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ABSTRACT2

Short-term synaptic plasticity is found in many areas of the central nervous system. In the3
inhibitory half-centre central pattern generators involved in locomotion, synaptic depression is4
believed to act as a burst termination mechanism, allowing networks to generate anti-phase5
bursting patterns of varying periods. To better understand burst generation in these central pattern6
generators, we study a minimal network of two neurons coupled through depressing synapses.7
Depending on the strength of the synaptic conductance between the two neurons, this network8
can produce symmetric n : n anti-phase bursts, where neurons fire n spikes in alternation, with9
the period of such solutions increasing with the strength of the synaptic conductance. Relying on10
the timescale disparity in the model, we reduce the eight-dimensional network equations to a11
fully-explicit scalar Poincaré burst map. This map tracks the state of synaptic depression from12
one burst to the next and captures the complex bursting dynamics of the network. Fixed points of13
this map are associated with stable burst solutions of the full network model, and are created14
through fold bifurcations of maps. We derive conditions that predict the bifurcations between15
n : n and (n+ 1) : (n+ 1) solutions, producing a full bifurcation diagram of the burst cycle period.16
Predictions of the Poincaré map fit excellently with numerical simulations of the full network model17
and allow the study of parameter sensitivity for rhythm generation.18
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1 INTRODUCTION

Short-term synaptic plasticity may have a role in burst activity in central pattern generators (CPGs).20
Short-term synaptic depression is commonly found in neuronal networks involved in the generation of21
rhythmic movements, such as in the pyloric CPG of the spiny lobster [1, 2], or in the lumbosacral cord22
of the chick embryo [3]. Synaptic depression modulates the strength of synapses in response to changes23
to the presynaptic firing frequency. At a high neuronal firing frequency, depression weakens the strength24
of synapses and therefore reduces the magnitude of the postsynaptic response. At low firing frequency,25
it allows sufficient time for the synapse to recover from depression between spikes, leading to a stronger26
postsynaptic response. In reciprocal networks, synaptic depression has been shown to act as a “switch”,27
giving rise to a wide range of network dynamics such as synchronous and multi-stable rhythms, as well as28
fine tuning the frequency of network oscillations [4, 5, 6].29

Brown [7] pioneered the idea that synaptic depression acts as a burst termination mechanism in30
CPGs composed of reciprocally inhibitory neurons and involved in rhythm generation of locomotion.31
When one side is firing during a burst the other, antagonistic side, is prevented from firing by synaptic32
inhibition. However, the weakening of inhibition as a result of synaptic depression eventually releases the33
antagonistic side so that it starts firing, terminating the burst on the side that had originally been firing. This34
rhythmogenesis hypothesis has been considered one of a handful of standard mechanisms for generating35
locomotion rhythms in vertebrates [8, 9, 10]. It has been proposed as an explanation of the antiphase burst36
rhythm in struggling in Xenopus tadpoles [11].37
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Bose and Booth [6] investigated burst generation in a generic half-centre CPG that consists of two38
identical, tonically active Morris-Lecar [12] neurons coupled through inhibitory depressing synapses.39
Numerical simulations showed that when the reciprocal synaptic conductance between the two neurons is40
varied, the network produces symmetric n : n anti-phase bursts, with stronger synaptic coupling leading to41
longer bursts. They used methods from geometric singular perturbation theory to separate the timescales of42
the fast membrane, and the slow synaptic dynamics of the network to derive one-dimensional conditions43
necessary for the existence of stable n : n solutions (for n ≤ 2). According to these conditions the type of44
firing pattern largely depends on the slow depression dynamics of the synapses between the two neurons,45
and can therefore be predicted by knowing the strengths of the synaptic conductances of the two synapses.46
Thus, the scalar conditions derived in Bose and Booth [6] provide a method to numerically identify the47
type of stable n : n pattern for any given value of the coupling strength and n ≤ 2. However, they do not48
predict the exact period of such solutions. Furthermore, while they provide good arguments for the validity49
of their reduction assumptions and the resulting scalar conditions, they do not verify them numerically.50

Here we extend the previous analysis by providing a Poincaré map of the slow depression dynamics.51
This allows us not only to predict the types of stable n : n solutions the full network can produce, (for any52
n), but also to study how varying the coupling strength affects the period of such solutions. To do this,53
we build on, and numerically test, the assumptions on the fast-slow timescale disparity made in [6]. We54
reduce the two-cell model to a scalar Poincaré map that tracks the evolution of the depression from the55
beginning of one burst to the beginning of the next burst. Stable fixed points of our map are associated with56
stable n : n burst solutions. Our map construction is motivated by the burst length map of a T-type calcium57
current, utilised by Matveev et al. [13], which approximates the anti-phase bursting dynamics of a network58
of two coupled Morris-Lecar neurons. In contrast to our model, the network described in the [13] paper59
does not contain short-term synaptic depression, and burst termination is instead accomplished through the60
dynamics of a slow T-type calcium current.61

The Poincaré map derived here replicates the results from numerical simulations of the full two-cell ODE62
system: Given the strength of maximum conductance between the two neurons, fixed points of our map63
predict the type and period of n : n patterns, the switch between burst solutions of different periods, as64
well as the occurrence of co-existent solutions. In addition to proving the existence and stability of fixed65
points, our map shows that fixed points are created via a fold bifurcation of maps. Finally, we use our map66
to derive algebraic conditions that allow us to predict parameter values of the maximum conductance at67
which n : n solutions bifurcate to (n + 1) : (n + 1) solutions, and vice versa. Because our map is fully68
explicit, it lays the framework for studying the effects of other model parameters on network dynamics69
without the need to run expensive numerical integrations of the ODEs.70

This paper is organised as follows. First, we introduce the network of two neurons, and describe the71
properties of single cell and synapse dynamics. We use numerical simulations of the network to provide72
an intuition for the range of possible burst dynamics the system can produce. Next, we state and justify73
the simplifying assumptions that are necessary for the map construction. Finally, we analytically derive74
the first return map of the depression variable as well as the conditions that are required for stable n : n75
solutions. We end this work with a discussion.76

