix.

6.1 Preparation of waveform generator

A script, that can automatically generate a waveform used for calculation of SFDR ha
to be prepared. An example of the script alg_generator.m is in appendix @ Input
quantities to the generator script, apart from quantities already defined as important for
SFDR uncertainty (B), are:

* f: main signal component frequency,
* O: main signal offset,
* ph: main signal phase,
* dc: whole signal direct current level.

The script simply use the quantities, randomize values according to the uncertainties,
and generates a waveform. The uncertainty of time of the samples is based on the jitter.
The voltage uncertainty of the samples is based on the noise present in the signal (i.e.
combined noise of both signal and digitizer).

6.2 Selecting values of quantities
The uncertainties in a LUT table can be defined only for a limited range of quantities.

Values selected using typical measurement data are listed in table .

6.3 Calculation of uncertainty propagation through al-

gorithm
The script make_lut.m (appendix @) is built in the following way. First, calculation
settings are created in variable CS_lut. Nominal values of quantities for the generator

are set in variable DI_gen and varied values in the specified ranges are set in variable
DI_gen_var. Next, the variator is run using the line:

25

Table 6.1: Ranges of quantities used for LUT.

N, 1 100
ssr 20 100
A 0.001 | 1000 \'%
jitter 10713 | 10710 S
noise 107% | 107° \Y%
SFDR 1 le8 | VV!
jobfn = qwtbvar('calc’, 'gen_and_calc’', DIl_gen, DI_gen_var,

CS_lut);

where gen_and_calc is a function that asks QWTB to generate the waveform, and im-
mediately asks QWTB to calculate SFDR (appendix E).

The QWTBVAR will variate DI_gen quantities, generate waveform, calculate SFDR
and store results into files.

6.4 Generation of LUT and adding into the algorithm

The next step is to create a Look Up Table. The LUT will be a matrix with 6 dimensions,
each dimension is one varied quantity, in the range specified before. First, the dimensions
of the LUT has to be more specific. QWTBVAR has to know what to do if the user
asks for a value outside the ranges of the LUT. Either, an error can be generated, or the
output value can be kept at boundary values. In the example, the variable ax_set_1lut
provides detailed specifications of LUT dimensions. E.g. if the user asks for a value with
jitter smaller than the range of calculations, the ax_set_1lut specifies that the resulting
value will be the same as user would ask for the lower limit of the jitter range. Variable
ax_set_lut contains information about all varied values, i.e. all dimensions of the LUT.

Variable rgset_1lut defines the scale for output quantity, that is uncertainty of SFDR.
It is defined as a logarithmic scale, this improves the interpolation.

LUT is generated by the following command:

lut = qwtbvar('lut’', jobfn, ax_set_lut, rgset_lut);

Next, the variable 1lut is saved into a file in the algorithm alg_SFDR directory.

The LUT has to be integrated into the algorithm. The algorithm has to estimate
not only SFDR, but also all the quantities used in the LUT. This is done in the script
alg_wrapper (appendix E). An estimation of the signal and spurious frequency is easy,
it is already an output of the DFT used in the algorithm, thus, quantities V,, ssr, A and

26

SF DR are already estimated. The jitter is defined by the input quantity ¢. The signal and
ADC noise can be also estimated using the DFT by calculating noise floor. By obtaining
all quantities needed for LUT, the output uncertainty of SFDR can be interpolated using
the following command:

unc = qwtbvar('interp ', lutfn, axip);

The variable 1utfn is a path to the file with stored LUT, and the variable axip contains
values of all the quantities that are dimensions of the LUT, i.e. the varied quantities
during calculations for the LUT.

27

Chapter 7

SFDR algorithm validation and
uncertainty estimation

The SFDR algorithm was already presented in chapter E SFDR value is defined by the
expression:

SFDR = 20log(A4/Ao)

where A; is the amplitude of the spurious component and Ay is the amplitude of the
fundamental component of the signal.

An algorithm process validation is described in this chapter to verify and quantify any
systematic error introduced by the SFDR algorithm, its dependence on input quantities
values and the application of the qwtb.m function to estimate the uncertainty of the SFDR
output value as a function of the uncertainty variation of the input quantity introducing
disturbances such as noise.

The validation process is based on the application of the algorithm to a simulated
sampled data generated from a sine wave signal.

The algorithm error is calculated as the difference between the SFDR value calcu-
lated by the algorithm and the theoretical value calculated from the simulated input signal
applied. Error values presented in following sections are in relative units:

(SFDR algorithm output - SFDR calculated value) / SFDR calculated value

The SFDR algorithm was run using the qwtb.m and gqwtbvar.m functions in QWTB
framework.

First, a set of simulations were conducted to observe the dependence of the algorithm
error as a function of input quantities values: frequency of the fundamental component,
frequency of spurious components, spurious amplitude related to amplitude of funda-
mental and random noise in sampled input values.

Then, an amount of uncertainty was added to the sampled values and the effect in
the algorithm output value and the related uncertainty value estimated by the qwtb.m

28

function (using Monte Carlo method) were observed. These results were compared with
the SFDR algorithm error and its standard deviation obtained in previous tests.

Finally, the algorithm was applied to a simulated non-coherently sampled signal, and
its error was calculated as function of the input quantities values.

The simulated signal used has the following parameters values:

 Signal quantities:

main signal component amplitude: 1V,
— amplitude offset: 0V,

— number of signal components: 2 (fundamental and one spurious compo-
nent),

— signal components phases: Orad,
— frequency of fundamental, f, tested: 100 Hz to 1 kHz (steps of 100 Hz),

— spurious component frequencies tested (multiple of fy): 0.5, 1.1, 1.5, 2.5,
3.5and 4.5,

— ratio of the spurious component amplitude related to the amplitude of the
fundamental: —40dB, -80dB, —120dB and —140 dB.

* Acquisition quantities:

— sampling frequency: 10kHz,
— record length: 10kSa,
— ADC bit resolution: 28 bit (input of qwtb.m)

The above sampling frequency value of 10kHz assures that the highest frequency
component tested, corresponding to a spurious component of 4.5 f, and with f, = 1 kHz,
still remains below the Nyquist frequency (5 kHz).

With the value selected for the record length of 10kSa and with the 10 kHz for the
sampling frequency, the minimum number of sampled periods presented in the generated
testing signals is 100 (for the test signal with f, = 100 Hz).

7.1 Algorithm error dependence on input quantities

7.1.1 Algorithm error dependence on frequency, spurious compo-
nent and SFDR value

SFDR algorithm was run (script SFDR_test .m in appendix @) with input sampled data
defined above and for each one of the following signal parameter values combinations:

29

* Frequency values of the fundamental component (fp): 100 to 1000 Hz, with 100 Hz
step,

* Spurious frequency (multiple of f): 0.5, 1.1, 1.5, 2.5, 3.5 and 4.5,
e SFDR (relative to carrier): —40dB, —-80dB, —120dB and —140 dB.

The calculated relative error of the SFDR values obtained by the algorithm was be-
tween 0 and the maximum value found of 6 x 10~ (test signal with f, = 1kHz, f, =
0.5x fy and SFDR = —-140dB). This means that, for a coherently sampled signal and
with the acquisition quantities used (sample frequency, number of samples) and in the
range of input quantities tested, it was possible to confirm that the SFDR algorithm does
not input any relevant systematic error in the calculation of the SFDR value, being this
limited to a maximum relative value of 6 x 107,

7.1.2 Algorithm error dependence on noise value

Random noise was added into the simulated signals of 100 Hz and 1 kHz, with fixed
values of SFDR = -80dB (relative to carrier) and f; = 1.5 - fy. The noise amplitude
values added to each sample value of the test signal were 1 x 10°°V, 1 x 10V and
1 x 107*V.

The algorithm was run 1000 times for each noise value amplitude (script SFDR_repeat_test.m
in appendix H)).

The calculated mean value of the relative SFDR error and its standard deviation,
maximum and minimum values are presented in the following table:

Relative Noise amplitude fo SFDR relative error

Mean value | Standard deviation | Maximum | Minimum
1 x10°° -3 x 1077 2 x 107 7x 10 | =7 x 107
1x107 100Hz | -3 x 10°° 2x 107 6x107% | -6 x107*
1 x107* 2 x 107 2 x 1073 7x1073 [-7x1073
1 x10° -4 x 1077 2 x 107 7 %107 | -6 x 107
1 x 107 1kHz 7 x 107° 2 x 107* 6 x107% | =6 x 107~
1 x107* 4 %1073 2 x 1073 7x 1073 | =6 x 1073

The presence of noise in signal originates the variation of the algorithm output value
with larger scattering than the noise value, as it can be seen by the maximum and mini-
mum values obtained from 1000 runs of the algorithm and from the standard deviation
values which are one order of magnitude greater than the noise value.

The mean values of the SFDR relative error obtained are around 2 orders of magni-
tude lower than the corresponding standard deviation values.

30

The algorithm was also run with a rectangular window instead of the default Black-
man window. The selection of the window was done in the alg_wrapper by changing the
window variable:

datain.window.v = 'rectangular’

The results obtained from the standard deviation are between 21 % and 27 % lower
which confirms that the use of windows in coherent sampling will increase the influence
of noise in the standard deviation of the FFT results [9]. Figure shows results for
1kHz and 1 x 107%V of noise amplitude.

Input signal with noise = 1x10°

£

o

Q' -

~ Window

g ® rectangular
a

o ® bl man

[a) blackmar

[

(7]

0 200 400 600 800 1000 1200

algorithm runs

Figure 7.1: SFDR error of the algorithm output from a simulated signal of 1 kHz, SFDR
—80dB, spurious component at 1.5 - f; and sampled values with 1 x 107 V of random

noise.

7.2 Algorithm error and uncertainty dependence on un-
certainty in each sampled value

For each sampled value of the simulated signal (with SFDR —-80 dB (relative to carrier)
and f, = 1.5 - fo) an uncertainty with values of 1 x 107V, 1 x 10°Vand 1 x 10V
was introduced .

For each one of these uncertainty values, the algorithm was run (script SFDR_unc_test.m
in appendix ﬂ) 3 times and the results obtained are represented in figures [7.2 to

Error bars represent the uncertainty calculated by the QWTB from the SFDR esti-
mation. These uncertainty values are within the same order of magnitude of the standard

31

deviation values obtained in and confirm the correct work of the uncertainty esti-

mation by qwtb.m function.
Furthermore, uncertainty values cover the residual relative error of the SFDR value

estimation.

Sampled values uncertainty = 1x10®

—@—run 1

3

- —@—run 2

run 3

SFDR error / ppm
]
)
|
Y
)
T
4
A

Ny
o
b
f

t

0 200 400 600 800 1000
fo/ Hz

Figure 7.2: SFDR error of the algorithm output from a simulated signal (SFDR -80 dB
and f; = 1.5 - f,) with sampled values relative uncertainty of 1 x 107V as a function
of frequency values from 100 Hz to 1 kHz.

32

250
200
150
100

50

-50
-100
-150
-200
-250

SFDRerror / ppm
(=]

Sampled values uncertainty = 1x10-°

0 p—————0—0 —e—runl

—&—run 2

—®—run 3

200 400 600 800 1000
fo/ Hz

Figure 7.3: SFDR error of the algorithm output from a simulated signal (SFDR -80 dB
and f; = 1.5 - f;) with sampled values relative uncertainty of 1 x 10~V as a function
of frequency values from 100 Hz to 1 kHz.

2500
2000
1500
1000

500

-500
-1000
-1500
-2000
-2500

SFDR error / ppm
o

Samped values uncertainty = 1x10*

MW —e—runl

—@—run 2

—®—run 3

200 400 600 800 1000
fo/ Hz

Figure 7.4: SFDR error of the algorithm output from a simulated signal (SFDR —-80 dB
and f, = 1.5 - fy) with sampled values uncertainty of 1 x 10V as a function of fre-
quency values from 100 Hz to 1 kHz.

33

7.3 Algorithm error for non-coherent sampling

To see the performance of the algorithm with non-coherent sampling, a deviation of
10 uHz/Hz in the fundamental frequency to the simulated test signal was introduced
%ript SFDR_test.m in appendix (). Results obtained are represented in figures to

It was observed that the SFDR relative error depends on the input quantities of the
signal: SFDR, fundamental frequency and non-harmonic component.

For the range of signal quantities tested, without considering the results of the spu-
rious frequency f; = 1.1 - f, the largest error founded was 210 ppm from a signal with
SFDR of —40 dB (relative to carrier) and with a spurious frequency equal to 4.5 multiples
of the fundamental frequency.

For signals with a spurious frequency f; = 1.1 f, and SFDR = -80 dB and SFDR =
—-90 dB, the absolute value of the SFDR error increases exponentially with the decrease
of the fundamental frequency value. For higher values of the fundamental frequency, we
will have a higher number of sampled periods of the signal and this seems to attenuate
this effect observed for low frequencies.

Input signal with SFDR =-40 dBc

250

Spurious freq.
200 (xfo)
E 150 ——05
o
o 11
100
o 15
g 50 25
=
b7 0 \ S S— = s -0 —8—35
-50 —8—45
0 200 400 600 800 1000 1200

fo/ Hz
Figure 7.5: SFDR error of the algorithm output from simulated signal with SFDR —40 dB

and non-coherently sampled values by the introduction of a relative deviation in funda-
mental frequency of 10 uHz/Hz.

34

Input signal with SFDR =-80 dBc

300
Spurious freq

200 of) T
o M _:JEO'S
0 ——o ——————

£

a

- - h ——1,1

— -100

o 15

= -200

£ 300 25

(N1

vl ~A00 +3,5
-500 —8—45

0 200 400 600 800 1000 1200

fo/ Hz

Figure 7.6: SFDR error of the algorithm output from a simulated signal with SFDR
—80 dB and non-coherently sampled values by the introduction of a relative deviation in
fundamental frequency of 10 uHz/Hz.

Input signal with SFDR =-90 dBc

200

0 ————p—t————0—0—14 Spurious freq.
N (xfo)
. -200 o5
& -400
= ——1.1
T -600
o 15
S -800
5 -1000 22
S 1200 —8—35
-1400 —8—A45
0 200 400 600 800 1000 1200
fo/ Hz

Figure 7.7: SFDR error of the algorithm output from a simulated signal with SFDR
—90 dB dBc and non-coherently sampled values by the introduction of a relative devia-
tion in fundamental frequency of 10 uHz/Hz.

A Blackman-Harris window with stronger leakage reduction than Blackman window
[E] was experimented for signals with f; = 1.1- fo. The results are presented in figures

35

and @ The results show that for low frequencies the algorithm error is strongly re-
duced. For higher frequencies (>500 Hz), the absolute error increases slightly.

Input signal: SFDR = -80 dBg, f, = 1.1f,

100
£ -100
a

Window

= -200
o Blackman
é -300 —@— Blackman-Harris
a
(N
< -400

-500

0 200 400 600 800 1000 1200

fo/ Hz

Figure 7.8: SFDR error of the algorithm output using different window from a non-
coherently sampled signal of SFDR -80dB and f; = 1.1 - fj.

Some tests were also done for SFDR values of —100dB and —120 dB. For SFDR =
—100dB and for frequencies above 300 Hz, the algorithm relative error values are in the
interval from -1 % to -9 % . For SFDR -120dB and for the entire range of frequency
tested (100 Hz to 1 kHz) the algorithm relative errors obtained are in the interval from
-7 % to -24 % . In both cases, these errors show dependence only on the value of the
signal frequency and are independent of the tested non-harmonic component.

7.4 SFDR conclusion

The SFDR algorithm presents a residual systematic error (the maximum relative error
found was 6 x 10~) for a coherent sampling of sine wave signal in the frequency range
tested (100 Hz to 1kHz), with non-harmonic components from 0.5 to 4.5 of the main
frequency and to SFDR values from —40 to 140 dB.

