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Abstract

In this work, we demonstrate a variational autoencoder designed to reconstruct
drum samples using linear combinations from a small predefined library of existing
samples. Inspired by the music production practice of layering two or more samples
on top of each other to create rich and unique textures, we synthesize drum sounds
by producing sparse sets of mixing coefficients to apply to the predefined library,
which are then layered to create new audio samples. By training this model to
approximate a range of professionally produced and recorded drum samples, we
aim to learn a distribution over possible layering strategies given a fixed sample
library, which we can subsequently sample from or otherwise manipulate. We find
that varying a particular dimension of the latent vectors in the space learned by
the model does not simply linearly scale the mixing weights; rather, it smoothly
varies the perceptual nature of the sample by swapping different samples in and out
of the sparse mixture. We present a user-interface prototype to engage intuitively
with our system, discuss the performance of our modeling approach, and highlight
potential applications in a studio production environment.

1 Introduction

Layering, the practice of stacking complementary sounds to create new timbres and textures, is one
of the most powerful and widely used sound design techniques in music and audio production [Bazil,
2009, Pejrolo, 2012, Bazil, 2012]. While it is commonly thought of in association with orchestration,
in which different groups of instruments play the same part, layering also plays an important role
in designing short sounds like percussive hits or one-time sound effects. Regardless of the specific
musical context, working with layers is an attractive choice because it enables creators to explore a
broad range of design possibilities while at the same time maintaining a consistent underlying sonic
palette.

In this work, we explore machine learning models for building layers, focusing on the setting of
designing snare drum sounds. Drum sound design is an important yet challenging task for many
creators, especially those in pop and electronic music, who need to balance competing pulls toward
either conforming to stylistic expectations defined by genre boundaries, or establishing a set of
distinctive and recognizable timbres that make up the signature sound of an individual artist. Previous
research has engaged with drum sound design both as a retrieval problem (e.g. through beat-box
style vocal queries [Mehrabi et al., 2018] or similarity-based search [Pampalk et al., 2004]) and as
a synthesis problem (e.g. through generating new percussion sounds with Generative Adversarial
Network (GAN) models [Nistal et al., 2020]). Neither the retrieval nor the generative approach,
however, have incorporated layering into their analyses of drum sounds; this paper presents a first
look into modeling drum sounds as layers.
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While, in practice, the artistic process of designing composite sounds (sounds made by overlaying
distinct components from different sources [Russ, 2012]) often involves several steps including pro-
cessing layers individually (e.g. to keep the low frequencies from one layer and the high frequencies
from another) and shaping envelopes of both the individual and layered sounds, we start with two
defining steps: (1) choosing the set of sounds to put together, and (2) mixing the relative volumes of
these layers.

In designing machine learning models for the layering task, we focus on a few underlying goals
centered on creative applications. First, we would like to keep the number of "source" sounds (the
database of sounds that we draw from when choosing layers) relatively small, so that artists can
reasonably curate their own collection of samples; in our experiments, we use 200. Second, the
synthesized sounds should be free of audible artifacts and, ideally, should come close to the subjective
quality and realism of the professionally produced samples used for training. Third, we would like to
be able to manipulate intermediate representations or latent variables in order to navigate the space of
possible outputs. Finally, the outputs of the model should be sparse, so that only a few layers are
used at a time. This sparsity makes it possible to quickly visualize and listen to the component layers
in order to interactively turn them up and down, or on and off. This set of design considerations
informs the modeling choices outlined in the rest of this paper, and our experiments aim to measure
the degree to which we can make progress in these avenues.

In summary, this paper’s contributions include the following:

• We introduce, motivate, and outline a set of design considerations for the task of modeling
drum samples as layers of sparse linear combinations from a given sample library.

• We design, implement, and experiment with a variational autoencoder-based neural network
for this task, and we examine its ability to approximate the sounds from professionally
produced sample libraries.

• To explore possibilities for interactive creative applications, we investigate the behavior of
our trained models through experiments in manipulating latent representations.