2 MATERIALS AND METHODS

We consider a pair of identical Morris-Lecar neurons [12], with parameters from [6]. The Morris-Lecar
model is a set of two first-order differential equations that describe the membrane dynamics of a spiking
neuron. The depolarisation is modelled by an instantaneous calcium current, and the hyperpolarisation by
a slow potassium current and a leak current. The membrane potential vi and potassium activation wi of
neuron i (i, j = 1, 2) is described by:

v̇i = f(vi, wi)− ḡsj(vi − vs), (1)

ẇi = h(vi, wi). (2)

Here vs is the inhibitory reversal potential, and ḡ and sj are the maximal synaptic conductance and the77
synaptic gating, respectively, constituting the total inhibitory conductance ḡsj from neuron j to neuron i.78
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Function f(vi, wi) describes the membrane currents of a single cell:79

f(vi, wi) = −gCam∞(vi)(vi − vCa)− gKwi(vi − vK)− gL(vi − vL) + I. (3)

The currents include a constant current I , and three ionic currents: an instantaneous calcium current,80
a potassium current, and a leak current, with respective reversal potentials vCa, vK, and vL, as well as81
maximum conductances gCa, gK, and gL. The function h(vi, wi) models the kinetics of the potassium82
gating variable wi, and is given by83

h(vi, wi) =
w∞(vi)− wi

τw
. (4)

The steady-state activation functions m∞ and w∞ as well as the default model parameters are described in84
the Supplementary Material S1.85

The dynamics of the synaptic interactions between the neurons are governed by a synaptic gating variable86
si and a depression variable di:87

ḋi =

{
(1− di)/τa if vi < vθ,
−di/τb if vi > vθ,

(5)

ṡi =

{
−si/τκ if vi < vθ
0 if vi > vθ.

(6)

Variable di describes a firing rate dependent depletion mechanism that governs the amount of depression88
acting on the synapse. The model is agnostic with respect to the exact mechanism of this depletion, be89
it pre- or post-synaptic. When the voltage of cell i is above firing threshold (vi > vθ), variable di decays90
with time constant τb, and recovers with time constant τa when voltage is below firing threshold (vi < vθ).91
Since the synaptic inhibition occurs on a much faster timescale than synaptic depression, we assume that92
si is instantaneously reset to di whenever vi increases above vθ, where it remains throughout vi > vθ.93
Whenever vi < vθ, the synaptic variable decays exponentially with time constant τκ. The equations for94
the depression model are identical to the Bose et al. [14] model. These equations are a mathematically95
tractable simplification of the established phenomenological depression model previously described by96
Tsodyks and Markram [15].97

When the total inhibitory conductance ḡsj is constant, the membrane dynamics are determined by the98
cubic v-nullcline v∞(vi) and the sigmoid w-nullcline w∞(vi), satisfying v̇i = 0 and ẇi = 0, respectively.99
In case of no inhibition (ḡ = 0), the two curves intersect near the local minimum of v∞ to the left of vθ100
(commonly referred to as “left knee” of v∞), creating an unstable fixed point pf with a surrounding stable101
limit cycle of period T = Ta + Ts (fig. 1A). Here Ta is the amount of time the membrane potential spends102
above firing threshold (vi > vθ), while Ts is the time it spends below firing threshold (vi < vθ). Trajectories103
along that limit cycle have the familiar shape of the action potential (fig. 1B). Applying a constant nonzero104
inhibition, e.g. by letting sj = 1 and ḡ > 0, moves the cubic v∞ with the ensuing unstable fixed point down105
w∞ in the (vi, wi) -plane. When ḡ is large enough, the fixed point moves past the left knee and becomes106
stable via a subcritical Andoronov-Hopf bifurcation, attracting all previously periodic trajectories. In the107
following section we will refer to the value of the total conductance ḡsj at the bifurcation point as gbif .108

The two-cell network model is numerically integrated using an adaptive step-size integrator for stiff109
differential equations implemented with XPPAUT [16] and controlled through the Python packages110
SciPy [17] and PyXPP [18]. The following mathematical analysis is performed on the equations of a single111
cell. Unless required for clarity, we will therefore omit the subscripts i, j from here on.112

3 RESULTS

3.1 Anti-phase burst solutions113

Short-term synaptic depression of inhibition in a half-centre oscillator acts as a burst termination114
mechanism [7] and is known to produce n : n anti-phase burst solutions of varying period. Such n : n115
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solutions consist of cells firing bursts of n spikes in alternation. Figure 2A shows the timecourse of a116
typical 4 : 4 burst. While one cell is firing a burst it provides an inhibitory conductance to the other cell,117
preventing it from firing. Therefore, at any given moment one cell is spiking while the other is suppressed118
and does not spike. We will refer to the currently firing cell as “active” and we will call the suppressed cell119
“silent”. Additionally, we will distinguish between two phases of a n : n solution: We will refer to the time120
interval when a cell is firing as the “active phase”, and we will call the remaining duration of a cycle, when121
a cell is not firing, the “silent phase”.122

With each action potential of the active cell, short-term depression leads to a decrease of d, and123
consequently of s. If d depresses faster at spike time than it can recover in the inter-spike-intervals124
(ISIs), the total synaptic conductance ḡs will eventually become sufficiently small to allow for the silent125
cell to be released [19, 20] and start firing, thus inhibiting the previously active cell. While a cell is silent126
its depression variable can recover. Once the silent cell becomes active again its synaptic inhibition will be127
sufficient to terminate the burst of the previously active cell and commence a new cycle. As previously128
demonstrated by Bose and Booth [6], in a two-cell reciprocally inhibitory network with synaptic depression129
the coupling strength ḡ determines the type of n : n solution. Increasing ḡ produces higher n : n burst130
solutions with more spikes per burst and a longer cycle period. Figure 2 shows numerically stable n : n131
solutions for varying values of ḡ. For small values of ḡ the network produces anti-phase spiking 1 : 1132
solutions. As ḡ is increased the network generates solutions of increasing n, that is 2 : 2, 3 : 3, and 4 : 4.133
When ḡ is sufficiently large (bottom of fig. 2), one of the cells continuously spikes at its uncoupled period134
T while the other cell remains fully suppressed. Depending on the initial conditions either of the two cells135
can become the suppressed cell, which is why the suppressed solution is numerically bistable.136

