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Abstract

In this paper we introduce an augmented granular sound synthesis method for a
GAN latent space exploration in audio domain. We use the AI-terity musical in-
strument for sound generating events in which the neural network (NN) parameters
are optimised and then the features are used as a basis to generate new sounds.
The exploration of a latent space is realised by creating a latent space through
the original features of the training data set and finding the corresponding audio
feature of the vector points in this space. Our proposed sound synthesis method can
achieve multiple audio generation and sound synthesising events simultaneously
without interrupting the playback grains. To do that we introduce redundancy
parameter that schedules additional buffer slots divided from a large buffer slot,
allowing multiple latent space vector points to be used in granular synthesis, in
GPU real-time. Our implementation demonstrates that augmented buffer schedule
slots can be used as a feature for a sound synthesis method to explore GAN-latent
sound synthesis of granular-musical events with multiple generated audio samples
without interrupting the granular musical features of the synthesis method.

1 Introduction

Generative adversarial networks (GANs) have been extensively investigated to model the probability
distributions in the fields of computer graphics (such as image synthesis, image to image translation)
[1], audio generation (such as sound synthesis) [2] as well as in the domains of text generation [3].
Its application to a deep learning model makes it possible to transform semantic features of data into
a latent space, representing the “embeddings” of the training data. In audio sample generation and
sound synthesis domain, a data set is usually prepared from a collection of audio files to create a GAN
latent space, which is used to map the high-dimensional encoded representation to the generated
audio sample. Since the generated audio samples are based on raw audio feature representations
in the latent space, synthesised sounds usually need further exploration for musically interesting
outcome.

In the work we present here, we focus on a new development of our AI-terity musical instrument,
which comprises a GAN deep learning model and generates audio samples for real-time audio
synthesis. With the aim of addressing limitations of previous implementation of the instrument
AI-terity, discussed in earlier work [4], we developed and implemented an augmented granular
synthesis method to synthesise the generated audio samples. In previous implementations of the
instruments as well, we used granular synthesis with the representation of features both in the musical
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timbres and the temporal signature of the audio samples that are synthesised through GAN latent
space. However generating multiple audio samples, synthesising them simultaneously with multiple
granular features and without interrupting the playback grains while interpolating between multiple
points in the latent space, in GPU real-time, resulted in a detrimental synthesis problem 1. Different
rates at which grains are produced and consumed require more controlled scheduling of the events
in granular synthesis. It is because audio synthesis algorithms rely on being given access to the
complete stream of audio events. This implies that the granular synthesis algorithm must be run after
each sample of audio to ensure the synchronisation with the source. The quality of the output may
depend on the granular system’s ability to process the input at a rate at which the audio source is
presented. This is particularly important in the context of our work in which the input and output of
multiple audio events have irregular time schedules. For example, if the input of the system failed to
produce audio for a certain time, a clicking-type effect may be heard when the output tries to produce
a synthesised sample that is absent in the input. Specifically, not being able to synchronise these
granular synthesis system-events may cause overlap or gaps in the output signal. If audio events are
not time aligned, they may play out of order and cause undesirable results.

In this paper, we describe our solution that relies on the use of two concurrent scheduling threads
in synthesis events, where one thread is handling the audio source (generating the audio samples)
and the other thread generates the audio grains with the selected feature set as well as the time
intervals they represent. The audio samples and their time intervals are stored in buffers and operate
synchronously in parallel. In this way we can keep the generated audio samples in buffers in a
continuous manner, which are processed only once, after which they are stored and discarded. The
advantage of this solution is the minimal control we need over both scheduling threads and explore
multiple points simultaneously in GAN latent space without interrupting the granular musical features
of the synthesis method.

2 Related Work

High-dimensional nature of a GAN latent space in audio domain affords a wide range of possibilities
for exploring its sound world and interfacing to musically interesting compositions and performances.
Exploring the capabilities of musical latent space, not only as a generative model, but rather as a
design space for the creation of novel synthesised instruments has been of interest to many scholars
[5] [6] [7]. Roberts et. al. [5] built the MusicVAE Sequencer, which is interfaced to the 2-bar
melody loops and drum beat that are randomly sampled from the latent space of Music VAR [8]. The
MusicVAE Sequencer allows users to explore the possibilities of the latent space through the creation
of variations of a 2-bar loop. It generates sequences of note and drum lines that can be arranged
in patterns interpolated through MusicVAE’s latent space. The latent parameters of the sequencer
are mapped onto an input space, which consists of user-defined four corner points and 2-D palette
control-surface. The authors suggest that exploring the sequentiality of the generated music though
latent space morphing of musical sequences will encourage users to generate variations in musical
palette, rather than just blending melodies or drum loops. NSynth [9] instrument provides latent
space exploration to discover new timbres that exist between pre-existing instruments. The latent
space is based on instrument samples generated by NSynth with timbre characteristics and the note
values. Following the four corner points interpolation in 2-D input interface, NSynth instrument
allows musicians to explore the latent space of timbres and creating new sounds to be used in any
kind of DAW, whether it’s with hardware or software synthesisers.