The algorithm output shows dependence on the random noise value present in the
sampled signal:

» with standard deviation values within one order of magnitude greater than the
random noise.

» with the standard deviation of the result covered by two orders of magnitude the
relative error of the SFDR estimation.

36

Input signal: SFDR = -S0 dBc, f, = 1.1f,

200
0 ./.——o——o——O—O o o— .
-200
E
oy -400
™ -600 Window
2 Blackman
5 -800
g -1000 —@—Blackman-Harris
('
I -1200
-1400
0 200 400 600 800 1000 1200

fo/ Hz

Figure 7.9: SFDR error of the algorithm output using different window from the non-
coherently sampled signal of SFDR -90dB and f; = 1.1 - fj.

The uncertainty added to each sampled value is processed by the qwtb.m function and
generates an uncertainty estimation which is in agreement with the observed algorithm
dependence on random noise.

The application of SFDR algorithm to non-coherently sampled signal generate re-
sults with significant systematic error which depends on the signal parameter values:
frequency, non-harmonic component present and SFDR value. Error values can reach
hundreds of ppm, for non-harmonic component equal or greater than 0.5 times the fun-
damental frequency and can reach up to 0.12 % as was observed in the worst case, for a
signal with a non-harmonic component, f;, close to the fundamental, fy: f; = 1.1 - f;.
The type of window used has a strong influence on the error obtained and can be effective
to reduce significantly the algorithm error. For signals with SFDR values equal or below
—100dB, the algorithm is not working properly, generating output errors with values too
high to be considered acceptable, reaching the relative value of -24%.

37

Chapter 8

INL-DNL algorithm validation and
uncertainty estimation

Integral non-linearity (INL) and differential non-linearity (DNL) are used to measure the
performance of analog-to-digital (ADC) converters. These measurement are performed
after offset and gain errors have been compensated.

INL represents the deviation between the ideal input threshold value and the mea-
sured threshold level of a certain output code. The ideal transfer function of ADC is a
straight line. The INL measurement depends on what line is chosen as ideal. One option
is the line connecting the smallest and largest measured input/output value. A very good
representation of INL using this option is shown in Figure . An alternative is to use
a best fit line. This is the option chosen in QWTB algorithms. While the INL can be
measured for every possible input/output code, often only the maximal error is provided
when reporting the INL of a converter.

DNL is defined as the difference between an actual step width and the ideal value of
one Least Significant Bit (LSB) as it is shown in Figure 8.2. The accuracy of a DAC is
mainly determined by this specification. Ideally, any two adjacent digital codes corre-
spond to output analog voltages that are exactly one LSB apart. Differential non-linearity
may be expressed in fractional bits or as a percentage of full scale. A differential non-
linearity greater than 1 LSB may lead to a non-monotonic transfer function in a DAC. It
is also known as a missing code.

Figure @ shows an example generated by QWTB code for a hypothetical 3 bits ADC
converter, where transition 2 has been moved one LSB to the left, and transition 6 has
been moved one LSB to the right. Note that INL and DNL values are going to be close
to 1 (but not 1), since QWTB uses best fit line.

38

E‘Lgr:sal output

2
&
La
™

4 Pt =

ETe = .-

2 P

| o Analog input
T Vi

Viunn Vimax
3 - 3 - > - - 2 - - :
INL, INL, INL. INL, INL. ,

Figure 8.1: INL is represented at the bottom of the graph: the difference between mid
points of the ideal transfer function (in green) and mid points of the actual transfer func-
tion (in red). Credit [|10].

8.1 INL-DNL algorithm in QWTB

QWTB algorithm uses the sine-wave histogram method to located code transitions and
then calculate INL and DNL values.

The first step is to input a sinewave with an overdrive, to ensure all codes are covered.
ADC transform this signal to discrete values (Figure @ left). The number of samples
in each code are counted and a histogram is built (Figure @)right). First and last bins
of the histogram are discarded, and the other bins are compared to the ideal case. INL
and DNL values are calculated from the histogram.

As only a finite number of records is possible, the histogram shape is always different
to ideal histogram shape, even if there is no INL and DNL error. Therefore, the algorithm
has an inherent error when INL and DNL are calculated.

As DNL is calculated from INL, in this study just INL has been researched.

The way to proceed was to input a known solution and compare the differences be-
tween algorithm solution and input solution when some variables are changed.

39

111 111
= 110 = 110
& 101 & 101
v 100 v 100
= 011 = 011
goo10| £ 010
S 001 | F © 001
000 000
‘vlo hi \flo hi
Input Voltage [nput Voltage
A. Linear B. Non-Linear

Figure 8.2: Linear response (left) and non linear response (right) where the DNL is
calculated as the difference between the ideal code width and the actual code with (rep-
resented by the arrows). Credit [[11]

8.2 Algorithm error and uncertainty

The first objective would be to calculate the algorithm error in order to correct it. How-
ever, this aim is only possible when influence variables have very little uncertainty (or
extremely small, for example, for ADCs with more than 14 bits). This happens especially
if there is noise, but it is also true for overdrive (see @ for definitions). If this is the
assumption, a case-by-case basis would be the right approach since errors are quantized,
and they cannot be fitted to a smooth curve. This is similar, somehow, to quantization
noise.

If uncertainty of input variables gets higher, INL uncertainty prevails over INL al-
gorithm error, and a one size fits all solution can be provided.

In this way and regarding the aim of quick estimation of the uncertainty, the problem
is reduced to two cases:

1. Input noise is small: algorithm errors are quantized, and just a maximum uncer-
tainty can be provided since the mean of the error is not zero and varies abruptly

2. Input noise is big: uncertainty prevails over algorithm error and an uncertainty
can be provided since the mean of the error is zero. To simplify the problem this
uncertainty will be a maximum which is very close to the true uncertainty reached
for most of the codes

40

Examplc? 3 bits: o INL=~[01000-10]

11 “j:,—' DNL=~[1-100-11]
T[2%-1) !

100 |

DNL (k)

000 ¢ =1
fe FSR— > INPUT

Figure 8.3: 3 bits INL and DNL example where transitions 2 has been moved one LSB
to the left, and transition 6 has been moved one LSB to the right. INL and DNL values
different from O are going to be close to 1 LSB (but not 1) since QWTB algorithm uses
best fit line.

8.3 Algorithm uncertainty dependence on input quanti-
ties
Five variables that influences the error committed by the algorithm have been identified:

¢ N: Number of bits of the ADC resolution.

fs/ fi: Ratio between sampling frequency f; and input signal frequency f;. It is
equivalent to n/m (ratio between number of samples and number of cycles of the
record).

* m: Number of cycles (cycles must be an integer number).

* O,: Overdrive. Difference between input signal amplitude and ADC semi range
when input signal is centred in the range. It can be calculated as

Oy =A— R, (8.1
where A is the amplitude of the input signal and R is the range.
e INL: INL value. The own value of the INL could influence the algorithm error

* ¢: white noise of the input signal, as a percentage of the ADC input range

41

25

Codes generated by ADC

3500
20 P
—— Original waveform scaled to match codes

3000
{ \ 2500 [
| \ J
J
| 2000
\ f

1 | 1500
1 | \

Codes/Voltage (scaled)

Figure 8.4: Sine-wave histogram method. The first step is to input a sine-wave saturated
signal to the ADC. Then the number of samples in each code is counted and represented

in an histrogram. Extreme bins are removed and histogram is compared to ideal case to
estimate INL and DNL values for all the codes.

It is clear that the number of bits is a fixed value. Also, the number of samples is
considered as a fixed value with no uncertainty. Experimentally it has been proven that
the influence of the overdrive is small if this is known with enough accuracy, and that
the value of the INL is not important for the calculation of the maximum uncertainty.
Therefore, just the noise (uncertainty of the input signal) will be considered as the only
uncertainty source in this study.

The QWTByvar function has not been directly used in the INL uncertainty estimation
since just the variables number of bits and codes (from ADC) are the inputs of the al-
gorithm. Note that codes have implicitly included the overdrive and number of samples.
The validation of the algorithm and the uncertainty estimation have required the variation
of other variables (singled and combined), as the INL and the noise of the input signal.
The simplifications and conclusions from previous paragraphs were only possible with
a thorough study of these variables.

The following variable ranges have been considered during calculations. It is be-

lieved that results can be extrapolated to wider ranges, although some systematic errors
appear when Noise>1% and/or when overdrive is close to 0.

* N: 8 to 24 bits,

* m: 1to 200 cycles,

o f/fi: 5x 10*t05 x 107,
* O,: R/10to R/2,

42

e INL: -1to 1,
* 0: 0to 1% of the ADC input range.

As an example, Figure 8.5 shows the calculated uncertainty for a 10 bits ADC, for differ-
ent noises and f;/ f; for one cycle (m = 1), and a fixed overdrive of 1 V (R = 4 V). The
two cases explained in section are identified. Although this is a particular instance, it
is demonstrated experimentally that applies to all the variables considered in this study.

o . fs/fi=50 000
Zone 1 o fs/fi=500 000
o + fs/fi=5 000 000

o
k-
~
= Py

0.001

Zone 2
0.0001
0.000001 0.00001 0.0001 0.001 0.01 0.1 1

Noise/% of the ADC range

Figure 8.5: Uncertainty (y axis) vs. noise (X axis, as percentage of the range) for different
sampling frequency and input signal frequency ratios. Points indicate calculated values,
and lines fitted values. Two zones are identified depending on noise.

In Figure @, points represent calculated values and lines represent the fitting of these
points. For both zones, INL uncertainty fits quite well into the following equation::

_ o |9 N
u(INL)=C mf. (2 1) (8.2)
Where in zone 1:
B B @ﬁ 1.155
C=C= - T, <1.162 + —R/Z OV) (8.3)

And in zone 2:

20,
C =Cy=0.1131 + 0.0822 7 (8.4)

Note that C is just a constant with an overdrive correction. Note also that in zone 1
uncertainty is independent of noise and that it can be written also as a constant with an
overdrive correction too.

With equations @ and @ the uncertainty of zone 2 can be calculated with high
accuracy. Although they provide the maximum uncertainty in this zone it fits very well
to the uncertainty of most of the codes.

For zone 1, equations 8.2 and @, provides an upper limit of the uncertainty since it
is impossible to provide a general case. This upper limit is currently very conservative,
especially close to the boundaries of the two zones when m is high, but with some extra
work could be improved to reflect uncertainty bounds in a better way.

The limit between zone 1 and 2 (noise) can be calculated approximately making
equal C) = C, form = 1.

8.3.1 Examples

Some examples are provided to show the usefulness of the formula provided and its
accuracy. In this examples the expanded uncertainty (k = 2 fora 95 % of coverage factor)
is calculated by the formula and by MCM simulations and then compared graphically.
Table 1 shows the calculation parameters of the examples.

Table 8.1: Parameters used in the examples.

| Bits | Noise Freq. ratio | Cycles | Range | Overd. | Amp. | Zone
N |o Is/fi m Oy A

1] 12 | 0.25 %=10mV 50 000 8 4V 1V 3V 2

21 12 | 0.025 %=1 mV 50 000 8 4V IRY% 3V 2

31 12 | 0.0025 %=100 uV 50 000 8 4V 1V 3V 1

41 12 | 0.00025 %=10uV 50 000 8 4V 1V 3V 1

51 12 | 0%=0puV 50 000 8 4V IRY% 3V 1

In zone 2, Figure @ shows that the uncertainty calculated by and @, matchs
very well to uncertainty calculated by simulations. Central areas present slightly lower
uncertainty and points at the end present decreasing uncertainty with O uncertainty in
the ends (fixed points). For these areas the formula does not represent the uncertainty
so well but globally the performance is excellent. Note that since the number of MCM
simulations is just 1000, some noise appear for zone 2 examples. Also, constant C; was

44

calculated for 1000 simulations so it covers well the noise in the figures but it can be
refined.

0.25% Noise, 12 bits 0.025% Noise, 12 bits
1 - Iﬁ 0.4 T T T T
0.5 0.2} - '
m Of m
3 : 2 0
2051 -
Ww 02r .
1 1
0.4 : . - :

1.5 : - - ‘
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

code code

Figure 8.6: Uncertainty bounds calculated by the formula (black lines) and uncertainty
bounds calculated by MCM method (blue dots) for the zone 2. Noise appeared due to
limited number of MCM trials.

In zone 1 the variability represented is not a noise but the algorithm error that is
quantized (patterns appear) (Figure @). In this way, in the case where the noise is 0%,
the graph just show the algorithm error with zero uncertainty. The uncertainty provided
by8.2 and 8.3 keeps error plus uncertainty values within uncertainty bounds, since pro-
viding individual corrections is not possible. Thus, systematic effects are not corrected
but substituted by an uncertainty [12] Uncertainty bounds are here quite conservative
and further work is necessary to reduce them. Nevertheless, a maximum uncertainty
bound, which works for all cases, is provided in a simple way showing the potential of
the formula.

8.4 INL-DNL validation and calculation tips

The QWTB INL-DNL has been used extensively for different cases and parameters dur-
ing this study and its output has been compared to an independant ideal output. The
results has been always satisfactory so the algorithm is considered as validated.

In this study some tips were found and are included here:

* Since an integer number of cycles is necessary for the study, it is better to start the
first point when the ADC is out of range (maximum or minimum amplitude).

* The minimum necessary overdrive is equal to the amplitude of input noise.

45

0.0025% Noise, 12 bits 0.00025% Noise, 12 bits 0% Noise, 12 bits
0.4 0.4 0.4

0.3

0.2
0.1
0

el
0.1 m_

-0.2

U/LSB
U/LSB
U/LSB

-0.3

0.4 0.4 0.4
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

code code code

Figure 8.7: Uncertainty bounds calculated by the formula (black lines) and uncertainty
bounds calculated by MCM method (blue dots) for the zone 1. Apparent noise is the
algorithm error since it is quantized.

* The best way to take more samples from ADC is to input a sine wave with lower
frequency, instead of increase the sampling rate.
* The number of cycles must be an integer.

» Offset and gain errors must be compensated beforehand.

On the other hand, since multiple MCM simulations with different variables has been
performed in this study, calculation time has been a key parameter. At the beginning,
the QWTB INL-DNL algorithm was optimized, and calculation time was remarkably
reduced in a 90 %. Modified code has been included in Appendices [| and @

46

Chapter 9

Conclusion

The document described a general theory on errors and uncertainties of algorithms and
method on estimating the errors. A new software QWTBvar is presented. This Docu-
ment contains both the documentation to the software and example of its use. Up to it,
validation of algorithms for estimation of THD, SFDR and INL-DNL have been pro-
vided. A method to speed up uncertainty estimation for SFDR algorithm have been
shown. For INL-DNL, the uncertainty estimation was based on the analytical solution.

47

Chapter 10

Bibliography

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

JCGM, Evaluation of Measurement Data - Guide to the Expression of Uncertainty
in Measurement. Bureau International des Poids et Measures, 1995, 1sBN: 92-67-
10188-9. [Online]. Available: https://www.bipm.org/en/publications/
guides/.

——, Evaluation of Measurement Data - Supplement 1 to the “Guide to the Ex-
pression of Uncertainty in Measurement” - Propagation of Distributions Using a
Monte Carlo Method. Bureau International des Poids et Measures, 2008. [Online].
Available: https://www.bipm.org/en/publications/guides/.

——, Evaluation of Measurement Data — Supplement 2 to the “Guide to the Ex-
pression of Uncertainty in Measurement” — Extension to Any Number of Output
Quantities. Bureau International des Poids et Measures, 2011, 80 pp. [Online].
Available: https://www.bipm.org/en/publications/guides/.

M. Sira, QWTB - Software Toolbox for Sampling Measurements, Czech Metrology
Insitute, 2017. [Online]. Available: https://qwtb.github.io/qutb/ (visited
on 05/24/2019).

Matlab, 2012. [Online]. Available: http://www.mathworks. com.