Branches of numerically stable n : n solutions and their associated limit cycle period for varying values137
of ḡ are depicted in fig. 3A (see Supplementary Material S2 for algorithm description). Not only do higher138
n : n solutions branches require stronger coupling ḡ, but also within n : n branches the period increases139
with ḡ. In line with Bose and Booth [6] we find small overlaps between solution branches indicating140
numerical bistability, for example such as between the 2 : 2 and 3 : 3 solution branches. Branches of141
higher n : n burst solutions occur on increasingly smaller intervals of ḡ, for instance is the ḡ interval of142
the 5 : 5 branch shorter than that of the 4 : 4 branch and so on. The interval between the 5 : 5 branch and143
the suppressed solution (region between dotted lines in fig. 3A) not only contains even higher numerically144
stable n : n solutions, such as 11 : 11 bursts, but also other non-symmetric n : m solutions as well as145
irregular, non-periodic solutions. However, the analysis in the following sections will only be concerned146
with the numerically stable and symmetric n : n solutions.147

3.2 Mathematical analysis of two-cell network148

The goal of the following mathematical analysis is to reduce the complexity of the eight-dimensional149
system to a more tractable problem. As we will explain, we do this by approximating the full dynamics by150
a reduced system that describes the evolution of the depression variable d of either of the two cells. We will151
construct the solution of d in a piecewise manner from one spike to the next, first during the active phase,152
and then during the silent phase. This construction will require two assumptions about the membrane and153
synaptic dynamics. The first assumption states that during a burst the active cell fires at its uncoupled154
period T , which simplifies the construction of the solution of d. The second assumption states that once the155
inhibitory conductance acting on the silent cell drops below a critical threshold, the cell is immediately156
released and fires. The second assumption is necessary to predict the release time of the silent cell, which157
allows us to model the recovery of d during the silent phase. In other words, the second assumption requires158
that the release of the silent cell from inhibition depends only on the timecourse of the inhibition, and159
not on the membrane dynamics of the silent cell. The approximate validity of both assumptions can be160
observed in coupled relaxation-oscillator types of neurons such as the Morris-Lecar model we use, and will161
be numerically verified below. Both assumptions were first used in [6] to derive algebraic conditions that162
guarantee the periodicity of the depression variable for different n : n solutions. However here we will163
use these assumptions to construct a Poincaré map of d, which will provide a geometric intuition for the164
dynamics of the full two-cell network and its dependence on model parameters.165

Our first assumption about the model states that the active cell fires at its uncoupled period T , that is,166
during the active phase of a burst we have ISI = T . Solution profiles in fig. 2 suggest that the ISIs are167
indeed approximately constant. Numerically computing ISIs for all stable n : n solutions in fig. 3 reveals168
that ISIs differ by at most 1 ms from the intrinsic firing period T ≈ 376 ms. Assuming ISI = T seems169

This is a provisional file, not the final typeset article 4



Olenik et al. Scalar Poincaré map for bursting

reasonable given that inhibition acting on the silent cell decays exponentially on a much shorter timescale170
τκ than the duration of the ISI . Therefore, once the silent cell is released its trajectory quickly approaches171
the spiking limit cycle. Naturally the above assumption requires a sufficiently small τκ, and fails when τκ172
is large. In the Supplementary Material ?? we numerically explore how different values of τκ affect the173
ISIs of the active cell. Finally, assuming ISI = T allows us to ignore the non-linear membrane dynamics174
during the active phase, and to construct the evolution of the synaptic variables iteratively from spike to175
spike.176

Our second assumption states that the silent cell is released and spikes as soon as the total inhibitory177
conductance ḡs acting on it drops below some threshold value. We call this critical threshold value the178
“release conductance”, and define it as the value of ḡs at the time when the voltage of the silent cell first179
crosses the firing threshold vθ, that is when that cell is released and fires its first spike. Recall that when a180
cell is silent its v- and w-nullclines intersect at a stable fixed point and ḡs > gbif . A sufficient condition181
for the silent cell to be released is therefore ḡs < gbif . However, depending on the topology of the stable182
manifold, the (v, w)-trajectory of the silent cell can escape the stable fixed point and allow the cell to183
produce a spike for ḡs > gbif . In this case the value of the release conductance depends on the type of n : n184
solution and the coupling strength ḡ. For any stable n : n solution in fig. 3 we can compute an associated185
release conductance numerically by recording the value of ḡs at the time of the first spike of the silent cell.186
Such values of the release conductance are shown in fig. 4A, and the graph suggests that as n increases,187
the value of the release conductance converges to some constant conductance value g? ≈ 0.0068 mS/cm2.188
Here g? is the value of ḡs at the end of a cycle of a suppressed solution, just before the active cell spikes.189
Using g? as a constant approximation for the release conductance will allow us to formulate a scalar190
condition that predicts the release time of the silent cell. Moreover, using g? is convenient because its exact191
value can be derived explicitly, as will be shown in the following section.192

Assuming a constant release conductance for all n : n solutions will naturally introduce some error in the193
prediction of the release time of the silent cell. We can compute that error for any associated solution in194
fig. 4A by calculating the time interval between the first spike of the silent cell and the time when ḡs first195
crosses g?. We will call this time interval the “release delay”. Figure 4B shows the numerically computed196
graph of such release delays. For n > 1 the absolute delays are smaller than 2 ms. Therefore, using197

ḡs = g? (7)

as a constant release condition for all n : n solutions allows us to accurately predict the timing of the198
release of the silent cell. And to simplify the terminology, from now on we will refer to eq. (7) simply as199
the “release condition”.200

In summary: We assume that the release condition is sufficient to predict when the silent cell is released.201
Due to the symmetry of n : n solutions the release occurs at exactly half the period of the full cycle. The202
release time therefore uniquely determines the type of n : n solution. Furthermore, computation of the203
release time does not depend on the membrane nor the synaptic dynamics of the silent cell. Instead, the204
solution of the synaptic variable s of the active cell is sufficient to predict when ḡs = g? is satisfied. Finally,205
the value of s at each spike time is determined by the evolution of the depression variable d of the active206
cell. Constructing a solution of d during the active phase of either cell will therefore uniquely determine207
the solution of the full eight-dimensional network. However, finding the solution d requires us to know the208
initial value d(0) at the start of a cycle at t = 0. In the next section we will construct a scalar return map209
that tracks these initial values d(0) from cycle to cycle of stable n : n solutions.210

