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Abstract

Human composers arrive at creative decisions on the basis of their individual
musical taste. For automatic algorithmic composition, we propose to embrace that
concept and encode taste as binary classification task. We identify and reconsider
an implicit assumption: each and every result of a successful composing algorithm
should be of great quality. In contrast, we formulate a general concept of composer-
producer collaboration: an artificial music producer that filters ‘good’ and ‘poor’
results of an independent composer can improve musical quality without the need of
refactoring composing strategies. That way, creative programming can be divided
into independent subtasks, which allow for modular (multi-agent) system designs
as well as productive team development. In a proof-of-concept experiment, we
perform the discrimination of real Bach chorales from fakes generated by DeepBach
using neural networks. This leads to an improvement of the overall results and
provides possibilities to explain model behavior. Our concept can effortlessly be
transferred to any pre-existing music generator.

1 Introduction

Individual taste is part of our everyday life. But taste is not exclusively important to consumers. It is
equally important to artists creating objects that are to be liked. Taste provides an intuitive guideline
to evaluate creations according to terms of aesthetics. A music composer sitting at the piano with pen
and paper, or nowadays in front of a computer using music notation software, at bottom uses her/his
taste to make creative decisions. But what if the composer is no human but a machine?

Including algorithms in the process of music composing is no novel approach. In the pre-computer
era, algorithms were executed manually [27]. Many effortful attempts were made to automatically
compose music. They form the research domain of Algorithmic Composition [12]. Such attempts
were heavily criticized with equal commitment ever since. Results are commonly declared ‘poor’
compared to human composers [12, p.561]. But what are the main reasons?

An attempt at explanation: Great composers are expected to satisfy a minimum standard of artistic
quality in each new composition. This minimum, however, is only measured subjectively by critics or
listeners’ response. What is often overlooked: even great composers fail during creative processes.
If something turns out not ‘good’ enough by self-imposed standards, they rework it or even start
anew from scratch. Accordingly, the published work is the filtered result of multiple attempts. If one
succeeds in each and every attempt with the greatest of ease, we speak of a musical genius [19].

Algorithmic composition systems using modern Machine Learning (ML) techniques usually have no
automated measure to self-evaluate results [5, Section 8.6], in contrast to traditional approaches [12],
e.g., evolutionary computation [26]. We argue that the developers then optimize their algorithms
towards the goal, that all their results become as ‘good’ as possible. Thereby, they implicitly implement
“good taste” within the models. As a consequence, each and every composition is expected to become
at least ‘good’. If one developer would succeed in that, the system would instantly gain a kind
of ingenious quality according to the reasoning above. Consequently, all composing algorithms
would be designed to reach no less than perfection, which is not and obviously cannot be the case.
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It is overambitious in comparison to the moderate accomplishments of state-of-the-art computer
composition [12, p.561].

Assuming the number of ‘good’ results increases with the number of attempts, computers have
significant advantages over humans: they are both fast and inexhaustible. The concept of the Billion
Song Dataset [6] demonstrated how computers are able to produce tremendous amounts of music.
The main problem is quality. Filtering out ‘poor’ results would instantly improve such algorithms.

In the following section, we argue that musical taste can be reduced to a binary classification task.
That leads to our proposal in Sect. 3: the artificial music producer. It is derived from observations of
human composer-producer collaboration. For further differentiation, we compare our approach to
related research topics in Sect. 4. Section 5 demonstrates practical applicability: various Artificial
Neural Networks (ANNs) are used to discriminate Bach chorales from algorithmically generated
fakes. The results are then sorted by quality. Therefore, we formalize the quality measurement
(Bachness) in Sect. 7, which allows for interpretation and explanation of model behavior (a major
research interest, see [5, Section 6.17]). In Sect. 8, the artificial producer is used to filter an endless
generation of chorales by Bachness and, thereby, improve the quality of DeepBach’s final output.
Conclusions follow in Sect. 9.