GNU Octave, 2012. [Online]. Available: https://www. gnu. org/software/
octave/.

TracePQM consortium. (2019), [Online]. Available: http://tracepgm. cmi .
Cz.

S. Maslan, “Report A2.4.4: TWM algorithms description,” Czech Metrology In-
stitute, A2.4.4, p. 38. [Online]. Available: https://github.com/smaslan/
TWM/blob/master/doc/A2447%20A1lgorithms?20description . pdf (visited
on 05/24/2019).

R. Lapuh, Sampling with 3458A. Left Right d.o.o., Sep. 2018, 1sBN: 978-961-
94476-0-4.

48

https://www.bipm.org/en/publications/guides/
https://www.bipm.org/en/publications/guides/
https://www.bipm.org/en/publications/guides/
https://www.bipm.org/en/publications/guides/
https://qwtb.github.io/qwtb/
http://www.mathworks.com
https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
http://tracepqm.cmi.cz
http://tracepqm.cmi.cz
https://github.com/smaslan/TWM/blob/master/doc/A244%20Algorithms%20description.pdf
https://github.com/smaslan/TWM/blob/master/doc/A244%20Algorithms%20description.pdf

[10] Fvultier. (2018), [Online]. Available: https://commons . wikimedia.org/w/
index.php?curid=74754102.

[11] Egmason. (2012), [Online]. Available: https://commons.wikimedia.org/w/
index.php?curid=18321482.

[12] K. Klauenberg, G. Wiibbeler, and C. Elster, “About not correcting for systematic
effects,” Measurement Science Review, vol. 19, no. 5, pp. 204-208, 2019.

[13] S. Maslan, Activity A2.3.2 - Algorithms Exchange Format. [Online]. Available:
https://github.com/smaslan/TWM/tree/master/doc/A232%20Algorithmy
20Exchange’,20Format . docx.

[14] S.Maslai and M. Sira, “Automated non-coherent sampling thd meter with spec-
trum analyser,” in Proceedings CPEM, 2014.

[15] M. Siraand S. Maslafi, “Uncertainty analysis of non-coherent sampling phase me-
ter with four parameter sine wave fitting by means of monte carlo,” in 29th Con-
ference on Precision Electromagnetic Measurements (CPEM 2014), Aug. 2014,
pp- 334-335. po1: 10.1109/CPEM. 2014 .6898395.

[16] R.Lapuh, “Estimating the fundamental component of harmonically distorted sig-
nals from noncoherently sampled data,” IEEE Transactions on Instrumentation
and Measurement, vol. 64, no. 6, pp. 1419-1424, Jun. 2015, 1ssn: 0018-9456.
por: 10.1109/TIM.2015.2401211,.

[17] G. Heinzel, A. Riddiger, and R. Schilling, “Spectrum and spectral density esti-
mation by the discrete fourier transform (dft), including a comprehensive list of
window functions and some new flat-top windows,” Max-Planck-Institut fiir Grav-
itationsphysik (Albert-Einstein-Institut) Teilinstitut Hannover, Tech. Rep., Feb.
2005. [Online]. Available: http://holometer.fnal.gov/GH_FFT.pdf.

[18] M. Valtr. (2014). “CMI HPC System Online,” [Online]. Available: http%5C%3A%
5C%2F %5C%2Fprutok . cmi . cz%5C%2Fsc?,5C%2Fdoku . php?%5C%3Fid%5CY%
3Dsystem’5C&edit-text= (visited on 08/20/2018).

[19] J. Schoukens, R. Pintelon, and G. Vandersteen, “A sinewave fitting procedure for
characterizing data acquisition channels in the presence of time base distortion
and time jitter,” IEEE Transactions on Instrumentation and Measurement, vol. 46,
no. 4, pp. 1005-1010, Aug. 1997, 1ssn: 0018-9456. por: 10.1109/19.650817.

[20] R. Pintelon and J. Schoukens, “An improved sine-wave fitting procedure for char-
acterizing data acquisition channels,” IEEE Transactions on Instrumentation and
Measurement, vol. 45, no. 2, pp. 588-593, Apr. 1996, 1ssn: 0018-9456. por: 10.
1109/19.492793.

49

https://commons.wikimedia.org/w/index.php?curid=74754102
https://commons.wikimedia.org/w/index.php?curid=74754102
https://commons.wikimedia.org/w/index.php?curid=18321482
https://commons.wikimedia.org/w/index.php?curid=18321482
https://github.com/smaslan/TWM/tree/master/doc/A232%20Algorithm%20Exchange%20Format.docx
https://github.com/smaslan/TWM/tree/master/doc/A232%20Algorithm%20Exchange%20Format.docx
https://doi.org/10.1109/CPEM.2014.6898395
https://doi.org/10.1109/TIM.2015.2401211
http://holometer.fnal.gov/GH_FFT.pdf
http%5C%3A%5C%2F%5C%2Fprutok.cmi.cz%5C%2Fsc%5C%2Fdoku.php%5C%3Fid%5C%3Dsystem%5C&edit-text=
http%5C%3A%5C%2F%5C%2Fprutok.cmi.cz%5C%2Fsc%5C%2Fdoku.php%5C%3Fid%5C%3Dsystem%5C&edit-text=
http%5C%3A%5C%2F%5C%2Fprutok.cmi.cz%5C%2Fsc%5C%2Fdoku.php%5C%3Fid%5C%3Dsystem%5C&edit-text=
https://doi.org/10.1109/19.650817
https://doi.org/10.1109/19.492793
https://doi.org/10.1109/19.492793

Appendices

50

Appendix A

alg_compare.m

% the FFT and MHSF algorithms will be tested for the quality of
THD

% estimate for a selected signals and estimated uncertainties

function alg_compare()
%8/80/5/8/5/8/5/%6 CALCULATION SETTINGS %885/ 85/ 85k Yo<<<1
dev = 0; % if developement on simple computer, set to zero
for final results
% path to the qwtb:
addpath('qwtb/ ")
% calculation settings:
% monte carlo:
CS.verbose = 1;
CS.unc = 'mem’;
CS.loc = 0.6827;
CS.cor.req = 0;
CS.cor.gen = 0;
CS.dof.req = 0;
CS.dof.gen = 0;

CS.mcm. repeats = 1e3;

CS.mcm. verbose = 1;

CS.mcm. method = "'multicore’

% CS.mcm.method = 'singlecore ';
CS.mcm. procno = 6;

CS.mecm. tmpdir = .7,
CS.mcm.randomize = 1;

CS.checkinputs = 1;
% variation settings:
CS.var.dir = ['THDcomp_" CS.unc];

51

CS.var.cleanfiles = 1;

RS/ CALCULATION SETTINGS %988/

% general signal properties: %<<<l1
% sampling frequency:
Dl.fs.v = leb;

Dl.fs.u = 1e—9; % is it used somewhere?
% record length:
DI.L.v = 1le5b;

% signal frequency

DI.f.v = 50.01;

DI.f.u = 0.01; % this is uncertainty of estimate. is it
used in some alg?

% harmonics

DI.nharm.v = |1 2 3 4 5]; % signal harmonic
multiple
DI.A.v = [1 0.01 0.01 0.01 0.01]; % signal amplitudes

DI.ph.v = [0 0 0 0 0]; % signal phase
DI.O.v= [0 0 0 0 0]; % signal offset
Dl. noise.v = le—5;

% nonsense uncertainties because qwtb checks uncertainties
of all quantities:

DI.L.u = 0;

Dl.nharm.u = zeros(size(Dl.nharm.v));

DI.A.u = zeros(size(DI.A.v));

Dl.ph.u = zeros(size(Dl.ph.v));

DI.O.u = zeros(size(DI.O.v));

Dl.noise.u = zeros(size(Dl.noise.v));

% calculation %<<<l

%% Variation: noise %<<<?2

% dependence of output THD on the input noise:

label = '"noise’;

clear Dlvar;

Dlvar.noise.v = logspace(—6, 1, 20);

if dev Dlvar.noise.v = logspace(—6, 1, 2); end

% Dlvar.L.v = round(logspace(5, 6, 20));

jobfn = processing(label, DI, Dlvar, CS, 'noise’, 'signal
noise sigma’', 'THD (percent to main harm.)');

%% Variation: thd value %<<<?

52

% dependence of output THD on the input THD value —
gradually increasing harmonics:

label = "thd';

clear Dlvar;

Dlvar.A.v = logspace(—6, —2, 10) ".x[1 1 1 1];

if dev Dlvar.A.v = logspace(—6, —2, 2) ".x[1 1 1 1]; end
Dlvar.A.v = [ones(size(Dlvar.A.v,1), 1) Dlvar.A.v];

jobfn = processing(label, DI, Dlvar, CS, 'THDref', 'signal
THD value', 'THD (percent to main harm.)');

%% Variation: signal length, large span %<<<2

% dependence of output THD uncertainty on the signal length
label = "siglen’;

clear Dlvar;

Dlvar.L.v = logspace(5, 7, 5); % 1078 is too much for
notebook, 1076 is too much for general monte carlo method (
too large matrices)

if dev Dlvar.L.v = logspace(5, 6, 2); end

jobfn = processing(label, DI, Dlvar, CS, 'L", 'signal
length ', '"THD (percent to main harm.)');
%% Variation: signal length, small span — not interresting

boring , do not do! %<<<2
% dependence of output THD uncertainty on the signal length

% label = ’'siglen’
% Dlvar.L.v = 1e54+[—20:0.01:20]; % 1078 is too much for
notebook

%o Variation: signal frequency %<<<2

% dependence of output THD on the signal frequency:
label = '"sigfreq’;

clear Dlvar;

Dlvar.f.v = 50 + [—0.5:0.01:0.5];

if dev Dlvar.f.v =50 + [—0.5:0.1:0.5]; end

jobfn = processing(label, DI, Dlvar, CS, 'f', 'signal
frequency ', 'THD (percent to main harm.)');
endfunction

function jobfn = processing(label, DI, Dlvar, CS, xvar, xlbl,
ylbl) %<<<1
CS.var.dir = [CS.unc '_' label];

53

jobfn = qwtbvar('thdtest’', DI, Dlvar, CS);

% output plotting
figure('visible ', "off");

hold on

[x, y] = gqwtbvar(jobfn, xvar, 'thdffterr’');
plot(x.v, y.v, '—xr');

plot(x.v, y.v.— y.u, '—r');

plot(x.v, y.v + vy.u, '—r');

[x, y] = qwtbvar(jobfn, xvar, 'thdmfsferr');
plot(x.v, y.v, '—xb'");

plot(x.v, y.v.— y.u, '—b'");

plot(x.v, y.v + y.u, '=b’");

xlabel (xIbl);

ylabel (ylbl);

legend ("wfft', 'neg', 'pos’', 'mfsf’, 'neg’', ’'pos’');
title (jobfn);

hold off

pltfn = fullfile (CS.var.dir, label);
printplt(pltfn); replot_to_pdf(pltfn);
plot_change_gnuplot_terminal (CS.var.dir);

endfunction

% vim settings modeline: vim: foldmarker=%<<<%>>> fdm=marker
fen ft=octave textwidth=80 tabstop=4 shiftwidth=4

source_code_hard_links/alg_compare.m

54

Appendix B

thdtest.m

% test function used for variation of TWM-THDWFFT and TWM-MFSF
function [DO, DI, CS] = thdtest (DI, CS)

% generate signal %<<<l1

% time series:

DI.t.v=[0 : 1./Dl.fs.v : DI.L.v./DI.fs.v];

DlI.t.u = ones(size(Dl.t.v)).x1e—10;

% sampled values:

Dl.y.v = DI.A.v'.%sin(2.xpi.xDIl.f.v.*Dl.nharm.v'.«DIl.t.v +

Dl.ph.v') + DI.O.v";

Dl.y.v = sum(DIl.y.v, 1);

% add noise to the data:

Dl.y.v = Dl.y.v + normrnd (0,DIl.noise.v,size(Dl.y.v));

% uncertainties of every sample:

Dl.y.u = ones(size(Dl.y.v)).*xle—5;

% frequency components to fit for MFSF:

Dl .ExpComp.v = DIl.nharm.v;

DI.ExpComp.u = zeros(size(DI.ExpComp.v));

% save memory:
DI = rmfield (DI, 't');

% calculate thd by algorithms %<<<1
wfftDO = qwtb ("TWM-THDWFFT', DI, CS);
mfsfDO = qwtb("TWM-MFSF', DI, CS);

% calculate signal reference THD:

DO. THDref.v = sum(DI.A.v(2:end).”2)70.5./DI.A.v(1) % 100;
% output data %<<<l1

DO. thdffterr.v = wfftDO.thd.v — DO.THDref.v;

55

DO.thdffterr.u = wfftDO.thd .u;
DO. thdmfsferr.v = mfsfDO.thd.v — DO. THDref.v:
DO.thdmfsferr.u = mfsfDO.thd .u;

end

source_code_hard_links/thdtest.m

56

Appendix C

make lut.m

clear all; close all;

% function make_lut()
% calculation settings %<<<1
CS_lut.strict = 0;

CS_lut.verbose = O0;
CS_lut.checkinputs = 1;
CS_lut.unc = 'mem’;

CS_lut.loc = 0.68270;
CS_lut.cor.req = O0;
CS_lut.cor.gen = 0;
CS_lut.dof.req = O0;
CS_lut.dof.gen = 0;
CS_lut.mem. repeats = 100;
CS_lut.mem. verbose = 1;
CS_lut.mecm. method = 'singlecore’
CS_lut.mem. procno = 0;
CS_lut.mem. tmpdir = ' 7,
CS_lut.mem.randomize = 1;
CS_lut.var.dir = "_temp';
CS_lut.var.fnprefix = 'var';
CS_lut.var.cleanfiles = 1;
CS_lut.var.smalloutput = 0;
CS_lut.var.method = 'singlecore’
CS_lut.var.procno = 1;

CS_lut.var.chunks_per_proc = 1;

% create qwtbvar %<<<l1

57

% f — main signal frequency, list of spurious/harmonics
frequencies

% A — main signal amplitude, list of spurious/harmonics
amplitudes

% ph — main signal phase, list of spurious/harmonics phases
% O — main signal offset, list of spurious/harmonics
offsets

% dc — dc component

% Np — scalar real, number of main signal periods in the
record (Ns/fs = Np/f(1))

% ssr — ratio of sampling to signal frequency, ssr = fs/f

(1)

% SFDR — scalar, spurious free dynamic ratio

% jitter — standard deviation of jitter [s]
% noise — standard deviation of noise [V]%
% smr — spurious to main signal frequency multiple

% Nominal data in values:
DI_gen.f.v = 1000;
DI_gen.A.v = 1;
Dl_gen.O.v = 0;
DI_gen.ph.v = 0;
Dl_gen.dc.v = 0;
Dl_gen.Np.v = 10;
DIl_gen.ssr.v = 100;
DI_gen.SFDR.v = le—6;
DI_gen.jitter.v = le—12;
Dl_gen.noise.v = 1le—6;
DI_gen.smr.v = b5;

% axis granularity

gr = 3;

% variated data in values:

DI_gen_var.Np.v = linspace (1, 100, gr);
DI_gen_var.ssr.v = linspace (20, 100, gr);
DI_gen_var.A.v = linspace(le—3, 1000, gr);
DI_gen_var.jitter .v = linspace(le—13, 1le—10, gr);
DI_gen_var.noise.v = linspace(le—8, le—5, gr);
DI_gen_var.SFDR.v = linspace (1, 1le8, gr);

% run gqwtbvar %<<<l1

jobfn = qwtbvar('calc’, 'gen_and_calc’', DI_gen, DI_gen_var,
CS_lut);

58

% make
ax_set_lut.
ax_set_lut
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.
ax_set_lut.

rqset_lut .SFDR.u.scale

lut Y%<<<1

lut = qwtbvar('lut’, jobfn,

lutfn
save(lutfn ,

"lut’

fullfile (' alg_SFDR",

)