3.3 Construction of the scalar Poincaré map211

In this section we construct the scalar Poincaré map Πn : d? 7→ d?. Here the discrete variable d? tracks212
the values of the continuous depression variable d at the beginning of each n : n burst. The map Πn213
therefore describes the evolution of d, of either of the two cells, from the beginning of one cycle to the214
beginning of the next cycle. To simplify the map construction we will assume that an active cell fires215
exactly n times before it becomes silent. We will construct Πn by evolving d first during the active phase216
and then during the silent phase of the n : n limit cycle. The terms “active” and “silent” phases will be217
defined in terms of the state of the depression variable. During the active phase the depression variable of218
the active cell both decays and recovers, while during the silent phase it only recovers. First, let us give219
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explicit definitions of the active and silent phases of a burst. A schematic illustration of both phases is220
given in fig. 5.221

Suppose that at t = 0 cell 1 becomes active with some initial d(0). Cell 1 then fires n spikes at the222
uncoupled period T = Ta + Ts. Let s(t) and d(t) be the corresponding solutions of the synaptic and223
depression variables of cell 1. After n spikes the total conductance ḡs(t) acting on the silent cell 2 has224
decayed sufficiently to satisfy the release condition (7). That is at some time t = (n − 1)T + Ta + ∆t,225
where ∆t < Ts will be determined below, we have ḡs(t) = g? [6]. Cell 2 is then released and prevents cell226
1 from further spiking. Once released, cell 2 also fires n spikes until cell 1 becomes active once again. Let227
Pn denote the full cycle period of a n : n solution:228

Pn = 2
(

(n− 1)T + Ta + ∆t
)
. (8)

We can now define the active and silent phases of cell 1 explicitly. The active phase of a burst is the interval229
that lasts from the first spike time up until the beginning of the silent phase of the last spike, that is for time230
0 < t < (n− 1)T + Ta. During the active phase of cell 1, the silent cell 2 is inhibited sufficiently strong to231
prevent it from firing, hence ḡs > g?. The silent phase of cell 1 is the remaining duration of the cycle when232
the cell is not firing, that is for (n− 1)T + Ta < t < Pn. The silent phase lasts for (n− 1)T + Ta + 2∆t.233

Note that only the silent phase depends on ∆t, which will play a central role in the construction of Πn.234
From eq. (8) ∆t can be computed as235

∆t =
1

2
Pn − (n− 1)T − Ta. (9)

We can use eq. (9) and the numerically computed bifurcation diagram of the period for stable n : n236
solutions in fig. 3A to obtain the graph of ∆t as a function of ḡ (fig. 6). Each continuous branch of ∆t is237
monotonically increasing and corresponds to a n : n burst: Stronger coupling ḡ increases the total synaptic238
conductance ḡs that acts on the silent cell, thus delaying its release. It is easy to see that for any n-branch239
we have ∆t < Ts: Once ∆t crosses Ts, the active cell can “squeeze in” an additional spike and the solutions240
bifurcate into a (n+ 1) : (n+ 1) burst.241

Distinguishing between the active and silent phases of a n : n cycle allows us to describe the dynamics of242
the depression variable d explicitly for each phase. As can be seen from fig. 5C, during the active phase d243
depresses when v > vθ and recovers when v < vθ. In contrast, during the silent phase d only recovers and244
does not depress. Given the initial d? = d(0) at the beginning of the cycle and the number of spikes in the245
active phase n, we can now construct the burst map Πn. The map246

Πn(d?) = Qn
(
Fn(d?

)
) (10)

is a composition of two maps. Map247
Fn : d? 7→ ∆t (11)

models the evolution of d in the active phase. Fn takes an initial value d? and calculates ∆t. Map248

Qn : ∆t 7→ d? (12)

models the recovery of d in the silent phase. Given some ∆t map Qn computes d? at the start of the next249
cycle.250

Our aim in the following analysis is to elucidate the properties of Πn and to understand the structure of251
its parameter space by exploring how the stable and unstable fixed points of Πn are created. To that effect252
it will be useful to include not only positive, but also negative values of d? to the domain of Πn. But it is253
important to add that values d? < 0 are biologically impossible as the depression variable models a finite254
pool of neurotransmitters, and therefore must be positive. Because Πn maps first from d? to ∆t, and then255
back to d?, we will also consider negative values of ∆t, interpreting them as n : n solutions with partially256
overlapping bursts. As will become evident, ∆t < 0 is only a formal violation of the biological realism of257
the map Πn, as numerically stable n : n solutions of the full system of ODEs only exist for ∆t > 0.258
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We start the construction of Πn by first considering the active phase and building the map Fn. At each259
spike time tk where d(tk) = dk, variable d decays first for the duration of Ta, as described by the solution260
to eq. (5). At t = tk + Ta we have261

d(tk + Ta) = dke
−Ta/τb . (13)

The depression variable then recovers for Ts until tk+1, where for 0 < t < Ts:262

d(tk+1) = 1− (1− dke−Ta/τb)e−t/τa . (14)

By substituting t = Ts we can build a linear map that models the depression of d from spike time tk to the263
subsequent spike time tk+1 during the active phase:264

dk+1 = λρdk + (1− ρ), (15)

where to keep the notation simple we let

λ := exp(−Ta/τb), (16)

ρ := exp(−Ts/τa). (17)

Given constant Ta and Ts, the derived parameter λ determines how much the synapses depresses when265
v > vθ, while ρ determines how much it recovers when v < vθ. Since 0 < λ, ρ < 1, the map in eq. (15) is266
increasing and contracting, with a fixed point at267

ds =
1− ρ

1− λρ
, (18)

where 0 < ds < 1. The value ds is the maximum depression value that can be observed in the suppressed268
solution where the active cell fires at its uncoupled period T (see fig. 2E). Using the release condition in269
eq. (7) allows us to derive the value of the minimum coupling strength that will produce the full suppressed270
solution, denoted as ḡs. Solving eq. (6) for s(t) with t = Ts and setting the initial value s(0) = dsλ then271
gives us the aforementioned approximation of the release conductance g?:272

