
From Words to Sound: Neural Audio Synthesis of
Guitar Sounds with Timbral Descriptors

The Sound of AI Community∗
valerio@thesoundofai.com

Abstract

Interest in neural audio synthesis has been growing lately both in academia and
industry. Deep Learning (DL) synthesisers enable musicians to generate fresh,
often completely unconventional sounds. However, most of these applications
present a drawback. It is difficult for musicians to generate sounds which reflect
the timbral properties they have in mind, because of the nature of the latent spaces
of such systems. These spaces generally have large dimensionality and cannot
easily be mapped to semantically meaningful timbral properties. Navigation of
such timbral spaces is therefore impractical. In this paper, we introduce a DL-
powered instrument that generates guitar sounds from vocal commands. The
system analyses vocal instructions to extract timbral descriptors which condition
the sound generation.

1 Introduction

Research in the field of sound synthesis is providing musicians with a growing pool of commercial and
open-source options to synthesise audio. These tools may employ methods such as physical modeling,
acoustic modeling, sample based synthesis, etc. (Russ [2012]). In physically modelled synthesis, an
algorithm is developed that matches the timbre and amplitude envelope of a real-world instrument,
and provides parameters to mimic how a musician’s interactions with the instrument can vary, such
as the location that a mallet strikes on a drum (Smith [1996]). The interfaces of physically modelled
instruments are arguably easy to use because of the higher likelihood that control parameters may be
meaningful. Alternatively, common analog or digital synthesisers acoustically model a waveform by
using one of a number of methods such as additive, subtractive, frequency modulation, etc. synthesis.
The complex timbral patterns which can be generated with these methods are made possible through
fine-grained control points in the form of low-frequency oscillators, envelopes, filters, etc. (Russ
[2012]).

As the sound generation method departs from strict physically modelled synthesis, arguably the
semantic understanding of what timbral qualities a parameter changes diminishes. This is an important
point to consider for musicians making the trade-off between ease of use and flexibility of sound
design possibilities, and opens up opportunities to develop audio synthesis tools that afford both
semantic understanding for ease of use and generation of rich and varied waveforms. A growing
area of research with potential to meet both of these specifications is neural audio synthesis, where a
dataset of sound examples is used to train deep learning (DL) models, which then synthesise either
raw audio or time-frequency domain representations (e.g., Engel et al. [2017, 2019], Tatar et al.
[2021]). A common limitation of such methods is not providing an easy-to-use control to the user to
navigate timbral properties in a way that is user friendly, and meaningful to the user.

In this paper, we try to address this issue by presenting a neural synthesiser that generates guitar
sounds based on semantic descriptors. We package the neural synthesiser in a sampler instrument. To
facilitate interaction between the user and the instrument, we implement a voice-controlled interface.
Users can request guitar samples with specific timbral qualities by uttering simple vocal commands
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(e.g., "give me a thick distorted guitar sound"). They can then refine the sample adjusting semantically
meaningful timbre sliders, which condition the latent space of the neural synthesiser. We decided to
limit the synthesis to guitar sounds to keep the project manageable and because of dataset constraints.
However, the technology presented here can be extended to the generation of other instruments.

The remainder of the paper is organised as follows. In Section 2, we review current state-of-the-art
DL-based audio synthesis methods. Then, we introduce the proposed instrument and describe its
components (Section 3). In Section 4, we discuss an expert-based evaluation of the system. Finally,
we provide conclusions and illustrate possible strategies to improve the instrument (Section 5).