% test interpolation:
ax_interp.Np.v = 10;
ax_interp.ssr.v = 50;
ax_interp.A.v = 10;

Np.v.scale = 'lin";
.Np.v.max_ovr = 2xmax(DI_gen_var.Np.v);
Np.v.min_ovr = min(DI_gen_var.Np.v);
Np.v.max_lim = 'const’;
Np.v.min_lim = "error’;
ssr.v.scale = "lin’;
ssr.v.max_ovr = 2xmax(DI_gen_var.ssr.v);
ssr.v.min_ovr = min(DIl_gen_var.ssr.v);
ssr.v.max_lim = 'const';
ssr.v.min_lim = "error';
A.v.scale = "lin";
A.v.max_ovr = 100xmax(DI_gen_var.A.v);
A.v.min_ovr = min(DI_gen_var.A.v);
A.v.max_lim = 'const';
A.v.min_lim = 'const';
jitter.v.scale = "lin";
jitter .v.max_ovr = 100xmax(DI_gen_var. jitter .v);
jitter.v.min_ovr = min(DIl_gen_var.jitter.v);
jitter.v.max_lim = 'const’;
jitter.v.min_lim = 'const’;
noise.v.scale = "lin';
noise.v.max_ovr = max(DIl_gen_var.noise.v);
noise.v.min_ovr = min(DI_gen_var.noise.v);
noise.v.max_lim = 'error’;
noise.v.min_lim = "error';
SFDR.v.scale = "lin';
SFDR.v.max_ovr = max(DI_gen_var.SFDR.v);
SFDR.v.min_ovr = min(DIl_gen_var.SFDR.v);
SFDR.v.max_lim = "error’;
SFDR.v.min_lim = ’'const’;

= "log’;

ax_set_lut,
"lut.mat’);

rqset_lut);

59

ax_interp.jitter.v = le—11;
ax_interp.noise.v = le—7;
ax_interp.SFDR.v = le—5;
qwtbvar('interp ', lutfn, ax_interp);

% % test uncertainty estimation using lut:

% CS_test.unc = 'guf’;

% test_waveform = qwtb('SFDR', 'gen’', DIl_gen);
% DO = qwtb('SFDR’, test_waveform , CS_test);
% DO.SFDR. v

% DO.SFDR. u

%

% % test lut %<<<l1

% % lutfn = qwtbvar('interp ', lutfn, ax);
% end

% vim settings modeline: vim: foldmarker=%<<<%>>> fdm=marker
fen ft=octave textwidth=80 tabstop=4 shiftwidth=4

source_code_hard_links/make lut.m

60

Appendix D

alg_generator.m

% Generator for SFDR algorithm

function [DO, DI] = alg_generator(DI)

% generates signal based on input quantities. if none given,
basic signal is constructed.

%

% used quantities:

% f — main signal frequency, list of spurious/harmonics
frequencies

% A — main signal amplitude, list of spurious/harmonics
amplitudes

% ph — main signal phase, list of spurious/harmonics phases

% O — main signal offset, list of spurious/harmonics offsets

% dc — dc component

% Np — scalar real, number of main signal periods in the record
(Ns/fs = Np/f(1))

% ssr — ratio of sampling to signal frequency, ssr = fs/f(1).

% SFDR — scalar, spurious free dynamic ratio

% jitter — standard deviation of jitter [s]

% noise — standard deviation of noise [V]

% smr — spurious to main signal frequency multiple

%

% calculated quantities:

% fs — scalar integer, sampling frequency

% Ns — scalar integer, record length (samples count)
if ~exist('Dl", "var')

DI = struct();
end

61

% set initial values and randomize input quantities %<<<1
[DI, f] = setQ(DI, "f", le3, 0);
[DI, A] = setQ (DI, 'A", 1, 0);
[DI, ph] = setQ(DI, 'ph', 0, 0);
[DI, O] = setQ(DI, 'O, 0, 0);
[DI, dc] = setQ (DI, 'dc’, 0, 0);
[DI, Np] = setQ (DI, 'Np', 10, 0);
[DI, ssr] = setQ (DI, 'ssr', 100, 0);
[DI, SFDR] = setQ(DI, 'SFDR', 120, 0);
[DI, jitter] = setQ(DI, 'jitter ' ,1le—12, 0);
[Dl, noise] = setQ(DIl, 'noise’, 0, 0);
[DIl, smr] = setQ (DI, 'smr’, 5, 0);

% calculate and set other needed quantities %<<<1l
% sampling frequency

fs = ssr.xf(1);

[DI, fs] = setQ (DI, 'fs', fs 0);
% samples count:

Ns = fix (Np.xfs./f(1));

[DI, Ns] = setQ (DI, 'Ns', Ns, 0);
% add one single spurious based on SFDR and smr:
% A = [A 10°(—1.xSFDR/20)];

A = [A A./SFDR];

f = [f smr.xf];

O = [0 0];

ph = [ph O];

DI.A.v = A;

DI.f.v = f;

DI.O.v = O;

DI.ph.v = ph;

% generate the signal %<<<l

%
t

time series:
= [0 : Ns—1]./fs;

% set t uncertainty as jitter:
= jitter .xones(size(t));

ut
%
%

cat

sampled values:
(to save memory,
ion)

use for cycle instead of matrix multipli

y = dc + zeros(size(t));
for j = 1l:numel(A)

62

y =y + A(j).*sin(2.xpi.xf(j).*t + ph(j)) + O(j);

end
% add noise to the data:
uy = noise.xones(size(y));

% make output %<<<l1

DO.t.v = t;
DO.t.u = ut;
DO.y.v = vy;
DO.y.u = uy;
DO.fs.v = fs;
DO.fs.u = 0;

end

function [DI, val] = setQ(DIl, Qn, v, u) %<<<1
% ensure the quantity is set in DI,

% set default values for .v and .u if missing,

% randomize quantity .
% if quantitiy missing
if ~isfield (DI, Qn)
DI.(Qn).v = v;
DI.(Qn).u = u;
end
% if uncertainty missing
if ~isfield(DI.(Qn), "u")
DI.(Qn).u = u;
end
% randomize
DI.(Qn).v = normrnd(DI.(Qn).v, DI.(Qn).u,
val = DI.(Qn).v;
end % function setQ

% function A = harmonic_series(THD, N) %<<<1
% % Spectrum made using geometric series

% % N is number of harmonics
% % A_1 is given (value is 1)

% % A_2 is calculated from THD value in a such way that:
i=2..N

% % A_3..A_N is function of A_2: A_i = A_2/(i—1) for

% % so:

% % harmonic id: Al A2 A_3 A_4
AN

63

size(DIl.(Qn).v));

A_

5

% % harmonic number: given calc

%
%
%
%
%
%
%
%
%
%
%

A_2/(N-1)

A(l) = 1;

if N> 1
sum(1./[1:N=1].72);
(:N;:A(2)./[2—1:N—1];
else
A

1;
end

% % selfcheck:
% % error = sum(A(2:end).”2)70.5/A(1) — THD:

%

% end % function harmonic_series

S = sum
A(2) = THD.%A(1)./sqrt(S);
A(2

A_2/2 A_2/3

A_2/4

source_code_hard_links/alg_generator.m

64

Appendix E

gen_and_calc.m

function [DO, DI, CS] = gen_and_calc (DI, CS)

% generate waveform

[waveform, DI] = qwtb('SFDR', 'gen', DI);

% calculate waveform

DO = qwtb('SFDR", waveform, CS);

end

% vim settings modeline:

vim: foldmarker=%<<<%>>> fdm=marker

fen ft=octave textwidth=80 tabstop=4 shiftwidth=4

source_code_hard_links/gen_and_calc.m

65

Appendix F

alg_wrapper.m

function dataout = alg_wrapper(datain, calcset)

% Part of QWIB. Wrapper script for algorithm SFDR.
%

% See also qwtb

% Format input data Y%o<<1
if isfield(datain, 'fs')
fs = datain.fs.v;

elseif isfield(datain, 'Ts')
fs = 1/datain.Ts.v;
if calcset.verbose
disp ('QWVTB: SFDR wrapper: sampling frequency was
calculated from sampling time')
end
else
fs = 1/mean(diff(datain.t.v));
if calcset.verbose
disp ('QWTB: SFDR wrapper: sampling frequency was
calculated from time series’')
end
end

% call SP-WFFT to calculate spectrum
datain.window.v = 'blackman’
cs.verbose = 0;

specDO = qwtb('SP-WFFT' ,datain, cs);
dataout.A = specDO .A;

% Call algorithm Yo<<<1

66

% SFDR — the Spurious Free Dynamic Range in V/V. Convert to
decibel relative to

% carrier using euqgation: SFDR in dBc is: 20xlogl0(SFDR)
% id_main — index of the peak of the main signal component
% id_spur — index of the peak of the highest spurious signal

component (can be a harmonic).
[dataout .SFDR.v, id_main, id_spur] = spec_to_SFDR(dataout.A.v);
% calculate SFDR in decibel to carrier:
dataout .SFDRdBc.v = 20%logl0(dataout.SFDR.v);

% Uncertainty estimation Y<<<1
if strcmp(calcset.unc, 'guf')
lutfn = fullfile('alg_SFDR"', '"lut.mat’'); % XXX here add

this—actual—wrapper—script —path and join with lut.mat

% uncertainty estimate based on LUT: %<<<2

% number of main signal periods is based on the signal
frequency , number of

% samples and sample frequency:

axip.Np.v = (numel(datain.y.v)./fs) ./ (1/specDO.f.v(
id_main));

% ratio of sampling to signal frequency

axip.ssr.v = fs./specDO.f.v(id_main);

% amplitude of the main signal:

axip.A.v = dataout.A.v(id_main);

% time uncertainty is used for jitter:

axip.jitter.v = std(datain.t.u);

% sample uncertainty is used for noise:

axip.noise.v = mean(datain.y.u);

axip .SFDR.v = dataout.SFDR.v;

lutfn = fullfile('alg_SFDR", 'lut.mat’); % XXX here add
this—actual —wrapper—script —path and join with lut.mat
% itnerpolate LUT to obtain uncertainty of SFDR:
unc = qwtbvar('interp’, lutfn, axip);
dataout .SFDR.u = unc.SFDR.u;

end

end % function

% vim settings modeline: vim: foldmarker=%<<<%>>> fdm=marker
fen ft=octave textwidth=80 tabstop=4 shiftwidth=4

67

source_code_hard_links/alg_wrapper.m

68

F.1 TWM-THDWFFT - THD from Windowed FFT

This algorithm is designed for calculation of the harmonics and Total Harmonic Dis-
tortion (THD) of the non-coherently sampled signal. It uses windowed FFT to detect
the harmonic amplitudes, which limits the achievable accuracy of the harmonics detec-
tion due to the window scalloping effect. However, the algorithm was initially designed
for THD calculation of the low-distortion signals, where the accuracy was not critical.
The relative expanded uncertainty of the harmonics is at least 0.015 % (or 0.005 % after
highly experimental correction method). On the other hand, the algorithm was designed
to compensate the spectral leakage of the noise to the harmonics near noise level, so it
offers decent accuracy for the very low distortions near self-THD of the digitizer itself.

The algorithm supports direct processing of a multiple records which are used to
produce averaged spectrum before the main calculation. This possibility should be pre-
ferred instead of repeated call of the algorithm for each record as it reduces the noise.
The algorithm supports only single-ended transducer connection.

The algorithm returns: (i) Full spectrum; (ii) Identified harmonics; (iii) THD coeffi-
cients according various definitions; (iv) RMS noise estimate; (v) THD+Noise estimate.

Example of the algorithm output is shown in fig. .

THD_plet, ky = (0.027498 - 0.000013 + 0.000013)% noise leak. compens.

— Signal spectrum

101 L #® Harmonics

X Corrected Harmonics
102 b m— |loar noise level

10-5 |
10-5 - I W W
10-7 et — S

0 2k 4k Bk 8k 10k
f[Hz]

Figure F.1: Example of the TWM-THDWFFT algorithm output.

F.1.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in table . Algorithm returns
output quantities shown in table . Calculation setup supported by the algorithm is
shown in table F.3.

69

Table F.1: List of input quantities to the TWM-THDWFFT
wrapper. Details on the correction quantities can be found in

[[13].

Name Default | Unc. | Description

fo N/A N/A | Optional user defined frequency of fundamental com-
ponent. Do not assign to enable auto detection.

fO_mode “PSFE” | N/A | Optional selection of the fundamental frequency auto
detection mode.

scallop_fix 0 N/A | Non-zero value to enable experimental window scal-
loping error correction. It will try to use known scal-
loping error of the window at given frequency to cor-
rect the error, however it will work only for stable sig-
nals when the fundamental frequency detection is ac-
curate.

H 10 N/A | Optional limit of maximum harmonics count to anal-
yse (including fundamental). Note the high values will
significantly increase calculation time!

band inf N/A | Optional bandwidth limit which can reduce the har-
monics count to analyse. This also affects the band-
width of the noise calculation.

plot 0 N/A | Non-zero value, “on”, “true” or “enabled” string en-
ables plotting of the detected harmonics.

y N/A No Input matrix of the samples. One column per record
(the algorithm can directly calculate average of multi-
ple records).

Ts N/A No Sampling period or sampling rate or sample time vec-

fs N/A No tor. Note the wrapper always calculates in equidistant

t N/A No mode, so t is used just to calculate 7's.

adc_lsb N/A No Either absolute ADC resolution [sb or nominal range

adc_nrng 1000 No value adc_nrng (e.g.: 5V for 10 Vpp range) and

adc_bits 40 No adc_bits bit resolution of ADC.

adc_jitter 0 No Digitizer sampling period jitter [s].

adc_aper_corr 0 No ADC aperture error correction enable:

A’ = A-pi-adc_aper- f_est/ sin(pi-adc_aper- f_est)
phi’ = phi + pi - adc_aper - f_est

adc_aper 0 No ADC aperture value [s].

adc_gain 1 Yes Digitizer gain correction 2D table (multiplier).

adc_gain_f [] No

adc_gain_a [] No

70

Table F.1: List of input quantities to the TWM-THDWFFT
wrapper. Details on the correction quantities can be found in

[13].
Name Default | Unc. | Description
adc_freq 0 Yes Digitizer timebase error correction:
f_t’ = f_tb- (1 + adc_freq.v)
The effect on the estimated frequency is opposite:
f_est’ = f_est/(1 + adc_freq.v)
adc_sfdr 180 No Digitizer SFDR 2D table.
adc_sfdr_f [] No
adc_sfdr_a [] No
adc_Yin_Cp le-15 Yes Digitizer input admittance 1D table.
adc_Yin_Gp le-15 Yes
adc_Yin_f [] No
tr_type “r No Transducer type string (“rvd” or “shunt”).
tr_gain 1 Yes Transducer gain correction 2D table (multiplicative).
tr_gain_f [] No
tr_gain_a [1 No
tr_sfdr 180 No Transducer SFDR 2D table.
tr_sfdr f [] No
tr_sfdr_a [] No
tr_Zlo_Rp 1e3 Yes RVD transducer low-side impedance 1D table. Note
tr_Zlo_Cp le-15 Yes this is related to loading correction and it has ef-
tr Zlo_f (] No fect only for RVD transducer and will work only if
adc_Yin is defined as well.
tr_Zbuf_Rs 0 Yes Loading corrections: Transducer output buffer output
tr_Zbuf_Ls 0 Yes series impedance 1D table. Leave unassigned to dis-
tr_Zbuf_f (] No able buffer from the correction topology.
tr_Zca_Rs le-9 Yes Loading corrections: Transducer high side terminal
tr_Zca_Ls le-12 Yes series impedance 1D table.
tr Zca_f [] No
tr_Zcal_Rs 1e-9 Yes Loading corrections: Transducer low side terminal se-
tr_Zcal _Ls le-12 Yes ries impedance 1D table.
tr_Zcal_f [] No
tr_Yca_Cp le-15 Yes Loading corrections: Transducer output terminals
tr_Yca_D le-12 Yes shunting impedance.
tr_Yca_f [] No
tr_Zcam le-12 Yes Loading corrections: Transducer output terminals
tr_Zcam_f (] No mutual inductance 1D table.