ḡsdsλe
−Ts/τκ = g? ≈ 0.0068 mS/cm2. (19)

By substituting the definition of ds in (18) and rearranging, we can also write ḡs as a function of λ and ρ:273

ḡs(λ, ρ) =
1/λ− ρ
1− ρ

eTs/τκg?. (20)

Note that the above dependence of ḡs on λ is linear and monotonically decreasing. Increasing λ reduces the274
strength of the depression of the active cell. This in turn allows the active cell to fully suppress the silent275
cell at smaller values of ḡ.276

Solving eq. (15) gives us the linear map δn, that for some initial d? computes the depression at the nth277
spike time, that is d(tn):278

δn(d?) = (λρ)n−1d? + (1− ρ)
n−2∑
i=0

(λρ)i. (21)

Since λ < 1, function δn is a linearly increasing function of d? with a fixed point at ds for all n. Having279
identified d after n spikes, we can now use the release condition ḡs = g? (eq. (7)) to find ∆t. At the last280
(nth) spike of the active phase at time tn = (n− 1)T the synapse variable s is set to the respective value of281
d(tn) = δn(d?), and mirrors the value of d for the duration of Ta. At the end of the active phase at time282
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tn + Ta variable d has decayed to δn(d?)λ, therefore283

s(tn + Ta) = δn(d?)λ. (22)

Finally s decays exponentially for ∆t < Ts. Solving eq. (6) with initial condition s(0) = δn(d?)λ yields:284

s(∆t) = δn(d?)λe−∆t/τκ . (23)

Substituting s(∆t) into s of the release condition (eq. (7)) gives then285

ḡδn(d?)λe−∆t/τκ = g?. (24)

Our assumption of the release condition guarantees that the silent cell 2 spikes and becomes active when286
ḡs− g? crosses zero. Solving eq. (24) for ∆t allows us to compute ∆t as a function of d?, which defines287
the map Fn:288

Fn(d?) := τκ ln

(
ḡ

g?
λδn(d?)

)
= ∆t. (25)

Figure 7A shows Fn for various n, which is a strict monotonically increasing function of d? as well as ḡ.289
Larger values of d? and ḡ, respectively, cause stronger inhibition of the silent cell, and therefore prolong its290
release time and the associated ∆t. Map Fn is defined on d? > da, where da is a vertical asymptote found291
by solving δn(d?) = 0 in eq. (21) for d?, which yields292

da(n) = −(1− ρ)
∑n−2

i=0 (λρ)i

(λρ)n−1
≤ 0 . (26)

We now turn to the construction of map Qn, which describes the recovery of the depression variable293
during the silent phase. As we have identified earlier, the recovery of d in the silent phase of a n : n solution294
starts at time tn + Ta and lasts for the duration of (n− 1)T + Ta + 2∆t. Substituting that duration into the295
solution of d (eq. (5)) with the initial condition d(0) = δn(d?)λ yields the map Qn:296

Qn(∆t) := 1− (1− δn(d?)λ)e−((n−1)T+Ta+2∆t)/τa . (27)

We can find δn(d?), i.e. the value of d at the nth spike time, by rearranging the release condition in eq. (24):297

δn(d?) =
1

ḡλ
g?e∆t/τκ . (28)

Map Qn is shown in fig. 7B for various values n. Note that Qn is monotonically increasing as larger values298
∆t imply a longer recovery time, and hence Qn grows without bound. All curves Qn intersect at some299
∆t = τκ ln [ḡ/g?] where300

Qn

[
τκ ln

(
ḡ

g?

)]
= 1. (29)

As we will show in the next section, all fixed points of the full map Πn occur for d? < 1. We will therefore301
restrict the domain of Qn to (−∞, τκ ln [ḡ/(g?)]) and the codomain to (−∞, 1). Additionally, while values302
∆t > T will be helpful in exploring the geometry of Πn, recall from fig. 6 that in the flow system n : n303
solutions bifurcate into (n+ 1) : (n+ 1) solutions exactly when ∆t = Ts, and we will address this concern304
in the last part of our map analysis.305

Having found Fn and Qn, we can now construct the full map Πn(d?) = Qn
(
Fn(d?)

)
:306

Πn(d?) = 1−
(

1− δn(d?)λ
)( ḡ

g?
δn(d?)λ

)−τ
e−((n−1)T+Ta)/τa , (30)

where we substituted τ = 2τk/τa. Recall that δn(d?) and g? are obtained from eq. (21) and eq. (19),307
respectively. Since d is the slowest variable of the system and τa � τκ, we will also assume τ < 1.308
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Figure 8A depicts Πn for various n. Intersections of Πn with the diagonal are fixed points of the map.309
Figure 8B shows Π2 with n = 2. Varying the synaptic strength ḡ moves the curves Πn up and down the310
(d?,Πn)-plane. For ḡ < 0.0015 mS/cm2 map Π2 has no fixed points. As ḡ is increased to ḡ ≈ 0.0015311
mS/cm2, curve Π2 coalesces with the diagonal tangentially. When ḡ > 0.0015 mS/cm2, a pair of fixed312
points emerge, one stable and one unstable fixed point, indicating the occurrence of a fold bifurcation of313
maps.314

Πn is monotonically increasing with respect to ḡ and also d?:

dΠn

dḡ
> 0, (31)

dΠn

dd?
> 0. (32)

The monotonicity of Πn w.r.t. ḡ is evident from eq. (30), while the monotonicity w.r.t. d? follows from315
the monotonicity of both Qn and Fn. In the following sections we will heavily rely on this monotonicity316
property of Πn. Just as Fn, curves Πn spawn at the asymptote da (eq. (26)), and because317

lim
ḡ→∞

Πn = 1 for all n, (33)

fixed points of Πn lie in (da, 1).318

3.4 Existence and stability of fixed points319

We introduce the fixed point notation d?f with Πn(d?f ) = d?f . The existence of fixed points d?f for ḡ320
sufficiently large can be shown from the strict monotonicity of Πn with respect to ḡ and d? (eqs. (31)321
and (32)), as well as the fact that the slope of Πn is monotonically decreasing,322 (

d

dd?