2 Filtering Music by Taste: a Binary Classification Task

The great jazz composer Duke Ellington (1899–1974) is quoted as having said:

“There are two kinds of music. Good music, and the other kind.”

What at first makes a good laugh, actually speaks volumes about how serious artists reflect their
creative processes. “Kinds of music” is a term associated with musicologists. Ellington misguides the
reader that he is going to say something about musical genre, epochs, or styles. But those categories
were made up by listeners, critics, and musicologists. Ellington emphasizes that those distinctions
provide critical limitations for creators. Composers want to make something that is “good music” (at
least in their eyes). Something others may appreciate and like to experience – the opposite of ‘not
good’, ‘bad’, ‘poor’.

Embracing this idea, defining a classification task is straightforward: Given a musical object M , its
preprocessed feature vector ~m serves as input to a classification function T that models the musical
taste of an individual i and outputs just one of the two classes good ^ or bad/poor _:

Ti(~m) = y where y ∈ {^,_} (1)
At first sight, this approach may seem naive. But, in our opinion, this simplification provides major
advantages. General Adversarial Networks (GANs) demonstrate how this is successfully used in
autonomous machine learning (details follow in Sect. 4). Our approach, however, is different since
we can have humans involved in the development of composing strategies. This provides a way to
preserve creativity (concerning originality) within the musical results. For example: learning T (~m)
and using it to filter out ‘poor’ results improves existing artificial composers without modifying or
rewriting code. Further, one common problem in the domain of computer art is addressed: promising
projects are sometimes badly documented or important details are missing making reproduction
impossible. Thus, older projects cannot be continued or adopted by others. However, results can be
improved by our filtering approach, because no alteration of existing systems is needed.

Another proposal: Teams of creative co-workers can share workload. One uses her/his creative efforts
to develop algorithms generating new and original ideas of great variety (accepting some ‘poor’
outcomes). Another developer deploys ML algorithms that identify desired characteristics within the
results. The work of the artificial critic [30] is a recent example. It shows: creative teamwork can
successfully be organized and accelerated in a sort of multi-agent scenario.

3 Concept of the Artificial Music Producer

There is a long-lasting trend to include more and more technical aids in artistic processes. They allow
music composers to construct their creative musical ideas in less time. Artists are always appreciating
such gain in productivity, e.g., to not be interrupted in periods of artistic flow. We will formally
present our observations in this section in order to develop application scenarios.

2



Composer

Composer

Producer

Producer

�

Stage I

Composer

Composer

Producer

Producer



�

�

Stage II

Composer

Generator

Producer

Producer

�



�

�

�

Stage III

Composer

Generator

Discriminator

Producer

�



�

�

�

*

Stage IV*

Figure 1: Evolution of the relationship of human music composers, human music producers and
applied technical aids. Each circle represents one composition, the producer selects the ‘best’ (green).

The artificial producer is expected to classify compositions of known artificial composers in one
of the classes ^ or _. In the authors’ opinion, this concept is the next logical step of an evolution
(cf. Fig. 1) that already showed three stages I–III. The fourth stage IV* is our new proposal.

At first, the human composer is self-dependent by writing a piece and publishing it. In stage II,
the composer provides a variety of pieces to a music producer, who as an experienced listener and
professional critic chooses the ‘best’ creations. In the music industry, commercial reasons are driving
forces [17]. But the concept can also be identified in other situations, like bands collectively deciding
about songs to appear on an album, or one single composer looking back on former compositions.

Stage III is the state-of-the-art in modern music production. The generator may represent any kind
of computer aid like music notation software featuring copy-and-paste, transposing and intelligent
suggestions or digital audio workstations offering automatic pitch correction, software synthesizers
and intelligent mixing templates. This way, composers can compose more pieces in less time, which
results in additional workload for the producer. If the generator becomes a sophisticated composing
algorithm, the time needed to create a piece is radically reduced. Naturally, no human can listen to
music faster than it can be played. We propose to insert a discriminator (stage IV*), that automatically
evaluates results by predicting producer decisions.