71

Table F.1: List of input quantities to the TWM-THDWFFT
wrapper. Details on the correction quantities can be found in

[13].
Name Default | Unc. | Description
Zcb_Rs le-9 Yes Loading corrections: Cable series impedance 1D ta-
Zcb _Ls le-12 Yes ble.
Zcb_f (1 No
Ycb_Rs le-15 Yes Loading corrections: Cable series impedance 1D ta-
Ycb_Ls le-12 Yes ble.
Ycb_f (] No

Table F.2: List of output quantities of the TWM-THDWFFT wrapper. Note the uncer-
tainty “No” means the algorithm may return some uncertainty but it should be ignored
because it is either incomplete or not validated.

Name Uncertainty | Description

H No Harmonics count analysed.

noise_bw No Bandwidth used for the noise estimation [Hz].

thd Yes Total Harmonic Distortion referenced to the fundamental.

thd2 Yes Total Harmonic Distortion referenced to the RMS value.

thdn No Total Harmonic Distortion + Noise referenced to the fundamental.
thdn2 No Total Harmonic Distortion + Noise referenced to the RMS value.
noise No RMS noise estimate.

h Yes Amplitudes of the harmonics.

f No Frequencies of the harmonics h.

spec_a No Full spectrum from the windowed FFT.

spec_f No Frequencies of the spectrum components spec_a.

thd_raw No thd without noise spectrum leakage correction.

thd2_raw No thd2 without noise spectrum leakage correction.

72

Table F.3: List of “calcset” options supported by the TWM-THDWFFT wrapper.
Name Description

calcset.unc Uncertainty calculation mode. Supported:
“none” or “guf” for uncertainty estimator. Note
the algorithm is internally made in such a way it
always calculates the uncertainty, so this option
should have no effect in current version.
calcset.loc Level of confidence [-].

calcset.verbose | Verbose level.

F.1.2 Algorithm description and uncertainty evaluation

The whole algorithm is extended and improved version of the THD analyser presented in
[14]. The overview of the algorithm wrapper structure and internal functions is shown in
fi g.]@. The wrapper start by a call to the top level function “thd_wfft()”’, which performs
entire calculation and uncertainty estimation. Next, the wrapper may optionally plot
graph showing the identified harmonics and near spectrum. Note the wrapper reduces
the asymmetric uncertainty limits to symmetric as the TWM was not designed for such
a case. This has no effect when the level of harmonics is at least twice the noise level. It
will expand the uncertainty only for very small harmonic levels near noise level.

The “thd_wfft()” itself internally does just two steps: (i) Calculating spectra of input
records and estimates their fundamental frequency (function “thd_proc_waves()”); (ii)
Initiates main evaluation function “thd_eval_thd()”.

The function “thd_proc_waves()” first detects fundamental frequency of each record
in y. It contains several modes of detection. The simplest is zero crossing, however it is
very unreliable. Another options if FPNLSF [[15], which may fail when initial estimate
from zero cross detector is poor. Last and best option (default) is PSFE [[16], which
is capable to identify the fundamental frequency with good accuracy even with strong
harmonic content. User may also override the auto detection by manual entry of the
fundamental frequency. The next step is calculation of amplitude spectrum for each
record y using a windowed FFT. The widest, flattest window with highest suppression of
side lobes was chosen for the goal - Flattop HFT248D from [|17]. This window offer side
lobes suppression by 248 dB and scalloping error only 0.0104 % for range 0.5 DFT bin.

The internal structure of the evaluation function “thd_eval_thd()” is shownin fig. B
The function does following steps:

1. Obtaining parameters of the window function Flattop HFT248D used for the pro-
cessing.

2. Generation of lookup table (LUT), which will be used for the numeric solver that

73

TWM-THDWFFT

Prepare calculation
parameters

Call thd_wifft() to
calculate THD
v
Optional spectrum
plotting by function
thd_plot_spectrum()

Formatting results to
return in QWTB style:
thd, thd2, thdn, thdn2,
noise, harmonics,
spectrum

thd_wift()

v

Call thd_proc_waves()
to get fundamental
frequency and
spectra sig
for each record in y

v v
Call thd_eval_thd() to
calculate the THD and
uncertainties:
thd, thd2, thdn, thdn2,
noise, harmonics,
spectrum

v

RETURN

Average frequencies and
frequency vectors

thd_proc_waves()

—

Call thd_find_freq() to
detect fundamental
frequency f_sig by given
method: PSFE,
zerocross, FPNLSF or
manual

v

Call ampphspectrum()
to get windowed
amplitude spectrum amp
and frequency vector f.

RETURN

Figure F.2: Flow chart of the algorithm wrapper TWM-THDWEFFT. Note the rounded
gold blocks are calls to other local functions which are shown in another diagram or
mentioned in the text.

thd_eval_thd()

RETURN signal, parameters
corrections
Obtain window Get harmonic's: T
frequency, peak i
scalloping: flat | % o[q Y. P uncertainty

amplitude, near noise
level, type A uncertainty

~

Combine and format
THD values and
uncertainties and <

harmonic values and

uncertainties

Generate LUT for noise
leakage correction

Optionally call
thd_window_gain_corr()
to correct scalloping error

Decide range of analysis:

harmonics count and Low THD mode:

bandwidth

Obtain and apply digitizer
gain, transducer gain and
aperture corrections to
signal sig

Average spectra sigto |-+

sig_m and calculate type
A uncertainty sig_ua.

Next harmonic?

Evaluate THD from mean
harmonic amplitudes.

THD uncertainty using
worst case harmonics

uncertainty combination

Estimate RMS noise
Prepare system SFDR
and LSB parameters

Call

L thd_eval_harmonic() 0 ...’
evaluate amplitude and
uncertainty of each
harmonic. Returns mean
values and Monte Carlo
randomiied sets.

High THD mode:
THD uncertainty using

Monte Carlo from the
randomized harmonic

sets

Figure F.3: Flow chart of the main algorithm function “thd_eval_thd()” for the TWM-
THDWFFT algorithm.

compensates spectrum leakage of the noise to the harmonic DFT bin (details be-

low).

3. Decision of how many harmonics to analyse based on the user limits (/ and
bandwidth).

4. Application of all gain corrections to scale the spectra from “thd_proc_waves()”

74

to actual levels.
5. Averaging of the spectra and type A uncertainty calculation.

6. Detection of harmonics. The algorithm picks the harmonics from the average
spectrum one by one. It searches the highest DFT bin in preset frequency range
for each estimated harmonics frequency. It also extracts the nearby noise level
which is needed for compensation of the noise spectral leakage.

7. The parameters required for the uncertainty evaluation of each harmonics are ob-
tained (system SFDR and LSB).

8. Evaluation of the harmonic values and uncertainties using function “thd_eval_harmonic()”
(see below). This returns mean harmonic levels and calculated uncertainties and
also randomized harmonic levels, because it internally uses Monte Carlo.

9. Calculation of the THD coefficients from the mean harmonic amplitudes accord-
ing to various definition and calculation of their uncertainties using one of the
methods (see below).

The evaluation of the THD coefficients in the step E) is performed according to the
several definitions. The most common is so called “fundamental referenced” THD:
VUZ+ U2+ + Uy

U, '

thd = F.D

where U, is mean harmonic voltage and x is harmonic index and M/ is harmonics count.
The next is RMS value referenced mode, which uses total RMS of the signal in the
denominator:

VU + U3+ -+ U
VOR+B+U3+-+ U3
The results should be very close for low distortion signals. Next result is combined
fundamental referenced THD and noise THD+N:

_ VU AU+ -+ Un + U
= i ,

thd2 =

(F.2)

thdn (F.3)

where the U, is RMS noise in specified bandwidth (parameter band). Last definition
is RMS referenced THD+N:

VUR+ U3+ + U + Ul

thdn2 = .
VUR+UZ+ U2+ + U, + UL,

(F.4)

The algorithm also returns the same four coefficient without the noise leakage cor-
rection, however those are just informative.

75

The uncertainty evaluation for the THD coefficients uses heuristic approach. The
THD coeflicients are calculated from the mean values from step : ignoring the uncer-
tainty and its distribution. The uncertainty calculation method depends on the “is_high”
obtained in step , which is set when the weighted average of the harmonic amplitudes
is significantly above noise. So two cases occur:

1. 2s_high = true: The distribution of the uncertainty of the harmonics is near
Gaussian so the randomized amplitudes from step E) are passed to the THD for-
mulas above and the THD is evaluated using Monte Carlo and function “scovint()”
(follows GUM guide [2]).

2. is_high = false: The distribution of the uncertainty of the harmonics is very
asymmetric, so the Monte Carlo would lead to large bias in the mean value of THD.
Therefore the THD uncertainty is evaluated using the worst case combination of
the harmonic uncertainties from step E):

M M
ZQ UT%LMAX 22 U72YLMIN
thdyax, thdyx] = | i ES5
[thdmax, MIN] Ur) Urons (F.5)
where:
Uninx = Umn +Usp(Upn), (F.6)
Ui = Umn —U_(Up). ET

The reported asymmetric uncertainties were calculated according to:

(U (thd), U_(thd)] = [thdwax — thd, thd — k] . (F.8)

The evaluation of the uncertainty of each harmonic is performed by the function
“thd_eval_harmonic()” shown in fig. @ This is simple heuristic function that calcu-
lates uncertainty distribution of each harmonic component depending on how close it is
to the noise level. This is necessary, because the distribution for harmonics well above
the noise level will be near Gaussian, whereas the possible value of the harmonic near
noise level may be anywhere in the noise or slightly above. The result of this approach
is very asymmetric distribution that cannot be processed using GUF method. Therefore
the calculation is performed by Monte Carlo with 10000 cycles (defined as fixed option
in the TWM-THDWEFFT wrapper). The performance is acceptable as long as no more
than 50 harmonics are analysed. The resulting randomised set of harmonic amplitudes

76

thd_eval_harmonic()
4 A :
v v

signal, parameters
Randomize harmonics based B .
. ; Correct noise leakage using
--------- g_r_l_(_:_e__r_t__z_i!_r__ty__________} (:2 tnrlfng?ﬁé gi(:tsriebllet\ilc?r: pregenerated LUT: function
. J Y - B . fft_window_leak_fix_amp()
purely empirical) s
Empirical decision if we Evaluate uncertainty b
have significantly higher l«— Monte Carlo usin functi)(,)n Evaluate uncertainty by Monte
harmonics than noise sing Carlo using function scovint()
LS scovint()
level (flag is_high). ¢ .
A4

Return values:
1) mean harmonics and
uncertainties
2) randomized sets of
harmonic amplitudes
3) is_high flag

v

RETURN

Figure F.4: Flow chart of the function “thd_eval_harmonic()” of the TWM-THDWFFT
algorithm.

is returned in full for further processing. However, the function also calculates the un-
certainty limits for each harmonic for given level of confidence by function “scovint()”
(implemented according to [2]).

The function “thd_eval_harmonic()” also repeats the same calculation once more
with the mentioned noise leakage correction. The problem related to wide window func-
tions such as Flattop HFT248D is the not only the harmonic power leaks to the more DFT
bins, but also the noise energy near the harmonic leaks to the harmonic DFT bin. This
effect is normally not considered, when the narrower windows are used and when the
harmonic is several times larger than the noise. However, this algorithm uses very wide
window Flattop HFT248D and it was designed to operate near noise level. The apparent
gain of the detected harmonic can be obtained by the following procedure:

1. generation of sine wave z(¢) with amplitude U,,,,

2. addition of gaussian noise with level U, to the z(t),

3. windowing of the z(t) by selected window function (Flattop HFT248D),
4. reading the amplitude Uy from amplitude spectrum of X (f) of signal x(t).

Alternatively the same result can be obtained by means of Monte Carlo method from
equation:

Ux =

~| =

I K
D U + Unoise Y Wi - 72REH (F.9)
=1 k=1

77

where K is number of coefficients of window function amplitude spectrum W and /
is number of MC iterations (at least 10%). The R(i, k) is uniformly distributed random
number generator from O to 1. The right sum term represents a vector sum of a noise
vectors with random angle and amplitude weighted by window spectrum coefficients
W).. The resulting gain vs. noise to signal ratio is shown in fig. @

2.6

24

22

1.8

1.6

harmonic reading gain [-]

1.4
1.2

0 0.2 0.4 0.6 0.8 1
noise to signal ratio [-]

Figure F.5: Error of the harmonics amplitude measurement using FFT with window
Flattop HFT248D. Note the “noise” means amplitude of the noise in surrounding DFT
bins, not RMS noise.

The direct inverse evaluation from the detected to actual harmonic level is nto pos-
sible, so the algorithm uses iterative function based on the precalculated LUT with the
gain error (the dependence in fig.). The correction itself is performed by the func-
tion “fft_window_leak_fix_amp()”, which takes the harmonic level, noise level detected
around (assuming the noise is the same for all related DFT bins). Effect of this correction
is shown in fig. F.6.

0.005 0.005
" meastred thd - " measlred thd -

expanded uncerlainty + —— expanded unceriainty +
expanded uncertainty - expanded uncertainty -
reference thd —— reference thd ——

0.004 % 0.004

0.003 e 0.003

thd [%]
thd [%]

0.001 |-zt 0.001 +

0.002 ’I, 0.002 T
TF T T i J[
1 1 I
\\

T
—

0 0
0 0.2 0.4 06 0.8 1 1.2 14 16 0 0.2 0.4 0.6 0.8 1 1.2 14 16

noise to harmonic components ratio [-] noise to harmonic components ratio [-]

Figure F.6: Deviation of THDWFFT algorithm from simulated THD level 10 ppm for
various noise to higher harmonic ratios. The simulated waveform has 10 harmonic com-
ponents with amplitudes U, = {0.9,3-107%3-107°,...} V. Left graph shows results
without noise spectral leakage correction, right graph shows the same dependence with
corrected values. The error bars show the standard deviation of a repeated simulations.

78

F.1.3 Validation

The algorithm TWM-THDWFFT has many input quantities (45) and some of them are
matrices. That is too many possible degrees of freedom. Thus, varying the quantities in
some systematic way would be very complicated if the validation should cover full range
of used signals and corrections. Therefore, an alternative approach was used.

QWTSB test function “alg_test.m” was created, which performs the validation using
randomly generated test setups. It randomizes the signal parameters, correction quanti-
ties and uncertainties and algorithm configurations in ranges expected to occur during
the real measurements. The test is run many times to cover full operating range of the
algorithm. Following operations are performed for each random test setup:

1. Generate signal y with known harmonic content A.¢(h) and thus known THD
thdes.

2. Distort the signal y by inverse corrections, i.e. simulate the transducers, and digi-
tizer (e.g. gain errors, quantisation, SFDR ...).

3. Run the algorithm TWM-THDWFFT with enabled uncertainty evaluation to ob-
tain the harmonic levels Ay (h), distortion thdy and their uncertainties u(Ay(h))
and u(thdy).

4. Compare the reference and calculated harmonics and distortion and check if the
deviations are lower than assigned uncertainties:

pass_A(i,h) = |Awer(h) — Ax(h)] < u(Ax(h)), (F.10)
pass_thd(i) = |thdwes — thdy| < u(thdy), (F.11)

where 7 is test run index.

5. Repeat N times from step , with the same test setup parameters, but with cor-
rections randomised by their uncertainties, and with randomised noise, SFDR and
jitter.

6. Check that at least 95 % of pass_A(i, h) and pass_thd(i) results passed (for 95 %
level of confidence).

The test runs count per test setup was set to N = 300, which is far from optimal infi-
nite set, but due to the computational requirements it could not have been much higher.
Note the low count of test induces uncertainty to the obtained pass rates.