Audio examples are included in the Supplementary Material,1 and our code will be made available
upon publication in our GitHub repository. 2

2 Related Work

2.1 Neural Audio Synthesis

A number of recent studies have explored methods for musical audio synthesis using neural networks,
including synthesizing drum sounds with autoencoders [Aouameur et al., 2019] or GANs [Nistal
et al., 2020]. Perhaps most similar to our approach is Neural Drum Machine [Aouameur et al., 2019],
a method for creating drum samples with variational autoencoders that generate waveforms using a
convolutional decoder architecture. In comparison with these kinds of methods for synthesizing raw
sound waves, which cover a large space of output possibilities, our approach takes a narrower focus
by enforcing a simple synthesis method based on layering. This choice emphasizes interpretability
and interaction with model outputs (by allowing a user to easily visualize the mixing coefficients
output by the model and change them), and it puts less burden on a decoder to generate sounds from
scratch without artifacts. In exchange for these benefits, we sacrifice some of the flexibility offered by
large neural decoders. Other recent work in neural audio processing has shown that replacing neural
decoders with differentiable parametric synthesizers or effects [Engel et al., 2020, Martinez Ramirez
et al., 2021] enables easier training with less data; our approach is trained end to end with Gradient
Descent in the same fashion as these methods, but we make an even stricter assumption about the
synthesis method in designing outputs with just a handful of adjustable parameters.

2.2 Assisted Orchestration

In restricting our model to predicting mixes from a predefined sample library, we draw from Assisted
Orchestration [Cella et al., 2020], in which systems are designed to search for approximate matches

1https://github.com/anonpapersubmit/SBL_AIMC2022
2https://github.com/elliottwaissbluth/DrumSynthesis
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a single target sound (such as a field recording of a real-life scene like chirping birds or whistling
trains) by mixing and concatenating samples from a database (typically an orchestral sample library
like SOL [Cella et al., 2020]). Our approach diverges from orchestration or concatenative synthesis
[Schwarz et al., 2004], however, in that instead of searching for matches to a single target, we are
instead interested in modeling a distribution of targets (defined by a training set of professionally
designed drum samples) in order to explore the space of possibilities for how the sources in our
library might be layered to sound like new professional samples.

3 Methods

3.1 Data

Our dataset is built from a broad collection of drum samples from professional sample libraries. We
choose these samples because they represent real-world examples of the types of material used by
producers in practice: some of these samples are live recordings of unprocessed drums, while others
were created by professional sound designers using a range of synthesized, sampled, and processed
sources. We construct a dataset of snare drum samples (n = 2495) from this collection to use for our
prototype and experiments. We preprocess each data point by setting its sample rate fs = 22.05 kHz,
truncating to 1 second in length, and normalizing the amplitude.

From the snares dataset, we select 200 samples to represent the relatively small library of "source"
samples available to the model, which are linearly combined to synthesize outputs. We choose these
samples using the Greedy Frank-Wolfe Algorithm for Exemplar Selection [Cheng et al., 2020]. This
is a computationally efficient algorithm which selects the n samples from a collection that are able to
best represent the others as linear combinations. We find that this algorithm makes for easier model
training than manual or random selection. We split the remaining 2295 samples into a 80-10-10
train-validation-test datasets to use as "targets" for training.

3.2 Features

We featurize drum samples using standard spectral features (2048-dimensional magnitude spectra)
weighted by RMS energy. Following the procedure from [Gillick et al., 2019], we calculate this
feature by first computing a magnitude spectrogram (at 44 frames per second with a hop size of 512
samples) and then averaging the spectral features across the time dimension, weighting by the RMS
energy at each frame. This feature emphasizes the timbre near the onset of the sample while ignoring
quieter tails that tend toward white noise. Because this approach to averaging over time discards
information about the sound’s envelope, we also calculate a feature for log-attack time, following
[Peeters, 2004], concatenating this value to the feature representation. We expect that different feature
representations here may lead to different modeling outcomes and user experiences; for now, we
leave other featurizations to future work and instead focus on relatively simple features that we hope
to be able to model reasonably well with a small dataset, while at the same time capturing some of
the most distinctive timbral characteristics in the data.