)2

Πn < 0. (34)

In the limit d? → da the value of Πn decreases without bound for any ḡ > 0. In the limit ḡ → 0, Πn
also decreases without bound, but as ḡ → ∞ values of Πn approach 1. It follows from eq. (31) and the
intermediate value theorem that for some ḡ large enough Πn intersects the diagonal. Moreover, because
Πn and its slope are monotonic with respect to d?, there exists some critical fixed point (d?b , ḡb) where Πn
aligns with the diagonal tangentially with

Πn(d?b , ḡb) = d?b , (35)
d

dd?
Πn(d?b , ḡb) = 1. (36)

3.5 Fold bifurcations of maps323

Fixed points of Πn satisfy the fixed point equation324

Φn(d?, ḡ) := Πn(d?, ḡ)− d? = 0. (37)

As we have already shown, for ḡ > ḡb(n) solutions to eq. (37) exist in pairs of stable and unstable fixed325
points. Solving eq. (37) explicitly for d? is not trivial, but solving for ḡ is straightforward and given by326
ḡ = Gn(d?), where327

Gn(d?) :=
g?

δn(d?)λ

((1− λδn(d?))

1− d?
e−((n−1)T+Ta)/τa

)1/τ
(38)

is defined for d? < 1 and δn(d?) > 0. Plotting d? against ḡ gives the fixed point curves, which are shown328
in fig. 9A. Note the typical quadratic shape of a fold bifurcation of maps. It is also evident that the fold329
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bifurcations occur for increasingly smaller ḡ as n is increased. Moreover, the graph suggests that for n > 1330
unstable fixed points have negative values of d?.331

Equation (38) also allows us to find the critical fixed point connected with the fold bifurcation, namely(
d?b(n), ḡb(n)

)
, which is the global minimum of Gn(d?f ):

d?b(n) = argminGn(d?f ), (39)

ḡb(n) = minGn(d?f ). (40)

FunctionGn is strictly monotonic on the respective intervals of d?f that correspond to the stable and unstable
fixed points, that is

dGn
dd?f

> 0, for d?f > d?b(n) stable, (41)

dGn
dd?f

< 0, for d?f < d?b(n) unstable, (42)

which allows us to express the stable and unstable fixed points as the inverse of Gn on their respective332
intervals of d?f . Because we are primarily interested in the stable fixed points d?f > d?b(n), we define the333

stable fixed point function d?f = φn(ḡ) as334

φn(ḡ) := G−1
n (ḡ). (43)

Function φn(ḡ) is also monotonic, and is therefore straightforward to compute numerically. We use the335
Python package Pynverse [21] for that purpose.336

Having found the stable fixed points d?f as a function of ḡ, we can now compute the associated cycle337
period. Recall that the period is given by eq. (8), which can be written as a function of ḡ:338

Pn(ḡ) = 2
(

(n− 1)T + Ta + Fn
(
φn(ḡ)︸ ︷︷ ︸
d?f

, ḡ
))
, (44)

where map Fn (eq. (25)) calculates ∆t given a stable fixed point d?f = φn(ḡ). Figure 9B shows the period339

Pn(ḡ) computed from eq. (44) versus the cycle period of stable n : n solutions, computed from numerically340
integrating the full system of ODEs. The overlap between blue and orange curves suggests that stable fixed341
points of Πn accurately predict the cycle period of stable solutions of the flow system.342

It is evident from fig. 9A that φn is strictly increasing with ḡ. This property follows directly from the343
quadratic normal form of the fold bifurcation, but can also be shown using implicit differentiation and the344
fixed point equation Φn(φn(ḡ), ḡ) = 0 in eq. (37). For d?f = φn(ḡ) > db(n) we get:345

dφn
dḡ

= − ∂Φn/∂ḡ

∂Φn/∂d?
=

∂Πn/∂ḡ

1− ∂Πn/∂d?
> 0. (45)

The inequality follows from ∂Πn/∂ḡ > 0 and the fact that ∂Πn/∂d? < 1 for d? > db(n). Equation (45)346
allows us to explain why the period Pn increases with ḡ, as seen in fig. 9B. Differentiating Pn gives:347

dPn
dḡ

= 2∇Fn(d?f , ḡ) ·
[
∂φn/∂ḡ

1

]
> 0, (46)

where the partial derivatives of Fn(d?f , ḡ) are:

∂Fn
∂d?f

= τκ
(λρ)n−1

δn(d?f )
> 0, (47)

∂Fn
∂ḡ

=
τκ
ḡ
> 0. (48)
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Equations (45) and (46) have an intuitive biological interpretation: Increasing the coupling strength between348
the neurons leads to overall stronger inhibition of the silent cell, which delays its release and leads to a349
longer cycle period. The latter allows more time for the synapse to depress in the active phase and recover350
in the silent phase, resulting in overall larger values of d?f , that is weaker depression at the burst onset.351

While fixed points of our Poincaré map predict the cycle period of the flow system excellently, its352
construction relies on the strong assumption that the active phase contains exactly n spikes. As is evident353
from fig. 9B this assumption is clearly violated in the flow system, as stable n : n bursts exists only on354
certain parameter intervals of ḡ. The multi-stability of fixed points of maps Πn in fig. 9B does therefore not355
imply a similar multi-stability of the flow system. In the last sub-section we will analyse the mechanisms356
that guide how the stable n : n are created and destroyed, and use our previous analysis to derive the357
corresponding parameter intervals of ḡ where such solutions exist.358

3.6 Stable solution branch borders359

Let ḡL(n) and ḡR(n) denote the left and right parameter borders on ḡ where stable n : n solutions
exist. That is, as ḡ is increased stable n : n solutions are created at ḡL(n) and destroyed at ḡR(n). When
ḡ is reduced beyond ḡL(n), n : n solutions bifurcate into (n − 1) : (n − 1) solutions, while when ḡ is
increased beyond ḡR(n), n : n solutions bifurcate into (n + 1) : (n + 1) solutions. Let us briefly recap
our observations regarding ḡL(n) and ḡR(n) from the numerical bifurcation diagram in fig. 9B. For n > 1
there are the following relations:

ḡL(n) < ḡR(n), (49)

ḡL(n) < ḡL(n+ 1) and ḡR(n) < ḡR(n+ 1), (50)