DrumGAN explores latent space in similar manner by interpolating between the points and performs
percussive sound synthesis aiming to provide more musically meaningful control over the output
[10]. While the main control features appears on the conditioning model of the generative system,
DrumGAN generates realistic drum patterns using latent space. Furthermore, it is possible to
extend the drum pattern generation capability to different conditions by varying the latent space
of the control system. The drum pattern generation mechanism allows high-level control on the
timbre characteristics of the sounds. From a slightly different approach and at the same time
following the conditional audio synthesis method, Kumar et. al [11] introduces MelGAN, a non-
autoregressive feed-forward convolutional architecture that reconstructs raw waveform from latent
space and translates music on any domain to a target domain trained in the system. It provides fast and

1The following URL link to audio example demonstrates a clicking-type effect that appeared using the first
version of the granular synthesis model in instrument AI-terity - https://tinyurl.com/mwrrhyuv
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efficient computation with decent audio quality. While the model is well-suited to the music-specific
task, to our knowledge, MelGAN has not yet been applied to music domain in ways and means
of exploring musically interesting opportunities. With the availability of providing high-fidelity
waveform as input to the GAN training, MelGAN is a promising model for further development
of algorithms and frameworks that can work efficiently for various tasks such as noise reduction,
re-creation, and editing.

GANSynth is one of the well know GAN model applied to music generation and similar to other GAN
architectures in audio domain, generates the audio clips from a single vector point in latent space
[2]. GANSynth uses a progressive GAN architecture to incrementally up-sample with convolution
from a single vector to the full sound and allows using instantaneous frequencies to align phases
and synthesising high-fidelity audio. The generated audio could be used in synthesising musically
interesting and realistic music pieces. Some recent related work demonstrates the features of musical
instruments that are interfaced with GANSynth model as standalone music applications or plugins
for existing audio frameworks 2.

The GAN models presented in this section demonstrate computationally advanced opportunities
to reconstruct audio samples in various forms of music composition. It is expected that a musical
composition constructed through a particular sound synthesis technique exhibits musically interesting
properties and characteristics from that of a sequence of audio samples [6] [12][13]. In order to
achieve such exploration, we propose to add additional constraints on sound synthesis process that may
be employed in conjunction with the audio samples generated through the vector points in the latent
space and various sound synthesis parameters (e.g., the duration, waveform, envelope, index position,
and density of the grains) that are specified to generate musical composition. In particular, our
augmented sound synthesis method operates on the microsound time-scale that is divided into grains
of milliseconds (ms) where each grain contains a number of microsound components. Although these
features have been available in various granular synthesis algorithm, our approach uses "redundancy
parameter” to schedule the duration of the sound events.

3 Augmented Sound Synthesis

To explore our multidimensional latent space in real time, we use the sounds synthesised by
GANSpaceSynth3 as input for granular synthesis [14]. We implemented the GANSpaceSynth,
a novel hybrid GAN architecture, to organise GAN latent space using a dimensionality reduction
technique, which gives an opportunity to specify particular audio features to be present or absent in the
generated audio samples. For the granular synthesis part, we chose the mill granular synthesiser exter-
nal object for Pure Data (Pd) written by Olli Erik Keskinen4. We take advantage of GANSpaceSynth’s
batch synthesis to synthesise multiple sounds in one go. Using the default batch_size of 8, we
form a small sphere around the current position in latent space and spread 8 points evenly on the
sphere’s surface, resulting in 8 distinct latent vectors. The idea is that we synthesise multiple small
variations of the sound at the latent space position. GANSpaceSynth thus produces a batch of 8 audio
samples, which are played by 8 corresponding instances of the mill granular synthesiser.