The algorithm in the uncertainty estimation mode was tested in 4 different configu-
rations with 10000 test setups per each. L.e. the algorithm was ran 12 million times in
total (4x10000x300). The processing itself was performed on a supercomputer [18] so
it took about 3 days at 400 parallel octave instances.

79

The randomization ranges of the signal are shown in table @ The randomization
ranges of the corrections are shown in table .

The test results were split into several groups given by the randomiser setup: (i)
Scalloping correction enabled/disabled; (ii) Randomisation of corrections by uncertainty
enabled/disabled. When the randomisation of corrections is disabled, the test runs cover
only the algorithm itself and the contributions of the correction uncertainties are ignored.

The summary of the validation test results is shown in table F.6. The success rate
was 100 % for all cases.

Table F.4: Validation range of the signal for TWM-THDWFFT algorithm.

Parameter

Range

Sampling rate

30 to 70 kHz (no need to randomize in wider range,
as all other parameters are generated relative to this
rate).

Sampling time

0.3 to 5 seconds.

Fundamental frequency

Random, so there are at least 30 DFT bins between
harmonics and the highest harmonic is no higher
then 0.4 - fs.

Analysed harmonics count

5to 10.

Fundamental amplitude

0.1 to 0.9 of fullscale digitizer input.

Harmonic amplitudes

Each harmonic is randomised from 1 uV to A_max
of fundamental, where the A_max is randomised
from 0.0001 to 0.1 of fundamental.

Phase angles

Random for all harmonics.

Averaging cycles 10.

SFDR -140 to -80 dBc, all spurs have the same level.
Digitizer RMS noise 1 to 50 uV.

Sampling jitter 1 to 100 ns.

80

Table F.5: Validation range of the correction for the TWM-THDWEFFT algorithm.

Parameter Range

Transducer type Random ’shunt’ or 'rvd’.

Nominal input range 0.1to 100V (0.1 to 100A)

Aperture I ns to 100 ps

Digitizer gain Randomly generated frequency transfer simulating

NI 5922 FIR-like gain ripple (possibly the worst
imaginable shape) and some ac-dc dependence.
The transfer matrix has up to 50 frequency spots.
Nominal gain value is random from 0.95 to 1.05
with uncertainty 2 uV/V. Maximum ac-dc value at
fs/2is up to =1 % with uncertainty 50 uV/V. Gain
ripple amplitude is random from 0.005 to 0.03 dB
with up to 5 periods between 0 and fs/2.
Digitizer SFDR Value based on table [1'7_4L

Transducer SFDR Value based on table F.4. Note the “SFDR” from
table @ is randomly split between digitizer and
transducer SFDR correction.

Digitizer bit resolution | 16 to 28 bits.

Digitizer nominal range | 1V

Transducer gain Randomly generated frequency transfer. The trans-
fer matrix has up to 50 frequency spots. Nominal
gain value is random (see above) with relative un-
certainty 2 uV/V. Maximum ac-dc value at fs/2 is
up to £2 % with uncertainty 50 uV/V. Gain ripple
amplitude is 0.005 dB with 4 to 10 periods between
Oand fs/2.

Table F.6: Validation results of the algorithm TWM-THDWFFT. The “passed test”
shows percentage of passed tests under conditions defined in tables @ and E.5.

Scallop. fix. | Rand. corr. i dPasseg (tle)st [0222“”)
- no 100.00 100.00 100.00
yes 100.00 100.00 100.00

no 100.00 100.00 100.00

yes yes 100.00 100.00 100.00

81

F.2 TWM-MFSF - Multi-Frequency Sine Fit

TWM-MESF is an algorithm for estimating the frequency, amplitude, and phase of the
fundamental and harmonic components in a waveform. Amplitudes and phases of har-
monic components are adjusted to find minimal sum of squared differences between
sampled signal and multi-harmonic model. When all sampled signal harmonics are in-
cluded in the model, the algorithm is efficient and produces no bias. It can even handle
aliased harmonics, if they are not aliased back exactly at frequencies where other har-
monics are already present. Further, it can also handle non harmonic components, when
their frequency ratio to the fundamental frequency is exactly known a-priori. It is based
on the [[19] and [9].

The TWM wrapper TWM-MEFESF is equipped with a Monte Carlo uncertainty calcu-
lator and also a fast uncertainty estimator limited for certain types of signal and algorithm
setup.

F.2.1 TWM wrapper parameters

The input quantities supported by the algorithm are shown in table E?l Algorithm returns
output quantities shown in table . Calculation setup supported by the algorithm is
shown in table @

Table F.7: List of input quantities to the TWM-MFSF wrap-

per.

Name Default | Unc. | Description

fest 0 N/A | Initial estimate of fundamental frequency [Hz]. Op-
tions:

ExpComp N/A N/A | List of relative frequencies of the harmonic compo-
nents to fit (e.g. [1, 2, 4, 3.3] means to fit fundamental,
2nd and 4th harmonic and interharmonic 3.3 - f0).

H 3 N/A | Alternative to ExpComp. Defines number of har-
monics to fit, i.e. 3 means to fit fundamental, 2nd and
3rd harmonic.

CFT 3.5e-11 | N/A | Cost Function Threshold for the MFSF minimising al-
gorithm. Note the uncertainty estimator was calcu-
lated for the default value only!.

comp_timestamp | 0 N/A | Enable compensation of phase shift by time stamp
value: phit” = phi — 2 - pi - f_fit - time_stamp.

y N/A No Input sample data vector.

82

Table F.7: List of input quantities to the TWM-MFSF wrap-

per.
Name Default | Unc. | Description
Ts N/A No Sampling period or sampling rate or sample time vec-
fs N/A No tor. Note the wrapper always calculates in equidistant
t N/A No mode, so ¢ is used just to calculate 7's.
Isb N/A No Either absolute ADC resolution [sb or nominal range
adc_nrng 1000 No value adc_nrng (e.g.: 5V for 10 Vpp range) and
adc_bits 40 No adc_bits bit resolution of ADC.
adc_offset 0 Yes Digitizer input offset voltage.
adc_gain 1 Yes Digitizer gain correction 2D table (multiplier).
adc_gain_f [] No
adc_gain_a [] No
adc_phi 0 Yes Digitizer phase correction 2D table (additive).
adc_phi_f [] No
adc_phi_a [] No
0
adc_freq 0 Yes Digitizer timebase error correction:
f_t = f_tb- (1 + adc_freq.v)
The effect on the estimated frequency is opposite:
f_est’ = f_est/(1 + adc_freq.v)
adc_jitter 0 No Digitizer sampling period jitter [s].
adc_aper 0 No ADC aperture value [s].
adc_aper_corr 0 No ADC aperture error correction enable:
A’ = A-pi-adc_aper- f_est/ sin(pi-adc_aper- f_est)
phi’ = phi + pi - adc_aper - f_est
adc_Yin_Cp le-15 Yes Digitizer input admittance 1D table.
adc_Yin_Gp le-15 Yes
adc_Yin_f [] No
adc_sfdr 180 No Digitizer SFDR 2D table.
adc_sfdr_f [] No
adc_sfdr_a [] No
tr_type “r No Transducer type string (“rvd” or “shunt”).
tr_gain 1 Yes Transducer gain correction 2D table (multiplicative).
tr_gain_f [No
tr_gain_a (] No
tr_phi 0 Yes Transducer phase correction 2D table (additive).
tr_phi_f [] No
tr_phi_a [] No

83

Table F.7: List of input quantities to the TWM-MFSF wrap-

per.

Name Default | Unc. | Description

tr_sfdr 180 No Transducer SFDR 2D table.

tr_sfdr_f [] No

tr_sfdr_a [] No

tr_Zlo_Rp le3 Yes RVD transducer low-side impedance 1D table. Note

tr_Zlo_Cp le-15 Yes this is related to loading correction and it has ef-

tr_Zlo_f [] No fect only for RVD transducer and will work only if
adc_Y in is defined as well.

tr_Zbuf_Rs 0 Yes Loading corrections: Transducer output buffer output

tr_Zbuf_Ls 0 Yes series impedance 1D table. Leave unassigned to dis-

tr_Zbuf_f (] No able buffer from the correction topology.

tr_Zca_Rs le-9 Yes Loading corrections: Transducer high side terminal

tr_Zca_Ls le-12 Yes series impedance 1D table.

tr Zca_f [] No

tr_Zcal_Rs le-9 Yes Loading corrections: Transducer low side terminal se-

tr_Zcal _Ls le-12 Yes ries impedance 1D table.

tr_Zcal f [1 No

tr_Yca_Cp le-15 Yes Loading corrections: Transducer output terminals

tr_Yca_D le-12 Yes shunting impedance.

tr_Yca_f [] No

tr_Zcam le-12 Yes Loading corrections: Transducer output terminals

tr_Zcam_{f (] No mutual inductance 1D table.

Zcb_Rs le-9 Yes Loading corrections: Cable series impedance 1D ta-

Zcb_Ls le-12 Yes ble.

Zcb_f (] No

Ycb_Rs le-15 Yes Loading corrections: Cable series impedance 1D ta-

Ycb_Ls le-12 Yes ble.

Ycb_f [] No

84

Table F.8: List of output quantities of the TWM-MEFSF wrapper. The quantities marked
* may have partial or none assigned uncertainty depending on the selected uncertainty
calculation mode. They will be available only for Monte Carlo uncertainty method.

Name | Uncertainty | Description

f Yes Vector of frequencies of all fitted components [Hz].

A Yes Vector of amplitudes of all fitted components.

ph Yes* Vector of phases of all fitted components [rad].

thd Yes Total harmonic distortion of the fitted components
[%]. Note it is a fundamental referenced value.

85

Table F.9: List of “calcset” options supported by the TWM-MFSF wrapper.
Name Description

calcset.unc Uncertainty calculation mode. Supported:
“none”, “guf” for uncertainty estimator, “mcm”
for Monte Carlo.

calcset.mcm.method | Monte Carlo evaluation mode: “singlecore”
- single core evaluation, “multicore” - Paral-
lel evaluation using “parcellfun” for GNU Oc-
tave or “parfor” for Matlab “multistation” -
Multicore evaluation using “multicore” package
(GNU Octave only yet).

calcset.mcm.repeats | Monte Carlo iterations count. Use at least 100
to get any usable estimate.
calcset.mcm.proc_no | Number of parallel instances to use for the par-
alleled modes. Use zero value to not start any
server processes for the “multistation” mode.
This option expects user started the server pro-
cesses manually in the job sharing folder. This
option causes less overhead for the batch pro-
cessing or runtime calculations.
calcset.mcm.tmpdir Jobs sharing folder for the “multistation” mode.
This should be an absolute path to the sharing
folder. Keep in mind the package “multicore”
will erase the content of this folder before each
new calculation!

calcset.mcm.user_fun | User function to call in the “multistation” mode
after startup of the server processes. Example:
“calcset.mcm.user_fun = @coklbind2”. Leave
empty to not execute any function.

calcset.loc Level of confidence [-].
calcset.verbose Verbose level.
calcset.dbg_plots Non-zero value shows debugging plots of the

MFSF uncertainty calculator.

86

F.2.2 Algorithm description

Internal structure of the TWM-MFSF wrapper is shown in the fig. E?I The wrapper
supports only single-ended input, so the signal conditioning is simple. The wrapper starts
by a call of the QWTB algorithm “MFSF” to calculate the estimates of the harmonics.
This call is performed with uncertainty option disabled, because at this point the required
parameters for its calculation are not know.

Follows correction of the timebase frequency error. Next, the DC offset of the digi-
tizer is corrected. In the next step, the wrapper compensates the aperture error, digitizer
gain and phase errors and transducer gain and phase errors. At the same time the uncer-
tainties of the corrections are calculated.

Next, the uncertainty calculator/estimator takes place. First, the required parameters
for the calculation are prepared: jitter, system SFDR and digitizer resolution. Then, the
wrapper calls the QWTB “MFSF” algorithm for the second time, but this time with en-
abled uncertainty calculation. Returned uncertainties are scaled by the correction factors
so they match the scaled estimates. Next, the algorithm uncertainties are combined with
the correction uncertainties and the required quantities are expressed and returned.

Optional uncertainty
calculation

TWM-MFSF :
i | Get system parameters:
; 1 SFDR, LSB, jitter, etc.

Call MFSFQWTB
algorithm with enabled
uncertainty to get its
uncertainty estimates:
u_fu A u ph, u_dc

Call MFSFQWTB
algorithm with disabled
uncertainty to get
estimates: f, A, ph, dc

[Fix timebase error of f. l !
A 4 Scale uncertainties u_f,
[le dlgtltlzer DC offset of] § U_A, u_ph, u_dc by gain
g correction factors to
'*Z, match f, A, ph, dc.
[Fix apenure error for:] V
A ph Combine algorithm and
) { correction uncertainties
Apply dlgltlzer gain and i i of: f, A, ph, dc |
phase corrections to: _____________
A, ph dc v
: Express quantities:]
f0, f, A, phi, dc, thd
AppIy transducer gain : :
and phase corrections to: : ;

Figure F.7: Structure of TWM-MEFESF algorithm wrapper. Note the green blocks are calls
to another QWTB wrappers.

87

F.2.2.1 QWTB algorithm MFSF

The structure of the QW'TB wrapper “MFSF”, which contains the fitting function “MFSF()”
itself is shown in ﬁg.Q@. The wrapper starts with optional override of the internal initial
estimator of fundamental component frequency by function “ipdft_spect()”. Follows the
call of the “MFSF()” function itself. The function returns fitted harmonic coefficients f,
A, ph and offset O. It also calculated Total Harmonic Distortion (THD) following the
“fundamental referenced” definition:

(F.12)

where h is harmonic index and H is harmonics count.

estimates

P
I MFSF I Call SP-WFFT QWTB
algorithm to get
signal spectrum: fh, amp

Optional call to -
Remove near-DC bins

ipdft_spec() to get better
initial estimate of 0.
Remove fitted
components f.

fesw ¢signal
f(1).

Call MFSF() to get)
Remove up to 100

estimates: f, A, ph
remaining components

Combine estimates and
uncertainties.
Express quantities: with highest amplitudes.
f, A, ph, THD

guf - estimator

mcm - Monte Carlo

Calculate SNR, check
limits of the estimator
input parameters.

Prepare list of harmonics

to simulate (all fitted + up

to 10 harmonics + up to
10 other dominant

\ components))

Add remaining freq.
components to
rms_noise.

Estimate uncertainties:
u_A(1), u_A2..?), u_fo

spectrum components

Perform Monte Carlo
using the harmonics, rms
noise, system SFDR,
jitter, adc resolution, etc.:
u_f,u_A, u_ph

Calculate RMS estimate
of the residual spectrum:
rms_noise.

__________ uncertainties v

Figure F.8: Structure of MFSF algorithm wrapper. Note the green blocks are calls to
another QWTB wrappers, the gold cells are calls to another functions described in the
text.

The Multi-Frequency Sine-Fit algorithm itself (function “MFSF()”) is used to es-
timate the harmonic components that are present in non-coherently sampled periodic
signal. The main input parameter is the sampled record y(n - Ts) having the length N,
the sampling period T and the index signal harmonics to be estimated & = [1, h]. Op-
tionally, the method for initial guess estimation and the cost function threshold can be
defined (the default value for the threshold is 3.5 - 107!!). The outputs of the algorithm
are: (i) frequency of the fundamental signal f1, (ii) amplitudes Al to Ah and (iii) the
phases ¢; to ¢, of the analysed fundamental signal and harmonics, (iv) offset of the
sampled signal Ay, (v) total harmonic distortion THD, (vi) total number of iterations
and (vii) variance amplitude estimate.