2 Related works

Neural audio synthesis is usually performed with Variational Autoencoders (VAEs), Generative
Adversarial Networks (GANs), and WaveNet-like autoregressive models. Tatar et al. [2021] propose
a VAE to synthesise audio, where the latent space is used to navigate the timbral properties learned
from training data. The model is trained on CQT-Spectrograms of audio examples. Researchers
used a latent space with 256 dimensions to retain sound quality. Reduction in the number of latent
dimensions resulted in poorer reconstruction of the audio with large noise floor. While this approach
works for exploring the timbral space between two audio samples, the latent space is too large to
navigate conveniently. Also, the model does not provide independent control for pitch. VaPar Synth
(Subramani et al. [2020]) addresses this drawback, by using a Conditional VAE which provides
parametric control for pitch and spectral envelope on a frame-by-frame basis. Despite the control
afforded to model the spectral envelope at each frame, it is not clear what each coefficient of the latent
space represents. Engel et al. [2017] present a WaveNet-style autoregressive model for generating
raw audio. Unlike the original WaveNet (Van Den Oord et al. [2016]), the proposed architecture does
not depend on external conditioning for long-term dependencies. A major limitation of this system is
the time complexity to synthesise audio. This may limit WaveNet-inspired models for semi real-time
synthesis on many personal computers. GANSynth (Engel et al. [2019]) uses a GAN architecture for
audio synthesis. It generates log-magnitude spectrograms and phase representation. This approach
produces more coherent waveforms than those generated directly from raw audio. While global
conditioning can be applied, there is little likelihood of the latent dimensions corresponding to
semantic features. DDSP (Engel et al. [2020]) takes a different approach to audio synthesis. Instead
of generating either raw audio or a spectrogram representation, the DDSP decoder generates inputs
for an additive synthesiser, a subtractive synthesiser and, optionally, a reverb. The latent space can be
used to navigate timbre. However, its dimensionality is large and therefore makes timbral exploration
impractical. As noted for other approaches above, DDSP’s latent dimensions are not semantically
meaningful. This is a recurring issue that hinders the usability of DL-based synthesisers. In the next
section, we introduce our solution, which aims to address this problem.

3 The instrument

To meet our goal of a timbre-driven AI-powered guitar synthesiser, we developed a sampler instrument
with a DL backend which takes voice commands as input to neurally synthesise guitar audio samples.
This end-to-end system comprises four main components: Speech Recognition (SR), Descriptors
Recognition (DR), Sound Generation (SG), and Sampler.

We developed all the components of the system in Python and packaged them into a single desktop
application. The application can be used across operating systems. It provides a user interface (Figure
1) through which the user can interact with the various components and perform with the Sampler.
Requirements for launching the system can be found on the project’s GitHub repository along with
the system’s source code.2 We provide tutorial videos for Windows and MacOS.3 We also provide a
paper companion website where we share example guitar sounds generated with the instrument.4

2The source code of the system is available at https://github.com/TheSoundOfAIOSR/project_
common/.

3Tutorial for Windows: https://www.youtube.com/watch?v=wGsGGvbZByE. Tutorial for MacOS:
https://www.youtube.com/watch?v=pppuC27xRGo.

4Examples of generated guitar sounds can be found at https://thesoundofaiosr.github.io/Paper_
Companion/.
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Figure 1: Instrument’s GUI.

To generate a guitar sample, the system follows a multi-step process (Figure 2):

1. The user records a vocal command inside of the Sampler interface (e.g., "thin guitar sound").
2. SR analyses the user’s voice and extracts the corresponding text (Section 3.1).
3. DR generates a descriptors embedding from the text (Section 3.2), which captures the

timbral qualities requested by the user.
4. The descriptors embedding is fed to SG and conditions the synthesis of a guitar sample

inside a pre-trained latent space (Section 3.3).
5. The generated audio sample is returned to the user and can be played back using the Sampler

(Section 3.4).
6. The user can refine the sound adjusting timbre sliders. Sliders correspond to semantically-

meaningful latent space parameters of the SG component (e.g., inharmonicity, attack).

The user can directly insert text commands in the Sampler, and shortcut SR. In the remainder of this
section, we describe in detail each of the four components which make up the instrument.

3.1 Speech recognition component

The Speech Recognition component allows users to interact with the application through their voice.
Rather than modifying sound through control knobs, buttons, and configurations – traditionally
used in software music instruments – users can issue simple vocal commands to influence sound
generation.

Since effective open-source end-to-end ASR (Automatic Speech Recognition) systems are available,
we decided to integrate state-of-the-art ASR technologies rather than building a solution from
scratch. The selection criterium for ASR technologies was a combination of accuracy, computational
efficiency, and code availability. We selected two ASR models: wav2vec2 (Baevski et al. [2020]) and
QuartzNet (Kriman et al. [2020]). wav2vec2 uses representation learning (Bengio et al. [2013]) to
learn representations from speech data that are then used to recognise speech. The model employs
self-supervised learning to learn speech representations from unlabelled data, and is fine-tuned with a
labelled dataset. wav2vec2 achieves state-of-the-art performance with a limited amount of labelled
data (Baevski et al. [2020]). Alternatively, we can use QuartzNet. This model achieves state-of-the-art
performance (Kriman et al. [2020]), despite its relatively small model parameter size. The two chosen
architectures are deployed into a framework designed to choose which model to utilise at runtime.
This modular approach enables further extensions, with the option to integrate additional ASR models
in the future.