Note that our observations do not represent a one-way street. Today, some composers still work
successfully by using just pen and paper, e.g., to intentionally boost their inner creativity by deliberate
limitation. It means widening of possibilities and expanding the variety of how art takes shape. Further,
we embrace artistic approaches. We think the terms generator and discriminator are too technical in
a creative context. Hereinafter, we are using artificial composer and artificial producer, since we
believe (just as [6]) that personification influences the way artistic tasks are being implemented in
software.

4 Related Domains

The following research domains are related to our concept but hold significant differences.

General Adversarial Networks The concept from Fig. 1 has similarities to the principle of GANs
[13], since they also use two ANNs named generator and discriminator. GANs, however, implement
a fully automated version of our concept. The human composer and producer is the developer, who
initially inputs example data, but acts fully passively afterwards. We find that thereby, originality
is missing, since the GAN generator just imitates the statistical distribution of the example data.
Our concept, instead, is open to include, e.g., knowledge-based systems or even human-in-the-loop
procedures, which boost creative qualities of the results.
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Recommender Systems Per definition, our concept is a recommender system (RS) as it makes
predictions of feedback to consumable objects [20]. The main difference is modern RS practice, that
has discarded content-based recommendation towards meta-information. Collaborative filtering, e.g.,
compares users’ buying behaviors. For recommendation of music, cultural, demographic, political,
and psychological background information have demonstrated applicability [22].

Hit Song Prediction This problem domain is a special case of RS. The task to predict the hits of past
hit lists in order to predict hit potential of yet unreleased songs. Here, the artificial producer would
not model the taste of one individual but of collective listeners. Motivation is provided by the music
industry, that invests billions in finding new talents [17]. Main difference: only human-made popular
music is considered. The goal of our concept is addressing and promoting algorithmic composition.

5 Design of Experiments

This section describes our proof-of-concept experiment. We address the question, whether a trained
ANN functioning as artificial producer is able to filter undesirable output of the artificial composer
DeepBach [15], that composes Bach-style chorales, and, thereby, improve the accepted output. We
chose ANNs because of their flexible and adaptable environment that may simulate the complex
cognitive processes of human music listening behavior [4, p.280]. We provide a comparative
evaluation experiment in which we train and test different ANN types with various parameters and
input representations to derive profound conclusions. Ti from Eq. (1) is approximated by supervised
learning of ‘good’ and ‘poor’ examples.

5.1 Training Corpus of Real and Fake Bach Chorales

J. S. Bach left behind a collection of 389 four-part chorale harmonizations. They share similar
characteristics making them popular for imitation exercises of music students and for equivalent
ML tasks [2]. If the majority of composers and musicologists may agree on one thing, then that the
work of Bach is “extraordinarily valuable”. Therefore, we assign all chorales to ^. Then DeepBach
produces fakes, which are considered to be associated with _. The task of the artificial producer
is then to learn to discriminate Bach chorales from fakes. Again, doing so may seem naive at first
sight since it could imply that the detection of human vs. machine composed music is equivalent to
detecting differences in taste. For the present experiment only, we defined to target Bach chorales as
the ultimate goal, which will lead to interesting findings in the following. Our concept of the artificial
producer, however, is not generally limited to a Turing-like human-or-machine distinction.

Similarities to GANs are obvious. The major difference is that we do not modify the working
principle of DeepBach and, therefore, preserve the developer-intended behavior, which becomes
crucial when dealing with more inventive generators as we plan for future work. Obviously, this is
less important when dealing with full ML systems, but the implementation of DeepBach already
cannot easily be transformed into a self-discriminating feedback loop [15, p.1365].

Prior to DeepBach, many attempts were made to algorithmically generate Bach-like chorales [1, 11,
18]. Unfortunately, none is working on modern hardware. Therefore, it is impossible to generate a
training corpus. One exception is a dataset of 5000 Bach-style chorales [8] created with EMI [7] by
David Cope. It was provided for exactly such research studies as ours, but unfortunately the server is
down. The dataset seems lost and unreproducible for the time being.1 Newer projects are BachBot
[24] and WaveGAN [10]. But only DeepBach shares trained model parameters publicly, therefore it
is chosen for our experiments.