88

The frequency of the fundamental signal fi, and complex amplitudes Acomp, i are
estimated first by nonlinear-least-square algorithm which iteratively minimize the Kxis
function (equation) using Gauss-Newton procedure [20]. The first approximate
frequency of the record y is estimated using either peak amplitude DFT bin frequency
or interpolated DFT frequency estimate.

N h 2
KNLS(Acomp,Oa Acomp,l;) Acomp,h; fl) = Z (y(n : TS) - Z Ak : expj.k-ng.ﬂ.fl.(F)?’,)
k=—h
Ay = AL (F.14)

n=1

After the complex harmonic amplitudes Acomp, i are defined the amplitudes A; and
the phases ¢y, of the fundamental signal and harmonic components as well as the offset
Ag and the THD of the record are calculated using following equations:

Ak - \/Agomp,real,k + Agomp,imag,k’ ke [17 h]? (FIS)
Acomp,imag k
¢p = arctan —————— k € [1,h], (F.16)
comp,real,k
AO = Acomp,O; (F17)
h
LA
THD = %. (F.18)
1

F.2.2.2 Uncertainty calculation

The TWM-MEFESF supports two modes of uncertainty calculation. First option is the
Monte Carlo mode, which is slower, but more accurate and it can handle any number of
fitted components. Second option is fast estimator, which is less accurate, but consider-
ably faster.

Note the uncertainty calculation is split between the “TWM-MFSF” wrapper and
“MFSF” wrapper as shown in fig. @ The uncertainty of the algorithm is calculated in
the “MFSF” wrapper, whereas the uncertainty of the corrections is included in the TWM
wrapper “TWM-MFSF”.

First part of the uncertainty calculation is in the “MFSF” wrapper and it is common
for both modes of calculation . The spectrum analysis of the input signal is performed
by the “SP-WFFT” algorithm with the windowing function “Flatttop HFT116D” []17],
which has low scalloping and good spectral resolution. The spectrum is heuristically
analysed:

1. The fitted components are removed from the spectrum. These are not relevant for
the uncertainty evaluation, as they are already known from the “MFSF()” function
itself, but they must be removed from the spectrum before searching the additional
frequency components.

&9

2. All harmonics of the fundamental frequency “f0” exceeding the threshold relative
to the fundamental component are identified and removed in a full bandwidth.

3. Upto 100 residual components (harmonic or inter-harmonic) exceeding the thresh-
old relative to the fundamental component are identified and removed in a full
bandwidth.

4. The residual signal is taken as RMS noise.

Following steps differ for the Monte Carlo mode and estimator.

F.2.2.2.1 Monte Carlo

The Monte Carlo would be extremely slow if all harmonics and inter-harmonics are taken
into account, because in fact it takes longer to synthesize the waveform with all the fre-
quency components than to apply MESF algorithm. So, before Monte Carlo itself, a se-
lection of the dominant components is performed. All fitted components are simulated,
up to 10 harmonics of “f0” are simulated and 10 of the remaining harmonic and inter-
harmonics with highest amplitudes are simulated. The rest of the components identified
from the spectrum is added to the RMS noise and simulated together as a noise.

The Monte Carlo (MC) simulation itself is performed by the function “proc_MFSF()”,
which is called once for each MC iteration cycle. The function does following steps:

1. Randomize fundamental frequency f0 in a small range +0.001 Hz/Hz to prevent
accidental lock in some local minimum of uncertainty.

2. Generate time vector with the jitter effect.

3. Generate list of fitted harmonics and randomise their amplitudes by +1 % to reflect
fitted amplitude uncertainty. Generate random phase angles of the harmonics,
because it is not easy to state what was accuracy of the fit. This should produce
the worst case errors.

4. Randomise the fitted harmonics by system SFDR.

5. Generate additional harmonics of the f0, based on the identified list from the
spectrum. Randomize their amplitudes by =1 % and generate random phase.

6. Generate inter-harmonics based on the spectral analysis. Randomise frequency by
41 DFT bin to reflect resolution of FFT spectrum, amplitude by 1 % and generate
random phase.

7. Synthesize waveform with all the harmonics and inter-harmonics.

8. Add RMS noise.

90

10.
11.

12.

. Add random offset with very pessimistic uncertainty, because MFSF may not es-

timate the DC correctly, when not all harmonics are in the fitted list.
Perform quantisation of the waveform.
Call “MFSF()” to get estimates of f, A, ph and O.

Compare the estimates to the actually generated parameters.

The results from the iterations are processed according to the GUM Annex 1 [2] using
function “scovint()” to get uncertainties of the estimated components.

Note the MC evaluator itself uses function “qwtb_mcm_exec()”. This function is
internally designed to enable parallel calculation of the MC iteration cycles. It offers
three modes of parallelisation:

1.

2.

calcset.mcm.method = ‘singlecore’: Single core calculation.

calcset.mcm.method = ‘multicore’: Multicore operation using “parcellfun()”
from “parallel” package for GNU Octave or “parfor” for Matlab. Note the use
of Matlab’s “parfor” for parallelisation is just a user wish. Actual parallelisa-
tion mode is decided by Matlab. The package “parcellfun()” implementation does
work only for Linux. Windows implementation was not functional at least up to
GNU Octave version 4.2.2.

. calcset.mcm.method = ‘multistation’: Multiprocess/multistation calculation us-

ing “multicore” package for GNU Octave (Matlab is not supported yet). Note the
The “multistation” method requires to define shared folder path for the job files.
Otherwise it will create the shared folder in temp folder, which may not be appre-
ciated by the SSD disks owners. The mode “multistation” also have one specific
feature. It can initiate the user function after startup of the server processes. The
function is defined in the “calcset.mcm.user_fun” variable. The example of the
use for this optional input is CMI’s supercomputer “Cokl” [[18] which requires to
call a special script to assign server processes to particular CPU cores.

See table @ for list of the additional parameters. Note at least 100 iterations is the
absolute minimum for which the MC mode provides any usable uncertainty estimates.
The processing time for an evaluation at 4 cores with 1000 cycles and N = 10000
input samples, 3 fitted harmonics and 10 additional spur harmonics is typically below
20 seconds. However, the situation may change drastically when more harmonics is fitted
or high count of spur harmonic components is presents in the signal.

91

F.2.2.2.2 Fast estimator

The MFSF algorithm estimates several output parameters therefore the uncertainty was
analysed for the frequency and the amplitude of the fundamental signal f; and A, and
for the amplitudes of the other harmonic components As to Aj,. The phases, the offset A
and the THD are additional informative parameters calculated by the MFSF algorithm,
therefore the uncertainty analysis for those parameters was not performed.

Three uncertainty contributions were considered in this study (see Table): reso-
lution, jitter and noise. Additionally, several other parameters related to the sampled sig-
nal or sampling (i.e. condition) are expected to affect the uncertainty therefore enormous
number of Monte Carlo simulation would be needed for accurate uncertainty analysis.

Table F.10: A list of parameters that were varied during the Monte-Carlo simulations.

Uncertainty contribution Variation range Reference value
RMS jitter Ins-10ns 1ns (Ons)
resolution 10pV-100mV 10pnV (0V)
noise, SNR*! 102 - 10° 1000 (infinite)

Condition parameters

amplitude of the fundamental signal, A1 0.1V -1000V 1V
frequency of the fundamental signal, f1 10Hz-200Hz 100Hz

SFDR*? 0-0.5 0.1
sampling frequency, f; SkHz-200kHz 10kHz
number of samples, N 500Sa—-100kSa 10kSa

*1 SNR in this study is defined as an amplitude of the fundamental signal
vs. the RMS noise ratio.

*2 SFDR is spurious-free dynamic range which is defined as the har-
monic amplitude to fundamental signal amplitude ratio.

Herein, different and slightly simplified approach was used. We run 18 different
Monte Carlo simulation sets. For each set only one uncertainty contribution was con-
sidered using the bold reference value given in Table . The other two uncertainty
contributions were neglected by using the reference values given in the brackets. Ad-
ditionally, only one condition parameter has been varied at the time using the variation
range as defined in Table @ while we used the reference values for the other condi-
tion parameters. We also verified the linearity of uncertainty contribution by varying its
value over a certain variation range while neglecting the other uncertainty contributions
(by using the reference values given in brackets) and keeping all condition parameters at
reference values. For each combination of uncertainty contribution, condition and vari-
ation range we performed 25000 simulation where one additional harmonic component
has been randomly chosen between 2nd and 10th components. Additionally, the initial

92

phases of the fundamental signal and harmonic component have been randomly varied
between +7m and —7. For each simulation a Gaussian distribution has been obtained.
The uncertainty contribution (Gaussian distribution, £ = 1) for each estimated parame-
ter (i.e. fi, A1, Ax) due to the resolution, noise and jitter are defined by equations to
@. The uncertainty contributions for each estimated parameter are finally combined,
and recalculated for Gaussian distribution, &k = 2:

U res

UA, res

UAy, res

U f noise

U Ay noise

U Ay, ,noise

U jitter

UA, jitter

UA,, jitter

Uy = 204 UF e T UG nise T U itters
up, = 2- u1241,res + u,241,noise + u?‘h,jitter?
Ug, = 2- \/uilh,res + uzlh,noise + u2Ah,jitter'
S 1.6 N 2 [res
0-52mHz (10{<HZ> ' (10kSa) ' (A_l)
0.5 - <é " res,
[s
res,

fs N \ " [/SNR
10kHz 10kSa 1000)

N \ " /4 SNR
1O”HZ'(l()1<Sa> (1\/) (W) ’
N O\ 9P Ay SNR\ !
kSa 1V 1000 ’
1.2 —1.7 0.55
| uHz - [s (N ' fi
10kHz 10kSa 100 Hz

1 1 .. 1
fi jitter
o1uv- (2L . :
ad (1V) <1OOHZ Ins)

—0.5 1 .
e (i) (%) (o)
10kHz 1V 100Hz

F.2.3 Validation

The algorithm TWM-MFSF has many input quantities and some of them are matrices.
That is too many possible degrees of freedom. Thus, varying the quantities in some

93

(F.19)
(F.20)

(F.21)

(F.22)

(F.23)

(F.24)

(F.25)

(F.26)

(F.27)

)(F 28)

(F.29)

(F.30)

systematic way would be very complicated if the validation should cover full range of
used signals and corrections. Therefore, an alternative approach was used.

QWTSB test function “alg_test.m” was created, which performs the validation using
randomly generated test setups. It randomizes the signal parameters, correction quanti-
ties and uncertainties and algorithm configurations in ranges expected to occur during
the real measurements. The test is run many times to cover full operating range of the
algorithm. Following operations are performed:

1. Generate signal with known frequency, amplitude, phase of the fundamental fun-
damental and harmonics component and with a know DC offset.

2. Distort the signal by inverse corrections, i.e. simulate the transducers, and digitizer
(e.g. gain errors, quantisation, SFDR ...).

3. Run the algorithm TWM-MEFSF with enabled uncertainty evaluation to obtain the
estimated values and corresponding uncertainties of the frequency (fundamental
signal), amplitude (fundamental signal and harmonics), phase (fundamental signal
and harmonics), DC and THD estimation.

4. Compare the reference and calculated values and check if the deviations are lower
than assigned uncertainties.

5. Repeat N times from step , with different setup parameters, different corrections
randomised by their uncertainties, and with randomised noise, SFDR and jitter.

6. Check that at least 95 % of results passed (for 95 % level of confidence).

Following validation applies only to the fast uncertainty estimator. The Monte-Carlo
uncertainty calculator was not validated.

The total number of Monte-Carlo simulations was 200000. The parameters of the
input signal, the digitizer and transducer settings were randomly varied. The sampling
frequency was between 5 kHz and 200 kHz and the number of samples between 500 Sa
and 100 kSa. The frequency of fundamental signal was between 10 Hz and 200 Hz. The
frequency of the harmonics and interharmonics were always above frequency of the fun-
damental signal but below the Nyquist frequency. The number of harmonics that were
added to the fundamental signal and that needs to be estimated by the algorithm was 3.
The number of interharmonics was 1. The amplitude of the fundamental signal was be-
tween 0.1 V and 1000 V and the amplitude of the harmonics and interharmonic between
0.00001 and 0.05 and between 0.00001 and 0.02 of the amplitude of the fundamental sig-
nal, respectively (the amplitudes have been varied individually for each harmonics and
interharmonic). The DC offset was between -10 and +10 of the amplitude of the fun-
damental signal. The phases of the fundamental signal as well as of the harmonics and
interharmonic were individually and randomly varied between +3.14 rad and -3.14 rad.

94

The ADC noise was between le-11 and 1e-3 of the amplitude of the fundamental signal
while the jitter was between 1e-9 s and le-7s. Additionally, the spur has been added to
the signal (spurious free dynamic range was 100e-6, number of spurs 10). ADC aper-
ture was between le-5s and 4e-5s, ADC gain between 1 and 1.5, ADC phase between
+1.57rad and -1.57rad, frequency correction of the digitizer timebase between -5e-3
and 5e-3, ADC offset between 0.005 V and 0.005 V and number of bits between 22 and
24. Relative time-stamp of the first sample was varied between -10s and 10s. The trans-
ducer gain was between 0.5 and 20 and the transducer phase was between +1.57 rad and
-1.57rad. The resistive voltage divider low-side impedance value (i.e. resistance and
capacitance) were between 100 € and 500 Q and 0.1 pF and 10 pF, respectively (only
resistive voltage divider was used in the simulations). The randomisation of corrections
was also enabled which means that not only the uncertainty of the algorithm but also the
contributions of the correction uncertainties were included in the Monte-Carlo simula-
tions.

The success rate of the TWM-MFSF algorithm for the fundamental frequency esti-
mation was 99.91 %, 99.63 % for the amplitude of the fundamental signal, 99.40 % for
the amplitude of the harmonics, 99.77 % for the phase of the fundamental signal, 77.62 %
for the phase of the harmonics, 68.24 % for the DC and 59.59 % for the THD.

Note the preliminary tests for the Monte Carlo method show much higher success
rates at least for the harmonics, however the processing time is much higher.