ḡL(n+ 1) < ḡR(n), (51)

ḡR(n+ 1)− ḡL(n+ 1) < ḡR(n)− ḡL(n). (52)

Equations (49) and (50) are self-explanatory. Equation (51) formally describes occurrence of co-existence360
between stable n : n and (n + 1) : (n + 1) solutions. Equation (52) implies that the parameter interval361
on ḡ of n : n solutions decreases with n, in other words, bursts with more spikes occur on increasingly362
smaller intervals of the coupling strength. All of the above relations are reminiscent of the bifurcation363
scenario of type period increment with co-existent attractors, first described for piecewise-linear scalar364
maps with a single discontinuity by Avrutin and colleagues [e.g. see 22, 23, 24]. While our maps Πn are365
fully continuous, the above observation suggests that a different piecewise-linear scalar map that captures366
such period increment dynamics of the full system might exist. We will explore what such a map might367
look like in the discussion.368

Let us now find algebraic equations that will allow us to calculate the critical parameters ḡL(n) and369
ḡR(n) associated with the left and right n : n branch borders. Recall that the period Pn derived from the370
fixed points of Πn is an increasing function of ḡ (eq. (46)). That is, as the coupling strength increases, it371
takes longer for the total synaptic conductance to fall below the value of the release conductance, which372
delays the release of the silent cell, and ∆t becomes larger. When ∆t > Ts, the active cell can produce373
another spike and the solution bifurcates into a (n+ 1) : (n+ 1) solution. Note, however, that at ḡL(n) the374
bifurcation into a (n− 1) : (n− 1) does not occur at ∆t = 0. Here the mechanism is different: A sufficient375
reduction of ḡ causes the total synaptic conductance to drop below the release conductance in the previous376
ISI , which allows the silent cell to be released one spike earlier.377

Using the above reasoning we can now formulate the conditions for both bifurcations at ḡL(n) and ḡR(n).378
As in the previous sections, we will only restrict ourselves to the analysis of the stable fixed points given379
implicitly by d?f = φn(ḡ) (eq. (43)). At the right bifurcation border ḡR(n) we have ∆t = Ts, and after380
substituting our Fn map (eq. (25)) this translates into381

Fn(φn(ḡ), ḡ) = Ts, (53)

which lets us define a function382
Rn(ḡ) := Fn(φn(ḡ), ḡ)− Ts, (54)

whose root is the desired right bifurcation border ḡR(n). In case of the left bifurcation border at ḡL(n),383
the release condition is satisfied just before the active cell has produced its nth spike, where total synaptic384
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conductance is given by385

ḡδn−1

(
φn(ḡ)

)
λe−Ts/τκ = g?, (55)

which can be rewritten as a function386

Ln(ḡ) := ḡδn−1

(
φn(ḡ)

)
λe−Ts/τκ − g?, (56)

whose root is ḡL(n). Both Rn and Ln are increasing with respect to ḡ, which makes finding their roots387
numerically straightforward.388

Figure 10 shows the period Pn(ḡ) as predicted by the fixed points of Πn (eq. (44)) plotted on their389
respective intervals ḡ ∈ [ḡL(n), ḡR(n)] (blue), as well as the cycle period acquired from numerical390
integration of the full system of ODEs (orange). Here gL(n) and ḡR(n) were computed from eqs. 56 and391
54, respectively. Note that the width of n : n branches decreases with n, which confirms the inequality392
in eq. (52). That is, bursts with more spikes occur on increasingly smaller intervals of ḡ, which can be393
interpreted as a lost of robustness with respect to the coupling strength of long-cyclic solutions. We also394
note the occurrence of bistability between pairs of n : n and (n + 1) : (n + 1) branches, which also395
confirms our initial observation in eq. (51). As previously observed in fig. 9B our maps prediction of the396
cycle period is accurate. However, the mismatch in the left and right branch borders is significant. This397
mismatch might be due to the millisecond release delay error (fig. 4B) induced by our assumption of398
a constant release conductance for all n : n solutions (see eq. (7)). Another explanation for the border399
mismatch could be that our assumptions on the time scales of (v, w) vs s- and d-dynamics do not hold near400
the stability borders, and that they can only be captured by more complex approximations. Nevertheless,401
our map allows approximate extrapolation of the cycle period and the respective bifurcation borders where402
numerical integration of the ODEs would require a very small time step.403

4 DISCUSSION

Synaptic depression of inhibition is believed to play an important role in the generation of rhythmic404
activity involved in many motor rhythms such as in leech swimming [25] and leech heart beat [26], and405
in the lobster pyloric system [1, 2]. In inhibitory half-centre CPGs, such as believed to be found in the406
struggling network of Xenopus tapdoles, synaptic depression can act as a burst termination mechanism,407
enabling the alternation of bursting between the two sides of the CPG [11]. Modelling can shed light on the408
underlying mathematical principles that enable the generation of such anti-phase bursts, and help identify409
the components that control this rhythm allowing it to switch between different patterns.410

To study the mechanisms of burst generation in half-centre CPGs we have analysed a neuronal model411
network that consists of a pair of inhibitory neurons that undergo a frequency dependent synaptic depression.412
When the strength of synaptic inhibition between the neurons is varied, such a simple network can display413
a range of different n : n burst patterns. Using the timescale disparity between neuronal and synaptic414
dynamics, we have reduced the network model of eight ODEs to a scalar first return map Πn of the slow415
depression variable d. This map Πn is a composition of two maps, Fn and Qn, that model the evolution of416
the depression during the active and silent phases of n : n solutions respectively. Both Fn and Qn maps are417
constructed by using the dynamics of a single uncoupled neuron. Fixed points of Πn are created in pairs418
through a fold bifurcation of maps, where the stable fixed point correspond to stable n : n burst solutions419
of the full two-cell system of ODEs. The results from our one-dimensional map match excellently with420
numerical simulation of the full network. Our results are also in line with Brown’s 1911 rhythmogenesis421
hypothesis, namely that synaptic depression of inhibition is a mechanism by which anti-phase bursting422
may arise.423