In initial experiments with the mill external, we heard harsh clicking artifacts when playing while
moving in the latent space. In the instrument AI-terity, GAN synthesis and grain playback are
interleaved, and in order to make the instrument responsive we synthesise with GANSpaceSynth as
frequently as the GPU hardware allows 5. With our setup, we are able to synthesise about once every
60 ms. Meanwhile, the grains played by mill range in length from 0 ms to 600 ms, depending on
sensor input. This meant that the contents of mill’s audio buffer were often updated in the middle of
playback, as shown in Figure 1, causing discontinuities in the waveform which manifested as the
clicking artifacts.

This is a readers-writers problem [15], a class of concurrency problems well studied in computer
science. In this case, we have a single writer (GANSpaceSynth) and multiple readers (mill grains).

2https://magenta.tensorflow.org/studio
3https://github.com/SopiMlab/GANSpaceSynth
4https://github.com/ollierik/
5For the current development of the sound synthesis, we built a mini-PC with an external GPU. We used an

Intel Core i7-10170U CPU @ 1.1GHz and NVIDIA GTX 1080 Ti GPU connected via Thunderbolt 3, in which
we used Ubuntu Linux 20.04.1 LTS.
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Figure 1: The original audio buffer structure in mill was interrupting the playback grains.

Common solutions to such problems include mutexes [15] and readers-writer locks [16], however our
real-time audio context poses some challenges for lock-based solutions. If readers lock the audio
buffer, the writer may never get a chance to update the buffer, because grains can play continually
and even overlap with each other. On the other hand, if the writer locks the buffer, readers are
prevented from reading it for the duration of the lock, meaning the playback of grains would have
to be interrupted. Furthermore, GANSpaceSynth and mill are written in different programming
languages (Python and C, respectively), making it difficult to apply tools from existing concurrency
libraries. Aiming for simplicity of implementation, we looked for a synchronisation mechanism
relying only on Pd messages, not requiring any deeper integration between the two components.

Our solution is to use more buffers, so that GANSpaceSynth can always write synthesised audio into
a buffer that is not being played back. To do that, we introduce a redundancy parameter as a new
implementation to our GANSpaceSynth Pd object. Redundancy parameter is a nonnegative integer
that specifies how many additional buffers will be used. The number of buffers to allocate becomes
batch_size · (1 + redundancy). In practice, we use a single large buffer divided into this number
of slots. For example, given a redundancy of 3 and GANSpaceSynth defaults for audio length (64000
samples) and batch size (8), we allocate a buffer of 64000 · 8 · (1 + 3) = 2048000 samples. Slot 0
then consists of samples 0–63999, slot 1 of samples 64000–127999, and so on.

GANSpaceSynth maintains a list of free slot numbers into which audio data can safely be written.
Figure 2 demonstrates the buffer slot structure in GANSpaceSynth. Initially, all slots are free. When
GANSpaceSynth is about to start synthesizing, it checks to see whether batch_size free slots are
available. If not, the synthesis is skipped and retried later. (Ideally, we want to prevent this from
happening.) If free slots are found, synthesis begins. Once done, the synthesized audio is written
into the free slots and they are marked as reserved. For each of these slots, a message is sent to the
corresponding mill instance notifying it to start playing any new grains from the slot. Our modified
version of mill keeps track of the slot that each grain is playing. Any grains that are playing when the
new slot message is received continue to play their assigned slots to the end. Once the number of
playing grains for a previous slot reaches zero, a message is sent to notify GANSpaceSynth that the
slot can be marked as free again.

Given a minimum grain interval, a maximum grain duration and a maximum delay in message
delivery and processing, it is possible to calculate a redundancy value sufficient to prevent skipped
synthesis batches from happening. In practice, we experiment and settle on 31 for our setup. Our
changes to mill introduce a race condition that occasionally miscounts slot grain counts when running
with multiple threads, causing slots to not be freed properly and effectively “leaking‘ them. However,
we find that single-threaded performance is more than sufficient, and thus sidestep the issue by
disabling multi-threading.

4 Micro-Sound time-scale parameters

We have multiple independent mill instances playing grains from their own buffer slots. Each bend-
sensor on the instrument AI-terity control surface produces a linear value between 0 and 1 depending
on the amount of bending, and we map each of these values to a set of granular synthesis parameters
for the corresponding mill instance. Several of our mappings are non-linear, and for these we use
exponential curve-ranges, where a curve of 0 is linear, >0 is positively curved and <0 is negatively
curved. Grain density ranges from 0.08 to 0.02 with a curve of 0.5 (lower density values produce
more frequent grains) and an added random variation of 0.6. Grain duration ranges from 0 seconds to
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Figure 2: New buffer-slot structure in AI-terity with GANSpaceSynth (GSS).