95

Appendix G

SFDR test.m

% SFDR algoritm test for a selected sinewave and with variation
of the input
% value for the signal frequency

clear all, close all

% Generate sine wave parameters
DI.Anom.v = 1; % signal amplitude

DI.f.v = 1le2; % signal frequency, lower value
Dl.ph.v = 0; % signal phase
DI.O.v = 0; % signal offset

%ADC parameters
DI.bitres.v = 28:; % bit resolution
DI.FSR.v = 2; % full scale range

% Sampling parameters
DI.fs.v = le4; % sampling frequency: 10 kHz

% Time series:
Dl.t.v= [0 : 1/Dl.fs.v : 1-1/DIl.fs.v];

% Selection of Harmonic (spurious) and distortion level to be
added to the signal

harm = 1.1;

distortion_dB = —40;

96

% Run SFRD algorithm on input data |DI|. Frequency values: 100
Hz to 1 kHz, step = 100 Hz
i=1
for f = 100:100:1000
DI.f.v=f; % signal frequency, for coherent sampling or
% DI.f.v = f*x(14+10e—6); % signal frequency, for non—coherent
sampling , with
% deviation in frequency

% Sampled values

Dl.y.v = ones(size(Dl.t.v)).%0;

Dl.y.v = DIl.Anom.v.*sin (2.xpi.xDl.f.v.xDl.t.v + DIl.ph.v) +
DI.O.v;

% Add distortion with level and harmonic selected above
Dl.y.v = Dl.y.v + DI.Anom.vx10" (distortion_dB /20)*sin (2x*pix
harm«DI.f.v«Dl.t.v + Dl.ph.v) + DI.O.v;

% Run SFDR algorithm and copy result to SFDRdBc.y vector
DO = qwtb('SFDR", DI);
SFDRdBc.y.v(i) = DO.SFDRdBc.v;
i=i+1;
end

source_code_hard_links/SFDR_script/sfdr_example2_vmc.m

97

Appendix H

SFDR_repeat_test.m

% SFDR algoritm test for a selected sinewave with random noise
added to each sample and
% with 1000 repetitions

clear all, close all

% Generate sine wave parameters
DI.Anom.v = 1; % signal amplitude
DI.f.v = 1000; % signal frequency
Dl.ph.v = 0; % signal phase
DI.O.v = 0; % signal offset

%ADC parameters
DI. bitres.v = 28; %bit resolution
DI.FSR.v = 2; % full scale range

% Sampling
Dl.fs.v = le4; % sampling frequency: 10 kHz
%Dl . fs.u = 0;

% Time series:
Dl.t.v= [0 : 1/Dl.fs.v : 1-1/DIl.fs.v];

% Selection of Harmonic (spurious) and distortion level to be
added to the signal

harm = 1.5;

distortion_dB = —80;

% Selection of noise level to be added to the signal:

98

Noise = 1le—6;

% Run SFRD algorithm on input data |DI|: repeat 1000 times
i=1
for i = 1:1:1000

% Sampled values

Dl.y.v = ones(size(DIl.t.v)).x0;

Dl.y.v = DIl.Anom.v.*sin (2.xpi.*xDIl.f.v.«Dl.t.v + Dl.ph.v) +
DI.O.v;

% Add distortion with level and harmonic selected above

Dl.y.v = Dl.y.v + DI.Anom.vx10"(distortion_dB /20)xsin (2% pix
harm«DI.f . v«Dl.t.v + Dl.ph.v) + DI.O.v;

% Add random noise to every sample
Dl.y.v = Dl.y.v + normrnd (0, Noise ,size(Dl.y.v));

% Run SFDR algorithm and copy result to SFDRdBc.y vector
DO = qwtb('SFDR", DI);
SFDRdBc.y.v(i) = DO.SFDRdBc.v;
i=i+1;
end

source_code_hard_links/SFDR_script/sfdr_example3_vmc.m

99

Appendix I

SFDR unc_test.m

% SFDR algoritm test for a selected sinewave with

added to each

% sample and with variation of signal frequency

clear all, close all

% calculation settings: monte carlo
CS.unc = 'mem’;

CS.mcm.repeats = le3;
CS.mcm. method = 'multicore ';
CS.mcm. procno = 6;

% variation settings:
CS.var.dir = 'SFDR’;
CS.var.dir = 'freq_estimate’
CS.var.cleanfiles = 1;

% Generated sine wave:
DI.Anom.v = 1; % signal amplitude

DI.f.v = 1e2; % signal frequency, lower
Dl.ph.v = 0; % signal phase
DI.O.v = 0; % signal offset

%ADC parameters
DI. bitres.v = 28; %bit resolution
DI.FSR.v = 2; % full scale range

% Sampling parameters

Dl.fs.v = le4; % sampling frequency 10 kHz

100

value

uncertainty

% Time series
DI.t.v=[0 : 1/Dl.fs.v : 1-1/Dl.fs.v];

% Sampled values

Dl.y.v = DI.Anom.v.x%sin (2.xpi.*Dl.f.v.xDl.t.v + Dl.ph.v) + DI.O
V5

% Add distortion at harmonic

harm = 0.5;

distortion_dB = —90;

Dl.y.v = Dl.y.v + DI.Anom.v%10"(distortion_dB /20)xsin (2xpixharm
*DIl.f.v«Dl.t.v + Dl.ph.v) + DI.O.v;

% Add uncertainty to every sample:
Dl.y.u = ones(size(Dl.y.v))xle—4;

%Add uncertainties to each input variable: needed to run the
qwtb fucntion called by qwtbvar

DI.Anom.u = DI.Anom.v%0;

DI.f.u = DI.f.vx0;

DI.ph.u DI.ph.vx0;

DI.O.u = DI.O.vx0;

Dl.t.u = ones(size(Dl.t.v)).x0;

DI.fs.u = 0;
DIl.bitres.u = 0;
DI.FSR.u = 0;

% Run the SFRD algorithm on input data |DI|,with calculattion
settings |CS| and
% with variation in f

Dlvar.f.v = linspace (100, 1000, 10);

jobfn = qwtbvar('SFDR’, DI, Dlvar, CS);
[x, y] = qwtbvar(jobfn, 'f', 'SFDRdBc');

% Output plotting

[H, x, y] = qwtbvar(jobfn, 'f’', 'SFDRdBc');
hold on
plot(xlim, —1l.x[distortion_dB distortion_dB], '—')

legend (' calculated SFDR', 'real value')

101

source_code_hard_links/SFDR_script/sfdr_examplel_vmc.m

102

Appendix J

PosIntHist.m

function y = PoslIntHist(x, NoBits)

% @fn PoslntHist

% @brief Creates histogram form positive integer values

% @param x The vector or matrix that conatins the positive
integers

% @return y The histogram calculated

% @author Tamés Virosztek , Budapest University of Technology
and Economics,

% Department of Measurement and Infromation Systems,
% Virosztek . Tamas@mit.bme. hu
% modified by David Peral dpera@cem.es

[s1,s2] = size(x);

if ~isempty(find(x ~= round(x),1)) || (min(x) < 1);
error('Input values are not positive integers');

end

y = zeros(max(max(x)),1);

y=histc(x,[1:27 NoBits]); %this command improve speed

end

source_code_hard_links/INL_scripts/PosIntHist.m

103

Appendix K

ProcessHistogramTest.m

function INL = ProcessHistogramTest(dsc,display_settings ,
varargin)

% ©fn ProcessHistogramtest

% @brief Processes measurement descriptor using histogram test
with

% sinusoidal excitation signal

% ©@param dsc The measurement descriptor to process

% @param display_settings A struct sets the options for each
window to

% appear or not

% warning _dialog : Warning_dialog box

% results_win: Results window

% summary_win: summary window

% @param varargin Additional paramemetrs to be passed:

% varargin{l} = estimate_ratio: the ratio of
histogram bins not used to

% estimate the amplitude and the DC component

% varargin{2} = edge_cut: the INL values near the
peak values

% of the sine wave may be inaccurate according to
the noise of

% the measurement. These INL values will not be
estimated .

% edge_cutoff determines the ratio of INL values
not to be

% estimated

%

% @return none

104

% @author Tamés Virosztek , Budapest University of Technology
and Economics,

% Department of Measurement and Information Systems,

% Virosztek . Tamas@mit.bme. hu

% modified by David Peral dpera®@cem.es, graphic output
omitted

% ProcessHistogramTest (dsc,display_settings ,estimate_ratio ,
edge_cut);

if (nargin = 3) %estimate_ratio is passed
ESTIMATE_RATIO = varargin{1};
EDGE_CUT = 0.00;

elseif (nargin = 4) %edge_cut is passed
ESTIMATE_RATIO = varargin{1l};
EDGE_CUT = varargin{2};

else %no addtional parameters passed, or incorrect call of
ProcessHistogramtest ()
ESTIMATE_RATIO = 0.00;
EDGE_CUT = 0.00;

end

screensize = get(0, 'ScreenSize');

%Pre—processing time domain data:

%ADC codes must be positive integers to perform PoslntHist

if (min(dsc.data) < 0)
dsc.data = dsc.data + (0 — min(dsc.data))
warndlg('ADC codes are not nonnegative integers. Added %d to
each code to process histogram test')%, (0 — min(dsc.data))
)

end

if ((min(dsc.data) < 0) || (max(dsc.data) > 27 dsc.NoB — 1))
warndlg('Mismatch between number of bits provided and ADC
codes in the measurement record');

end
%Adding code offset +1 to process PosintHist in histogram test

dsc.data = dsc.data + 1;

h = PoslIntHist(dsc.data,dsc.Nob);

nh = h/sum(h); %Normalized histogram;
nch = zeros(2 dsc.NoB,1);

acc = 0;

105

for k = 1l:length(nh)
acc = acc + nh(k);
nch(k) = acc;

end

%End of the normalized cumulative histogram shall be filled
with ones:

nch(length(nh)+1:end) = ones(length(nch) — length(nh) , 1);

ideal_trans_levels = linspace(0,1,(27dsc.NoB—1)).";

%Finding transition levels assumed to be correct:

[val ,ind_low] = min(abs(nch — ESTIMATE_RATIO));

[val ,ind_high] = min(abs(nch — (1 — ESTIMATE_RATIO)));

if (ind_low < 1)
ind_low = 1;

end

if (ind_high > 27dsc.NoB — 1)
ind_high = 27dsc.NoB —1;

end

%Transition levels between T[m] and T[Il] are used to estimate A
and Mu

%Finding the optimal solution of these equations in least
squares sense:

D = zeros(ind_high—ind_low+1,2);

D(:,1) = ones(ind_high—ind_low+1,1);

for k = ind_low:ind_high
D(k—ind_low+1,2) = —cos(pi*xnch(k));

end

p = inv(D. *D)«D. "xideal_trans_levels(ind_low:ind_high); %p = |
mu;A] = inv(D. '«D)*D. ' *T(ind_low:ind_high);

trans_levels = zeros(2 dsc.NoB—1,1);
small = 0.1/sum(h); %Effect of "0.1 sample” in the normalized
histogram

for k = 1l:length(trans_levels)
if (abs((nch(k)) — 0) < small) % there are no code bins
tested below this transition level
trans_levels (k) = NaN;
elseif (abs(nch(k) — 1) < small) %thereare no code bins
tested above this transition level
trans_levels (k) = NaN;
else trans_levels(k) = p(1) — p(2)*cos(pixnch(k));
end
end

106

q = 1/(27dsc.NoB — 2);
INL = (trans_levels — ideal_trans_levels)/q;
%Discarding uncertain values of INL near the edge of the sine
wave
for k = 1:length(INL)
if ((nch(k) < EDGE_CUT) || (nch(k)) > (1 — EDGE_CUT))
INL(k) = NaN;
end
end

%Calibrating INL values to the lowest and highest transition
level estimated.

lowest_estimated = find (~isnan(INL) 1, first');

highest_estimated = find(~isnan(INL) 1, last’);

INL_calib = [zeros(lowest_estimated —1,1); linspace (INL(
lowest_estimated) ,INL(highest_estimated) ,h highest_estimated—
lowest_estimated+1).'; zeros(length (INL)—highest_estimated ,1)
[

INL = INL — INL_calib;

DNL = diff (INL);

%WARNING DIALOGS (if necessary)
if (display_settings.warning_dialog)
if ((lowest_estimated ~= 1) || (highest_estimated ~= 2 dsc.
NoB — 1))
warndlg({ 'The device is not overdriven enough’; ...
sprintf (' Transition levels under %d and over %d
cannot be estimated',6 lowest_estimated , highest_estimated); ...
"At least 120% full scale overdive is recommended’;

"Non estimated INL values vill be assumed to be 0';

"Results of histogram test may be less accurate
than desired '}, ...

"Histogram test warning');
end
if (avg_sample_per_code_bin < 10)

warndlg({sprintf (' Average sample per code bin is few

(%1.2f) " ,avg_sample_per_code_bin); ...

"Results of histogram test may be less accurate
than desired '}, ...

107

"Histogram test warning');
end
if (fractional_ratio > le—2)

warndlg ({ 'Ratio of samples in fractional period is too

high'; ...

sprintf('%1.3e’,fractional_ratio);

"Results of histogram test may be less accurate
than desired '}, ...

'"Histogram test warning ')
end

end

W Adding evaluation result to results cell array:
try

testresults = evalin('base’, adctest_process_results');
res_len = size(testresults ,1);

%Search for existing results block

existings_index = 0;

for k = 1:res_len

if strcmpi(dsc.model, testresults{k,1}.DUT.model)
&& strcmpi(dsc.serial ,testresults{k,1}.DUT.
serial) ...

).

&& (dsc.channel = testresults{k,1}.DUT.channel

&& (dsc.NoB = testresults{k,1}.DUT.NoB)

existings_index = k;
end
end
if (existings_index ~= 0) %existing result struct
%Adding new results:
testresults{existings_index ,1}.INL.max = max(INL);
testresults{existings_index ,1}.INL.min = min(INL);
testresults{existings_index ,1}.DNL.max = max(DNL) ;
testresults{existings_index ,1}.DNL.min = min(DNL);
else %new result struct shall be added
testresults{res_len + 1,1}.DUT. model = dsc.model;

testresults{res_len + 1,1}.DUT.serial = dsc.serial;
testresults{res_len + 1,1}.DUT.channel = dsc.channel;
testresults{res_len + 1,1}.DUT.NoB = dsc.NoB;
%Adding new results:
testresults{res_len
testresults{res_len
testresults{res_len

1,1}.INL.max = max(INL);
1,1}.INL.min = min(INL);
1,1} .DNL.max = max(DNL) ;

+ + +

108

testresults{res_len + 1,1}.DNL. min = min(DNL);

end

%updating adctest_process_results

assignin ('base’, adctest_process_results’', testresults);
catch

%If testresults global variable does not exist:

testresults = cell(1,1); %creating new cell array for

testresults
testresults {1,1}.DUT. model = dsc.model;
testresults{1,1}.DUT.serial = dsc.serial;
testresults {1,1}.DUT.channel = dsc.channel;
testresults {1,1}.DUT.NoB = dsc.NoB;
%Adding new results:
testresults {1,1}.INL.max = max(INL);
testresults {1,1}.INL.min = min(INL
testresults {1,1}.DNL.max = max(
testresults {1,1}.DNL. min = min(DNL);
assignin ('base’, 'adctest_process_results’', 6 testresults);
end
9WEnd of adding evaluatin results to cell array’®985/ %

%Callbacks: (for histogram_summary_window)
function OK_callback(source, eventdata)
close (histogram_summary_window) ;
end

end

source_code_hard_links/INL_scripts/ProcessHistogramTest.m

109

	Introduction
	Errors and uncertainties of an quantity estimating algorithm
	General description
	Case of a real measurement
	Pre-calculation of uncertainties
	Overall plan

	Software for calculation and propagation of uncertainties
	Q-Wave Toolbox
	TracePQM wattmeter
	QWTB variator

	QWTBvar interface
	Variation of quantities
	Plotting of results
	Generation of Look Up Table
	Interpolating Look Up Table
	Input variables
	Output variables
	Structure Varied data
	Structure Calculation settings
	User function
	Documentation of inner structure
	Examples of QWTBvar use

	Comparison of two algorithms
	Algorithms
	Method overview
	The testing signal
	Comparison results
	Influence of noise
	Influence of signal frequency
	Influence of signal length
	Influence of THD

	Comparison conclusion

	Example: Uncertainties of SFDR
	Preparation of waveform generator
	Selecting values of quantities
	Calculation of uncertainty propagation through algorithm
	Generation of LUT and adding into the algorithm

	SFDR algorithm validation and uncertainty estimation
	Algorithm error dependence on input quantities
	Algorithm error dependence on frequency, spurious component and SFDR value
	Algorithm error dependence on noise value

	Algorithm error and uncertainty dependence on uncertainty in each sampled value
	Algorithm error for non-coherent sampling
	SFDR conclusion

	INL-DNL algorithm validation and uncertainty estimation
	INL-DNL algorithm in QWTB
	Algorithm error and uncertainty
	Algorithm uncertainty dependence on input quantities
	Examples

	INL-DNL validation and calculation tips

	Conclusion
	Bibliography
	Appendices
	alg_compare.m
	thdtest.m
	make_lut.m
	alg_generator.m
	gen_and_calc.m
	alg_wrapper.m
	TWM-THDWFFT - THD from Windowed FFT
	TWM wrapper parameters
	Algorithm description and uncertainty evaluation
	Validation

	TWM-MFSF - Multi-Frequency Sine Fit
	TWM wrapper parameters
	Algorithm description
	Validation

	SFDR_test.m
	SFDR_repeat_test.m
	SFDR_unc_test.m
	PosIntHist.m
	ProcessHistogramTest.m