We have studied n : n solutions assuming that the synaptic coupling ḡ between the two cells is424
symmetrical. However, Bose and Booth [6] have shown that asymmetrical coupling (ḡ1, ḡ2) can result in425
network solutions of type m− n, where one cell fires m spikes, while the other n spikes. It is conceivable426
that our map construction can be extended to also capture such m− n solutions. Remember, in the case of427
symmetrical coupling with n : n solutions, the timecourse of the depression variables d1 and d2 were in428
anti-phase, and it was therefore sufficient to track only one of the two variables. To capture the full network429
dynamics in case of asymmetrical coupling one would also have to account for burst patterns of type m−n,430
where the solutions of the depression variables d1 and d2 are not simply time-shifted versions of each431
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other. To do that, one could track the state of both variables by constructing a two-dimensional Poincaré432
map Π(d1, d2). While geometrical interpretation of two-dimensional maps remains challenging, there exist433
a number of recent studies which have employed novel geometrical analysis methods to understand the434
dynamics of two-dimensional maps of small neuronal networks [27, 28, 29]. Generally speaking, our map435
construction approach is applicable to any small network, even with more than two neurons. As long as436
the network dynamics occur on separable timescales the main challenges to the map construction lie in437
identifying the slowest variables, and finding an appropriate, simplified description of their respective438
timecourses. In theory, the reduction approach can be also applied to neuronal systems with more than two439
timescales [e.g. see 30].440

In tadpoles, struggling is believed to be initiated by an increase in the firing frequency of reciprocally441
inhibitory commisural interneurons, which has been hypothesised to lead to stronger synaptic depression442
of inhibition and result in the iconic anti-phase bursting [11]. It would therefore be interesting to study443
how varying the cell intrinsic firing period T could affect the network rhythm. While we have laid out the444
framework to perform such an investigation, due to the choice of neural model we have avoided varying T .445
Recall that T is a derived parameter in the Morris and Lecar [12] model, and can therefore not be varied in446
isolation of other model parameters. This makes verifying any analytical results from our map analysis via447
numerical integration of the ODEs difficult. A more abstract model such as the quadratic integrate-and-fire448
model [31] allows varying T independently of other model parameters, and could be more fitting for such449
an investigation.450

Our simulations of the network showed that n : n solutions lose robustness as their period is increased.451
That is, solutions with a larger cycle period occur on increasingly smaller intervals of the coupling strength.452
We were able to replicate this finding by numerically finding the respective left and right borders of stable453
n : n branches of fixed points of Πn, and showing that the distance between these borders shrinks with454
n. We have also noted the resemblance of our bifurcation diagram to one where such n : n branches are455
created via the bifurcation scenario of type period-increment with co-existent attractors, first described for456
scalar linear maps with a discontinuity [32, 24]. It is worthwhile noting that the bifurcations of piecewise457
linear maps studied by Avrutin et al. result from a “reinjection” mechanism [33]. Here the orbit of a map458
performs multiple iterations on one side of the discontinuity, before jumping to the other side and being459
reinjected back into the initial side of the discontinuity. The stark difference of such a map to our map is that460
reinjection allows a single scalar map to produce periodic solutions of varying periods. In contrast, we rely461
on n different maps Πn to describe the burst dynamics without explicitly capturing the period increment462
dynamics. It is therefore conceivable that despite the complexity and non-linearity of the dynamics of our463
two-cell network, a single piecewise-linear map might be already sufficient to capture the mechanisms that464
shape the parameter space of the full system. In their discussion, Bose and Booth [6] briefly outline ideas465
about how such a linear map could be constructed.466

In addition to stable n : n solutions, the numerical continuation by Bose and Booth [6] also revealed467
branches of unstable n : n solutions. While we have identified fold bifurcations of our burst map, we have468
not found corresponding bifurcations of the flow ODE system, and have generally ignored the significance469
of unstable map fixed points. However, the quadratic nature of the period bifurcation curve is reminiscent470
of a saddle-node on an invariant circle (SNIC) bifurcation, where the oscillation period lengthens and471
finally becomes infinite as a limit cycle coalesces with a saddle point. SNIC bifurcations have been studied472
in great detail [e.g. 34], and a next step would be to provide a rigorous explanation of not only the map473
dynamics, but also of the flow dynamics of the ODE system.474

We have shown that when the strength of the maximum synaptic conductance is varied, synaptic475
depression of inhibition can enable our two-cell network to produce burst solutions of different periods.476
This result is in line with the idea that one role of synaptic depression in the nervous system may be477
to allow a finite size neuronal network to participate in different tasks by producing a large number of478
rhythms [6, 35, 11]. To change from one rhythm to another would only require a reconfiguration of the479
network through changes in synaptic coupling strength. Thus short-term synaptic depression of inhibition480
may provide means for a network to adapt to environmental challenges without changing its topology, that481
is without the introduction or removal of neurons.482
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Figure 1. Periodic solution of ML model neuron. (A) Projection of limit cycle onto (v, w)-phase plane
with v-nullcline (blue, v∞) and w-nullcline (orange, w∞). Unstable fixed point pf is indicated by an orange
dot; firing threshold vθ is denoted by a dashed line. (B) Corresponding voltage trace v(t) of an action
potential.
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Figure 2. Voltage traces of cell 1 (blue) and cell 2 (orange) of numerically stable solutions. (A−D)
1 : 1, 2 : 2, 3 : 3, and 4 : 4 anti-phase solutions for increasing values of ḡ. (E) Suppressed solution.
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Figure 3. Numerically computed bifurcation diagram of the cycle period of stable n : n solutions for
increasing coupling strength ḡ. Regions of bistability are indicated by light blue vertical stripes. Dashed
lines show the interval between the 5 : 5 and the suppressed solution, where higher period n : n solutions
occur on increasingly smaller intervals of ḡ.
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Figure 4. Numerically computed values of the release conductance (A) and release delay (B) for various
n : n solutions and values ḡ. The dashed line indicates the analytical approximation of the release
conductance by g?.
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ḡ ≈ 0.0005
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ḡ ≈ 0.005

Figure 8. Map Πn : d? 7→ d?. (A) Πn for n = 1, 2, 3, 4 at ḡ = 0.5 mS/cm2. (B) Π2 with n = 2 for
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0.30 0.35 0.40 0.45 0.50 0.55
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