3.2 Descriptors recognition component

Descriptors Recognition is a Natural Language Processing unit that processes the free text incoming
from SR and outputs a descriptors embedding. Such embedding is a mathematical representation of
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Figure 2: Generation of guitar audio samples.

the timbral qualities featured in the input sentence. For example, a user may ask the application to
"generate a bright and strong guitar sound". DR is expected to identify the timbral qualities ("bright"
and "strong"), and map them to a subset of 18 standardised timbre descriptors such as "full", "thick",
and "hard". The standardised descriptors make up a Guitar Sound Taxonomy we have developed
from user surveys and academic literature. The descriptors are organised in 9 pairs of opposites (e.g.,
clear vs muddy, bright vs dark). These descriptors can be used to condition the Sound Generation
component. A detailed account of the taxonomy and how we have derived it can be found in Appendix
A.5

DR consists of two subcomponents, i.e., a Named Entity Recognition (NER) and a Word to Word
Matcher (WWM). To produce a descriptors embedding, DR carries out two steps:

1. NER identifies timbral qualities (i.e., free adjectives that describe sound) present in the input
sentence (Section 3.2.1).

2. WWM maps the free sound qualities to the 18 timbral descriptors of the Guitar Sound
Taxonomy, thus generating a descriptors embedding (Section 3.2.2).

3.2.1 Named entity recognition

We trained the NER subcomponent using the NER facilities offered by spaCy version 3, a Python-
based production-ready Natural Language Processing library (Vasiliev [2020]). Specifically, we used
the spaCy NER model built on top of the pre-trained RoBERTa base model provided by HuggingFace
(Liu et al. [2019]). The goal was to train a model capable of identifying the words in a sentence that
indicate timbral qualities of an instrument (e.g., "dark", "distorted"). We trained the NER model on a
dataset consisting of 516 sentences labelled with sound qualities. We created the dataset by scraping
threads focused on timbral aspects of guitar and other instruments in music-related subreddits. We
labelled the sentences using active learning to optimise the labelling process (Shen et al. [2017]). For
each sentence, we flagged the words (mainly adjectives) providing timbral information. By the end
of the labelling step, we identified 371 distinct timbral qualities. We release the dataset in the public.6
On the test set, the trained model reached an F-score of 0.92 for sound qualities it had seen during
training, and 0.81 for those unknown to the model.

3.2.2 Word to word matcher

WWM maps the free timbral qualities identified by NER to a subset of the 18 standardised descriptors
of the Guitar Sound Taxonomy. We wrap this subset into a descriptors embedding. This is an
18-dimensional binary array. Each item in the array represents a standardised descriptor. 0s indicate
that the associated descriptors are missing in the input sentence. 1s indicate that they are present.

The mapping is performed by calculating the distance between vector representations of the free
sound qualities and the standardised descriptors. We use spaCy’s en_core_web_lg language model to
derive the vector representations (i.e., word embeddings) for all the words involved in the process.

Since the 18 descriptors come in 9 pairs of opposites, we should ensure that at most only one of the
opposite descriptors is selected per pair. To fulfill this constrain, the algorithm applies the following
two-stage approach:

5Appendices can be accessed at https://drive.google.com/drive/folders/
13dnTNT8lN5HKxzOsDcWU9JKvA39ipFrY?usp=sharing.

6The dataset can be downloaded at https://github.com/TheSoundOfAIOSR/rg_dataset/blob/
main/reddit_data_preprocessing/data/curated_data.csv.
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1. Every sound quality is associated with the closest descriptor and its opposite (i.e., a pair).
The distance between sound qualities and descriptors is computed using K-Means clustering
with cosine distance on the word embeddings.

2. From each pair of opposites with at least one associated sound quality, a single descriptor is
chosen. We calculate the difference of the distances between a sound quality and the two
opposite descriptors of a pair. Such difference is computed and summed over all qualities
associated with that pair. The difference is positive if the summed distance of associated
qualities to a descriptor is smaller than the summed distance of the opposite descriptor in the
pair. If this value is larger than a specified threshold, then the descriptor is assigned a "1" in
the descriptors embedding. The threshold has been empirically set to 10−6. This process is
repeated for all 9 pairs to determine all the items of the descriptors embedding.