3.3 Model

We use a variational autoencoder (VAE) [Kingma and Welling, 2014], which we train to reconstruct
its d-dimensional input features from a compressed ds-dimensional latent vector representation z,
with ds < d. We use multi-layer perceptrons (MLP) with a single hidden layer for both our encoder
and decoder. We choose this architecture for its simplicity and its fast training speed and inference
time. The encoder has a hidden layer of size deh = 1500; it encodes the input features of the drum
samples into a latent variable z with dimension 32. The decoder is smaller (because of the constrained
output space), with a hidden layer of size ddh = 144, which feeds into an output with dimension
dout = 200. The values of this output layer are the weights to be applied to the 200 source samples,
which are then multiplied and summed to produce the final audio output. We constrain the output
weights to sum to 1 through normalization. Figure 1 visualizes the model architecture.

To calculate a reconstruction loss, we featurize the output in the same manner as the input, computing
the energy weighted, time summed STFT, before computing the Mean Squared Error between the
input and output vectors. To ensure that this loss is differentiable end-to-end, we use differentiable
implementations of the STFT in Pytorch [Paszke et al., 2019]. To this, we add the other loss
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component of VAE training by computing the KL-divergence between the latent vector z and a
Standard Normal distribution prior. Following the same implementation used by [Roberts et al.,
2018], we use one hyperparameter β to weight between these two loss components and a second
hyperparameter called "free bits" [Higgins et al., 2017], which allows a budget for z to diverge from
the prior distribution before it incurs a loss. We use hyperparameter values of β = 0.02 and free bits
= 1000.

Figure 1: Model architecture. Solid lines describe inference, dotted lines describe training.

3.4 Training

We train our model in two phases: (1) a discriminative pretraining phase where the model learns to
identify the source samples, and (2) a generative training phase where the model learns to reconstruct
training data using the source samples. We find that pretraining on the source samples themselves
improves the training loss during the generative training phase. We pretrain by running the 200 source
samples through the model as training data using a binary cross-entropy classification loss, and then
we train the generative model for 150 epochs using 1836 novel training samples.

4 Experiments

In this section, we explore several properties of our trained model with the aim of gaining insight into
its potential applicability in creative production environments.

4.1 Interpolation

First, we are interested in exploring relationships between the learned space of embeddings z and
perceptual qualities of generated samples. One of the main reasons for using generative models like
VAE in creative settings is that they can provide a mechanism for controlling high-level properties
of model outputs by manipulating latent representations. For our purposes, we seek an embedding
space that captures smooth perceptual transitions along dimensions of timbre, texture, and frequency
as we traverse a path between two points a and b via their corresponding embeddings za and zb.

We approximate these perceptual qualities of generated drum samples using 13 Mel-Frequency
Cepstrum Coefficients (MFCC) [Mermelstein, 1976] and energy weighted, averaged spectral centroids.
We measure movement in these variables by computing absolute distance between averaged spectral
centroids and Euclidean distance between MFCCs as we interpolate between za and zb. These distance
metrics provide an approximation for perceptual variation in generated samples. For comparison,
we also compute distances in weight space (the space of possible mixing coefficients output by
the model) via the Euclidean distance between the 200-dimensional output weight vectors as we
interpolate between the embeddings of samples a and b.

We select 200 random pairs from the test set to interpolate between, computing pairwise distance
metrics as well as the same metrics averaged across all 200 pairs. We find that as expected, on
average, the output weights change linearly as we interpolate between two points. The two timbral
features of the generated samples (MFCC and spectral centroid) also vary similarly. These trends are
visualized in Figure 2.

Notably, however, interpolation does not produce linear paths between every individual pair of
samples; the weight distance may vary significantly between sample a and b before settling at either
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sample. This suggests that the model has not converged to a trivial solution equivalent to turning all
200 mixing coefficients up or down at the same time; rather, the model swaps different source samples
in and out of the layered mixture, indicating that the embedding space appears to have captured some
abstract features of the data that correlate with timbre. This means that, for example, when decoding
from an embedding zc that is halfway between za and zb, we might get an output drum sample with
timbral characteristics somewhere between a and b, but which highlights a drum layer that is not used
at all when we decode za or zb; we argue that this property may be useful for finding new layering
possibilities. Figure 3 displays plots of interpolations between 3 pairs of samples.