0.6 seconds with a curve of -0.1 and a random variation of 0.1. Position of the grains ranges from 0
(start of the buffer slot) to 0.6 (60%, or 2.4 seconds into a 4-second buffer slot) with a curve of 3 and
a random variation correspondingly varying linearly from 0.3 to 0.01. Velocity (mill’s term for grain
playback rate) does not vary with the bend value, but rather each sensor has its own constant velocity
tuned to a double harmonic scale (intervals H-3H-H-W-H-3H-H). The root pitch is not specified
and instead depends on the tonality (if any) of the audio synthesised by GANSpaceSynth. Finally,
panning varies randomly from 100% left to 100% right to create a wide stereo cloud of grains.

5 Reordering Buffers in Sound Synthesis

Our solution to apply redundancy parameter for reordering buffers and adding additional buffers
to avoid playback interruption in sound synthesis, allocates memory for an audio sample just for
temporary storage. If we’re sure that the buffer doesn’t overlap with the sound we are synthesising,
we can use that buffer slot. Otherwise, we’re using dynamic memory, and we need to free the buffer
slot later. To apply the redundancy parameter for reordering buffers, we are creating temporary
buffers that we use just to keep the same buffers from rewriting. Then we are looping through the
buffer indices until we find the buffer slots that we want to change its status for rewriting. At the
beginning of the function we are assigning the buffer to a specific index of slot 0. Finally, we change
the positions of buffers and check for deadlocks.

Some other methods for reordering of the contents of a sample buffer in order to lock an audio-buffer
playback into a fixed loop is used. For example, the order of playback of samples may be rearranged
in order to recreate a sequence of samples played, such that they are played in the order of a time
sequence, thereby locking the playing of the sample buffer [17]. The above solution, however, has
the similar problem we faced earlier for simultaneously generated multiple audio samples that the
playing back cannot be started instantly when the reordering of the sample-buffer starts. As another
method in streaming audio packets in a network for locking the sample-buffer playback, the order
of playback of samples may be rearranged so as to play a loop in delayed buffer, thereby locking
the playing of the sample buffer [18]. The delayed buffer option provides an alternative method by
delaying the playback in a number of audio buffers. According to this method, however, when the
playing of the sample buffer is unlocked, the loop continues in the past state, so that the playing of a
number of sample buffers can not be started instantly. Further, according to the authors, when the
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sample buffer is played in delayed, the playing order of the buffer slots is not necessarily kept in the
order of their chronological occurrence, which is not desirable for our sound synthesis method.

Bascou and Pottier [19] presented a need of a flexible synthesis environment with a precise control of
granular representation of sounds. With a view to provide sound synthesis to support generation of
high density complex grains, the authors proposed the "GMU" system for the creation of accumulated
sonic grains, each with their temporal and spectral variabilities. The GMU was realised to control
sounds synthesis with “buffer based enhanced grain generator”. The buffers represent one of the
most common frameworks for granular synthesis implementations, it relies on storing variety types
of waveforms and allows generating sounds with transformations on temporal and spatial features of
voices is sound sources.

In the case of the GMU, a set of pre-calculation of envelopes in buffers is presented with their
temporal positions and the corresponding spectral voice profiles. Each of these buffers can be read at
synthesis time modified by the user at will to either add a spectral tail or pitchshift the voice on the
time axis by a given amount. Here the authors propose the GMU system as an efficient framework
that combines the flexibility of the buffer structure in granular synthesis approach with the ability to
generate complex sound through a "continuous" sound synthesis.

GMU provides a flexible granular synthesis environment with precise control of individual grains
and shares with our modified mill the property that each grain carries its own reference to an audio
buffer. However, GMU does not appear to address the problem of synchronising grain playback
with continual rewriting of buffer contents. The main difference of the ways buffered used in GMU
and in our AI-terity musical instrument is the irregular timing conditions set through jump events
in GANSpaceSynth for writing the audio signals into buffers and synthesising them. This enables
us to use the buffer slots and move between the slots efficiently. It also makes it possible to apply
audio processing to the buffer slots (reading index positions, and changing the density of the grains,
etc.) without having any timing conflicts or the gap of audible artefacts between buffer slots. Figure
3 shows the video demonstration of the synthesised sounds using the augmented buffer slots in
mill granular synthesiser with the timing conditions. This buffer slot framework specifically allows
GANSpaceSynth to generate multiple audio samples, synthesise them and let musicians to move
along the orthogonal directions set in the latent space. The granular synthesis parameters (interval,
duration, delay) and their relation to the timing parameters chosen for the additional buffers that are
required, have a particular influence on the musical outcome with GANSpaceSynth. Furthermore,
these features set the idiomatic patterns of its own algorithm for the musicians [20].