The descriptors embedding produced by DR is fed to the Sound Generation component.

3.3 Sound generation component

SG syntheses one-shot guitar audio samples with a duration of four seconds. To generate high-fidelity
sound, SG uses a novel autoencoder architecture we call Timbre Conditioned Autoencoder (Section
3.3.4), trained with Quasi-Harmonic audio representations of guitar sounds (Section 3.3.1). The
autoencoder is conditioned on a set of semantic parameters commonly employed to describe timbre
of guitar sounds (e.g., inharmonicity, attack time) that we call timbre measures (Section 3.3.3). A
detailed mathematical treatment of SG could not be included in this paper for space constraints,
however it is presented in Appendix B5.

3.3.1 Audio representation

Rather than using raw audio or Fourier coefficients to represent audio, we use parametric models
which are physically and perceptually motivated. In particular, we consider models which decompose
audio into two components (Serra et al. [1997]): i) a deterministic part, usually modelled as a sum of
frequency and amplitude-modulated sinusoidal components; ii) a stochastic part, usually modelled as
frequency-modulated Gaussian noise.

These audio representations are easy to manipulate before re-synthesis and can be used as a basis to
conveniently extract timbre measures (Section 3.3.3). Currently, we ignore the stochastic part and use
only the deterministic component.

We employ a Quasi-Harmonic Model (QHM) to represent audio (Pantazis et al. [2008]). The model
parameters are mk, fk, φk, respectively the instantaneous magnitudes, frequencies, and phases
for each harmonic frequency at each time frame. We perform a prior identification of the QHM
parameters, which allows us to formulate the loss directly on these perceptually-relevant parameters
(Section 3.3.5), without having to synthesise audio.

The QHM representation is also useful to calculate timbre measures (Section 3.3.3), which would
have been difficult to compute directly from raw audio or spectrograms.

For the analysis and synthesis of QHM, we developed the tsms library in TensorFlow.7 tsms provides
an algorithm that identifies QHM parameters based on peak picking over the Short-Time Fourier
Transform and an iterative refinement strategy.

3.3.2 Transformation of Quasi-Harmonic Model Parameters

The QHM parameters identified with tsms are not in a form that can be easily handled by a neural
network, for encoding / decoding purposes. To address the problem, we apply reversible transforma-
tions on mk, fk, φk to obtain a new set of parameters menv, m

dist
k , fshift

0 , fshift
k , φdiff

k , which
are normalized zero mean quantities. The transformed QHM parameters are the inputs-outputs of the
Timbre Conditioned Autoencoder (Section 3.3.4). They are converted back to the original parameters
when synthesising audio. Details about the transformations can be found in Appendix B5.

7Source code for the tsms library is available at https://github.com/fabiodimarco/
tf-spectral-modeling-synthesis.

5

https://github.com/fabiodimarco/tf-spectral-modeling-synthesis
https://github.com/fabiodimarco/tf-spectral-modeling-synthesis


Figure 3: Sound Generation component. Orange elements are trainable.

3.3.3 Timbre measures

Timbre measures computed using mk, fk, φk, quantify timbral characteristics of guitar sounds. They
indicate how present a certain timbral feature is in a sound. They can take continuous values in the
interval 0 (no presence), 1 (max presence). Timbre measures are used to condition the autoencoder
and allow users to navigate the latent space in a meaningful way. We compute the timbre measures on
the non-transformed QHM parameters using heuristics. We derived 11 measures inspired by Peeters
et al. [2011]: inharmonicity, even_odd, sparse_rich, attack_rms, decay_rms, attack_time, decay_time,
bass, mid, high_mid, high. Details about the measures can be found in Appendix B5.

3.3.4 Timbre Conditioned Autoencoder

The architecture of the Timbre Conditioned Autoencoder is composed of 3 main computational
blocks (Figure 3): Heuristics, Encoder, and Decoder. The Heuristics block is not trainable. It takes
mk, fk, φk as inputs, and computes the 11 timbre measures introduced in Section 3.3.3. The Encoder
block is a trainable CNN architecture which takes as inputs: menv, m

dist
k , fshift

0 , fshift
k , φdiff

k . It
outputs a two-dimensional latent space Z. The values of Z are constrained between 0 and 1, by using
sigmoid activation. The Decoder block is a trainable CNN architecture which takes as inputs the
quantities computed by the previous blocks (i.e., 11 timbral measures, Z) plus the MIDI note number
and velocity of the current input sample, for a total of 15 parameters. These are all semantically
labelled with the exception of the two-dimensional latent inputs Z. The use of a compact latent
space with semantically meaningful dimensions makes it easy for the user to control generation. The
outputs of the Decoder are the transformed QHM parameters menv, m

dist
k , fshift

0 , fshift
k except

for φdiff
k , that is not used to synthesise the final audio, since the phase φk it is reconstructed via

frequency integration.