Figure 2: The weight distances, centroid dis-
tances, and MFCC distances vary linearly through
interpolation on average. In each chart, the aver-
age of distances are plotted over the latent space
between samples ai and bj , i, j ∈ [1, 200], i ̸= j.

Figure 3: Weight, centroid, and MFCC distances
for select sample interpolations. Notice how indi-
vidual samples do not necessarily follow a linear
path through perceptual space.

4.2 Varying Latent Representations Using PCA

We run Principal Component Analysis (PCA) on the latent vectors encoded by the model for the entire
snares dataset to extract 11 eigenvectors corresponding to the directions of maximal variance. By
manipulating latent representations of layered samples along these dimensions, we hope to uncover
relationships between the learned latent space and perceptual dimensions. For example, one might
find that varying the latent variables along some principal component corresponds to a perceptual
shift in frequency, another principal component might correspond to sharpness, etc. Our interface
prototype shown in Figure 6 demonstrates how users might interact with the model in this way.

As we vary a latent vector along the principal components, we find that timbre, frequency, and
texture are modulated. In practice, the principal components are unpredictable in regards to the exact
perceptual quality they will correspond to across different samples. One input sample might increase
in frequency along the first principal component while another decreases in frequency along the same
dimension.

Regardless of the perceptual mapping, we find that varying latent vectors along principal components
produces a gradient of output samples that vary smoothly in perceptual quality. We show this by
encoding a source sample to extract its latent representation z, before varying the encoded latent
representation along the principal components as the output layers and their weights are displayed in
real time. In Figure 4, we demonstrate the effect of varying the latent space along the first principal
component for a particular sample.

Figure 4 suggests that the model varies perceptual qualities by layering certain samples in and out of a
combination. We see several weights which persist throughout the variation, giving the sample its core
tone. As auxiliary samples are layered in, the timbre and texture of the drum shift without deviating
entirely from the initial reconstruction of the input. The last frame of the variation (corresponding to
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z = z0 + 20u0) suddenly reduces the weights of many persistent source samples. The manipulations
to the principal components were chosen to explore the latent space to the boundaries of the region
in which it produces sparse outputs; this last frame shows a reconstruction where z has passed that
boundary.

Figure 4: Beginning with a sample from the test set, we extract the latent representation z and vary it
through PCA dimension 1, u0. The output weights change as the latent representation is varied along this
dimension. Perceptually, this variation translates to moving from a low-frequency, short attack drum sample
to a high frequency, long attack drum sample. This distance plots are calculated along the latent space
in[z − 20u0, z + 20u0].

4.3 Cardinality of Output Space

From a usability perspective, it is important that the output space be sparse - a user who wants to
synthesize a layered drum sample will likely find sparse outputs to be more understandable and easier
to change by hand than an amalgamation of 200 equally mixed samples. For a creator, it is simpler
to tune a selection of a few samples than to parse through many. Even though we do not explicitly
enforce sparsity among the output weights during training, we find that most solutions do turn out to
be sparse. The results are presented in Figure 5. Recall, we constrain the weights of the output space
to sum to 1.

Figure 5: In this plot, we see the model generally produces sparse output. Select points are highlighted to
demonstrate sparsity greater than a particular weight value.

Figure 5 shows that usually no more than about 15 weights meaningfully contribute to model outputs;
in the examples shown in 4, clear peaks usually appear showing an emphasis on a handful of samples
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used for layering. At the same time, in most reconstructions, the maximum output weight does not
exceed 0.15, which indicates that the model is indeed choosing to create layers, rather than collapsing
to the trivial solution of choosing a coefficient of 1 for a single, most similar, sample. We argue that
an output space with this cardinality profile can produce interesting behavior from the perspective of
a user. The model selects few enough samples to be comprehensible and enough samples to produce
smooth variation between latent space variables.