6 Conclusions

In this paper we presented an augmented granular sound synthesis method, introducing redundancy
parameter for synchronising grain playback with rewriting of buffer contents in granular synthesis.
The key feature in the proposed sound synthesis method is in the way it is used for simultaneously
generating multiple audio samples and synthesising them without interrupting the playback grains.
We have shown that augmenting the mill granular sound synthesis with redundancy parameter in
playback events makes the sound synthesis more robust to irregular time signatures that occur between
the events of writing generated audio samples to buffer slots and synthesising of granular-musical
events. The synchronised playback with continual writing of the buffer can effectively be beneficial
for GAN latent space exploration of granular sounds in realtime. The granular sound synthesis
methods based on the proposed time-varying buffer slots has demonstrated more efficient sound
synthesising compared with methods based on the constant buffer, which enables one to control the
multiple sounds playback freely.

The method that is described in this paper is a significant programming/integration effort to address
a particular synthesis problem that emerges from the need of our system-structure. One may argue
that such a problem will not exist if both heterogeneous systems (GANSpaceSynth - Python and
Mills - C compiled for Pure Data) would be patched together and implemented in the same language
or perhaps if the GANSpaceSynth was modified to have a production rate matching the consumer
one. However, such a solution for customised audio synthesis method with multi-threading buffering
strategy is needed, considering the autonomous nature of the AI-terity instrument and its effect on the
audio generation/synthesis events. We believe that a system in which one component is compiled in
C and the other one in Python would still be desirable, because this allows integrating and optimising

6



Figure 3: The screen-shoot of the video demonstrates the GAN latent space exploration with
the AI-terity instrument, generating mutliple audio samples, synthesising them simultaneously
and synchronising grain playback in mill granular synthesis. The video material is available at
https://vimeo.com/558363454

real-time audio synthesis environment together with various deep learning models, at very little effort
and does not introduce conflicts or incompatibilities. At the same time, our goal is to develop a GAN
space synthesis engine using Python environment to allow further integration with available sound
synthesis tools and to make our solution extensible and modular to be used in other existing synthesis
systems. We believe that such a solution would not require the development of new components for
a given system to exploit the advantages of the deep leaning models applied to audio synthesis in
music context. Our system-structure also implies that the deep learning model synthesis code is not
directly used by the musician in many cases, but is exposed to the musician in the form of a "dialog
box" as in the form of a GUI function in Pure Data environment that returns input/output synthesis
comments. In this way, the musician has to find the best way to build up her own communication
with the deep leaning modules, without any need for further "magic" for creating audio synthesis
techniques using deep learning algorithms.

The benefits introduced by this augmented sound synthesis method is based on an implementation
of redundancy parameter in scheduling additional buffer slots to granular synthesis. This additional
buffer slots / large buffer slot combination is then further combined with GANSpaceSynth to allow
multiple latent space vector points to be used in granular synthesis, simultaneously, in GPU real-time
without any audio artefacts. The result is a system that provides the musician features to explore GAN
latent sound synthesis of granular-musical events with expanded range of timbre in multiple generated
audio samples without interrupting the granular musical features. These benefits in synthesis method
and results have allowed further developments in granular-musical synthesis that may provide a new
approach to music creation and composition in granular-musical domain. The instrument AI-terity
has been developed further to allow this approach to be further explored in music compositions [21].

There are several open issues in the presented augmented sound synthesis method. An interesting
challenge is to improve the quality of generated samples for each given set of input parameters, and
this can be an interesting direction to improve on GANSpaceSynth. At the moment, GANSpaceSynth
generates 4 seconds audio samples with 16000Hz sampling rate. Furthermore, an alternative approach
is needed to explore all kinds of generative deep learning models similar to GANs. For instance,
an interesting research direction could be to investigate if a generative model that allows for more
control, less computational resources and latent space of audio features with decent audio quality,
could become a replacement for the existing generative models applied with GAN architecture.
An additional direction for future work would be to investigate the potential of augmenting or
reformulating the GAN structure to include more sustainable AI technologies. Finally, we recommend
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looking into other sound synthesis methods (e.g. wave model generation, generative vocoder, etc.) to
compare with our proposed augmented sound synthesis method for a GAN latent space exploration.
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