3.3.5 Model training

We trained the autoencoder on a subset of the NSynth dataset (Engel et al. [2017]), restricting the
samples to just guitar sounds. We split the dataset into three sets for training, validation, and testing.
We performed offline pre-computation of the QHM parameters. The inputs of the Encoder, and
outputs of the Decoder are expected to be the same, i.e., the transformed QHM parameters, except for
φdiff
k . To train the model, we use a composed loss computed on the transformed QHM parameters.

The components of the loss are Lmenv
, Lmdist

k
, Lfshift

0
, Lfshift

k
. Details about the losses can be

found in Appendix B5.

3.3.6 Model inference

Before a sample is generated for the first time, SG receives a descriptors embedding from DR. The
embedding is mapped to timbre measures using a rule-based approach. While we provide a default
mapping between descriptors embedding and timbre measures, users can create custom mappings
which transform words to sound in the way that suits them best. Values for Z are generated randomly,
whereas MIDI note number and velocity are specified by the Sampler. Timbre measures, Z values,
MIDI note number, and velocity are passed to the Decoder to generate a sample. Once the initial
sample is generated, users can modify the values for Z, timbre measures, MIDI note number, and
velocity to navigate the latent space of the autoencoder, and generate samples with desired timbral
properties. Modifying Z only and leaving all other parameters unchanged has a significant impact on
sample generation. We implemented a web-app featuring only SG that can be used to conveniently
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generate sounds and explore the semantic latent space and Z.8 We also provide a paper companion
website where we share example guitar sounds generated with the instrument.9

3.4 Sampler component

The Sampler component is responsible for managing users’ interaction with generated samples,
providing an interface for playback using an on-screen keyboard as well as accepting note input from
MIDI channels. Following synthesis, the Sampler receives samples from SG across a four-octave note
range. Each received one-shot is up-sampled and its amplitude is normalized. Playback is handled
by the Csound library (Boulanger [2000]), which provides interfaces for audio effects. A simplified
user experience to record voice commands, input text commands, generate new sounds, and explore
the latent space using sliders is provided. Sliders are associated to timbre measures, that can be
tweaked to adjust sound. Users are also given flexibility to change settings related to MIDI input,
microphone input, audio output, buffer size, and latency. To coordinate user interactions with several
DL components, we implemented an application state machine. Appendix C5 provides a detailed
account of how the state machine works.

4 Evaluation

We carried out expert-based evaluation of the proposed instrument. We selected five external evalua-
tors with 6-20 years of experience in music and music technology. Evaluators are all academically
and/or professionally active musicians, multimedia artists, and audio software programmers.

4.1 Evaluation procedure

We sent evaluators a video tutorial, installation instructions, and documentation to get started with the
instrument. We asked them to use the system freely for one hour, during which they should explore
its sound design possibilities. After the practical session, evaluators had to provide feedback through
a survey which aimed to gather quantitative data on the respondents’ opinion about the generated
sounds and the instrument. The survey was followed by a 30-minute interview to gain qualitative
insights on how evaluators viewed the software as a guitar sample synthesiser, how they interacted
with the input and timbre sliders, and how – if at all – they would fit such a tool in a music production
workflow as a creative assistant. Evaluators were asked to not use the Speech Recognition component,
and directly input text commands in the app instead. This was done to avoid speech transcription
errors which would hinder the evaluation of the core components of the system (i.e., DR, SG).

4.2 Evaluation results

A breakdown of the quantitative scores provided in the survey by the evaluators is presented in Table
1.10 Overall, evaluators indicated that the sounds that the instrument could generate were interesting
and unique. They also noted that the sound palette was varied.

When using the text input capabilities, evaluators used descriptors such as "dark", "bright", "thin",
"fat", "electric", "acoustic", and "bass", or phrases such as "the most joyful sound". Some users agreed
that they were able to generate a sound that matched the input text, while some found it difficult
to discern how a specific word influenced a sound as the differences were "...very subtle and not
really evident enough if you are not listening for it". But "pushing the app outside its [dictionary] and
asking for an instrument other than guitar" led to a "serendipitous result" and encouraged exploration
of the instrument.