4.4 Reconstruction

Our primary focus in this paper is on designing a model that holds potential as a useful creative tool
for exploration during a sound design process; for this reason, we do not emphasize the quantitative
performance of the model’s ability to reconstruct samples. Other methods, such as the Matching
Pursuit algorithm [Gribonval and Bacry, 2003], may be more suitable for optimally approximating a
given target from a linear combination of sources. Instead, we explore the model’s reconstruction
capabilities subjectively using samples from the validation set as reconstruction. We find that the
model is capable of approximating the core timbre and texture of most of the snare drums in the
validation set. The model’s raw output is often noisier than the input sample if we listen directly to
the reconstruction without strictly enforcing sparsity constraints, because a large number of source
samples mixed in at low levels combine into an undercurrent of noise. This can be mitigated, however,
by removing all source samples with weights lower than a certain threshold (e.g. 0.04) before we
listen to samples. We include raw reconstruction samples in our supplementary materials.1

5 Interface and Applications

5.1 Interactive Prototype

Our user-interface prototype leverages the perceptual qualities found by varying the latent representa-
tions z along their principal components. We encode these dimensions as sliders which the user can
control to generate samples in real time. First, the user can upload a sample to work from as a starting
point. Encoding the sample with the model, the user is left with a reconstruction of that sample using
a combination of the 200 source samples. By adjusting the encoding along any of the 11 principal
components, including multiple principal components simultaneously, it is possible to explore a wide
range of layering combinations that alter the timbre and texture of the original sample. The user may
also change the weights for a particular layer manually by selecting them from the visual output.

As the user moves through the model’s latent space, the output weights are displayed. The user sees a
wave of output weights that fade in and out as the timbre and texture of the generated sample varies.
From this, we hope to provide users an intuitive sense of the inner workings of the model. We present
a mock-up of our prototype in Figure 6.

5.2 Applications in a Studio Production Environment

Drum sound design is a difficult task for many creators, who are faced with the challenge of balancing
stylistic expectations within their genres, while at the same time needing to establish unique and
recognizable timbres that define their signature sounds as an artist. Creators may find it overwhelming
to browse through libraries containing thousands of drum samples, with no obvious place to start
looking for samples to layer together. Our model offers an approach to simplifying this process by
automatically generating layered drum samples using only a specific set of samples as component
layers. We envision that creators would curate their own sets of source samples to train this model.
We believe that by retraining this model using their own samples, our approach can provide a powerful
tool that serves as a basis for exploring timbres and textures using layered samples.

5.3 Future Work

Music creators are interested in layering other types of drum samples beyond snare drums, as well as
other instruments more broadly. Future work might generalize the layering approach proposed in this
paper to a broader suite of samples and instruments to provide music producers with a full layering
toolkit.
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Figure 6: The interactive system includes PCA sliders, weight fixing, and envelope control. A user will see the
weights vary as the PCA sliders are manipulated in real time.

6 Conclusion

In this paper we presented an approach for sound design that focuses on the concept of layering drum
samples, a common practice in music production. The core idea behind our approach is to use a
variational autoencoder as a means to discover a distribution over possible layering strategies using a
small pre-defined library of source samples, which can ultimately be used to produce new sounds
while still fitting into an artist’s sonic palette. We explored new studio-production possibilities offered
by the affordances of this neural network model. The user-centric method we developed has several
advantages from a musical standpoint:

• It produces a set of parameters that is easily interpretable by the user.

• The synthesized sounds are generated from a limited number of samples (sparse), thus being
conducive to easy manual manipulation for fine-tuning by hand.

• The system requires a relatively small number of samples to be trained, allowing the creation
of ad-hoc datasets.

• The variational latent space we learn has a quasi-linear behaviour and smooth variation in
perceptual space, a valuable feature for exploration by users during music production.

We also proposed a preliminary user-interface to engage with a model, which relies on a PCA-based
dimensionality reduction of the learned latent space. While the proposed system is relatively simple,
it is able to create production-grade drum samples and shows potential for real applications.

We believe the idea of using generative networks such as VAE for discovering the parameters of an
interpretable model for layering samples (as opposed to generating sound samples directly) has a
lot of potential for music applications and we hope that this work will foster some reflection in this
direction.
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