Large-scale Grid Computing for Content-based Image Retrieval

Dr Chris Town

Dr Karl Harrison

Managing image overload

<u>The Web</u>: Google, Yahoo, MSN etc. only index *text* But: Only <25% of internet is text, can't search media *content*

The Home:

150 million digital cameras and over 500 million camera phones are sold each year

 \rightarrow over 1 trillion digital consumer pictures

 \rightarrow often called "DSC00xxx"...

→ no way of searching,
 organising, or browsing by
 content

Imense approach: Image Analysis

Imense approach: Image Retrieval

Internet scale Content-based Image Retrieval

2,000,000,000 images uploaded to flickr by Jan 2008

- There are more then 15x10^9 images hosted on the Internet!
 - 4000 CPU-years to index.
 - Or about 14 days on a 100,000 CPU cluster!
 - At 250kBytes/ image: 3750TB
 - \$0.10/Gig \$375,000 just for bandwidth to move the images about.

Dr Chris Town

CERN

- •14 TeV Collisions
- •27 km circumference
- •1200 14m SC dipoles
- •8.36 Tesla; -270c
- •5000 SC magnets
- •700,000L liquid He
- •12,000,000L liquid N₂

Data processing in particle physics

- Four main experiments at Large Electron-Positron (LEP) accelerator at CERN
- \Rightarrow Operated 1989-2000: collected total of 2.7-3.5 TByte of data per experiment

- Four main experiments at Large Hadron Collider (LHC), starting late 2009, will each collect around 5 TByte of data per day

Dr Chris Town

Grid Computing – CERN data centre

Dr Chris Town

STFC funded Collaboration

Collaboration with the Cambridge eScience Centre and the HEP group at the Cavendish (Prof Andy Parker), funded by STFC Have access to GridPP (UK) and EGEE (Europe) grids About 120,000 CPU, 100 PB of storage

Knowledge Transfer

STFC funded Collaboration

Dr Chris Town

Dr Chris Town

Grid Computing – software infrastructure

Dr Chris Town

Ganga job abstraction

A job in Ganga is constructed from a set of building blocks, not all needed for every job

Image-analysis jobs in Ganga

Ganga provides a command-line interface and scripting language, built on Python

Dr Chris Town

Initial Results

- 5 million images processed
- 6000 jobs completed
- Ported middleware to non-SL Linux
- Improvements to Ganga (features + usability)
- Job failure rates at 2% level, with two main causes
 - Proxy credential of submitting user expires before job starts
 Network failures, preventing upload of results to storage element

Site monitoring

Example site monitoring: running jobs at Lancaster for 8-day period (July 2008)

Image-processing jobs (camont) are small fraction of total

Dr Chris Town

Scaling to 18 million images

- Nine sites available to camont Virtual Organisation Birmingham, Brunel, Cambridge, Durham, Glasgow, Lancaster, Oxford, Royal Holloway (RHUL), Rutherford Appleton Laboratory (RAL)
- One Ganga instance run on each image host
- Status of jobs at each site checked every 10 minutes, and new jobs submitted, all going via gLite workload-management system
 - Conditions for submitting new job (1000 images):
 - Queued or running jobs at site < 100
 - Queued jobs at site < 30
 - Queued or running jobs at all sites < 400
 - Total failed jobs < 100

Performance Analysis

Job destinations and execution times

Data transfers to worker nodes

Dr Chris Town