By interacting with the timbre sliders, evaluators found a "palette of sounds that [is] quite varied",
which generally matched the expected change in the sliders, as shown by the 3.8/5 score in the relative
query in the survey. Evaluators reported the timbre sliders to provide more expansive sound design

8The Sound Generation web-app is accessible at https://share.streamlit.io/thesoundofaiosr/
rg_sound_generation/main/app.py.

9Examples of generated guitar sounds can be found at https://thesoundofaiosr.github.io/Paper_
Companion/.

10Full results of the survey can be accessed at https://docs.google.com/spreadsheets/d/
1cKlabSU49aWZ87Bx-0xxh0jtQ9AQprgWdfhZeJ7Yy5s/edit?usp=sharing.
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Table 1: Results of the evaluation survey. Scores are on a Likert scale in range 1 (worst) to 5 (best).

Query Score (mean / std dev)

The generated sound matches the input text command 2.80 / 1.48
The heuristic sliders impact the generated sound as I expected 3.80 / 1.09
How would you rate the fidelity of the sound generated? 4.00 / 1.22
How extensive are the sound design possibilities? 4.00 / 1.41
How easy was it to learn how to use this tool? 3.60 / 1.14
How would you rate the user experience of using this tool? 3.20 / 1.30
How likely are you to keep using this product? 2.80 / 1.09

possibilities than the text input. So called "happy accidents" were likely to occur and sounds that
would "have [only been] achieved [with] a lot more work [in traditional synthesisers]" were generated.
Some parameters of the latent space did not "[respond] quite as expected" in certain conditions. For
example, setting a long attack time was reported to sometimes result in a plucky sound with a short
attack. This could be caused by the fact that the timbre sliders are not completely independent and
their interactions may cause unexpected results. This behaviour may also partially explain the weaker
score around the generated sounds matching the input text (2.80).

Some of the drawbacks presented by the evaluators were the impossibility to generate looped and
sustained sounds and the not-so-intuitive user experience. This led them to say that they would
most likely use this instrument as a sound design tool to generate samples that would then be
incorporated into their music production workflows. Another notable drawback was the lack of a
preset management system to save and recall the sounds discovered while exploring the instrument.
The addition of an effect bank, like a simple reverb and delay, was also highlighted as an obstacle
toward a more fruitful use of the software in their music production practice.

In summary, evaluators reported the software to provide unique sound design possibilities that could
be used in a music production workflow, but further work to the sound generation and user experience
would be needed to consider it a marketable music production tool.

5 Conclusions

In this paper, we set out to address a recurring problem found in DL-powered audio synthesis
models: the dimensions of the latent spaces offered by such systems are not easily mapped to any
semantically meaningful timbral concepts. This limitation makes the exploration of such timbral
spaces problematic. To address this drawback, we built an instrument that is able to generate guitar
sounds from vocal commands, describing the timbral characteristics of the expected sound.

The developed technology provides significant contributions to the fields of neural audio synthesis
and semantic representation of timbre. DR understands the timbral qualities requested by a user and
maps them to standardised descriptors encoded in an innovative Guitar Sound Taxonomy. The Timbre
Conditioned Autoencoder generates high-fidelity audio samples without the need of a large model and
large latent space. Its generation can be conditioned on timbral descriptors, and the dimensions of its
latent space are mapped to semantically meaningful timbre measures that facilitate user exploration.
We also introduced compact semantic audio representations which extend QHM via a novel set of
perceptually-motivated timbre measures. The measures enable researchers to produce semantic audio
representations from unlabelled sound datasets.

Expert-based evaluation confirms that the proposed instrument is capable of producing interesting
and unique sounds, by leveraging semantic descriptors. Evaluators used timbre sliders to design
unexpected guitar sounds quickly, and to effectively navigate the latent space. However, future
research is necessary to turn this prototype instrument into a solution that could be integrated in the
day-to-day musician’s creative workflow. First, the implementation of an end-to-end DL model that
can map descriptors embedding to timbre measures would allow the instrument to generate samples
that better match requested timbral qualities. Second, an improved interface with convenient features
such as preset saving would enhance the user experience. Finally, the neural synthesiser could be
trained on a dataset with more instruments to extend its sound generation capabilities beyond guitar
sounds.
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