The Bach chorales were retrieved as MIDI files from music21 [9]. Omitting chorales not for SATB
choir, 369 chorales remain. Hereinafter we refer to them as BACH369. For each of the chorales a
corresponding piece of the same bar length is created using DeepBach. This creates an analogous
collection of 369 fake chorales, hereinafter referred to as FAKE369. The union of BACH369 ∪ FAKE369

forms the training corpus.2 A 5-fold cross-validation with training, validation and test subsets in ratio
of 3:1:1 was applied to all experiments. Each chorale is assigned a subset as a whole. This results to
2 · 369 · 3

5 ≈ 443 chorales per training set.

1Correspondence with David Cope and former users led to this assessment.
2The datasets BACH369, FAKE369, and 1744 of the “perfect” chorales (see Sect. 8) are provided at:

https://doi.org/10.5281/zenodo.5726645
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5.2 Input Data Representations

Different symbolic and audio representations of the chorales are to be compared. First, MIDI events
are transformed into human-readable text using MIDICSV [31]. Redundancies between repeating
strings are removed by compressive encoding. Note that it can only be used with ANN types that
can handle asynchronous input streams. Second, we arrange MIDI events as two-dimensional pitch-
time diagram (Pianoroll, cf. Fig. 2) with a sampling rate of 100 Hz. For audio, the MIDI files are
synthesized using The Leeds Town Hall Organ samples kit [28]. This choice is consistent with the
human evaluation in [15], so comparability is guaranteed. The audio sampling rate is r=22.5 kHz
mono. The third representation is a Mel Spectrogram (MelSpec) with windows of size w=2048
samples, 75% overlap and 128 Mel-bins. The fourth representation are 20 Mel Frequency Cepstral
Coefficients (MFCCs).

5.3 Neural Network Types and Architectures

We also compare different ANN types. Fully-connected networks called Multilayer Perceptrons
(MLPs), Convolutional Neural Networks (CNNs) and recurrent networks with Long-Short Term
Memory (LSTM) units are our basic types (for details see [14]). For each type we compare different
candidates with varying concrete architectures. Appendix A lists all hyperparameters.

The MLP is considered a baseline competitor. MLP1–3 have 1 to 3 fully-connected dense layers.
MiniMLP is MLP1 with fewer weights in its hidden layers. DeepCNNdense is VGG16 [29] for
image recognition with modifications to better match the audio domain [16]. Without final dense
layer it becomes DeepCNN. Two shallow architectures named MiniCNN and MiniCNNdense are
included for CNN baseline comparison. The recurrent candidates are a single LSTM unit with and
without attached dense layer (LSTM and LSTMdense), two double-stacked LSTM units (LSTM2
and LSTM2dense, loosely following [23]) and a LSTM baseline competitor (MiniLSTM).

For training, we use Adam [21] with a learning rate of η=0.001 and early stopping (patience of 5
epochs, best weights restoring). The batch size is variable, because per batch we use all excerpts
of one entire chorale to calculate the gradients. That way, each chorale has the same impact on the
gradient descent regardless of its length.

6 Evaluation of Experiments

To find an optimal model for the task, all combinations of ANN candidates and representations were
trained and tested with short excerpts of length 3 s. This straightaway resulted in high accuracy values,
so we decided to try larger excerpt lengths at a later point. Table 1 shows the excerpt-wise prediction
accuracy (ACC) averaged over all cross-validation runs. Before discussing other statistical measures,
we stick to ACC for initial evaluation, since we only treat binary classification with balanced training
and test sets.

For our improved measure ACC*, we first average the excerpt predictions of each individual chorale.
The prediction accuracy is then evaluated chorale-wise. Thereby, we interpret the output neurons’
probability values as reliability measure. This correlation cannot generally be guaranteed. However,
the fact that all ACC* values are greater than the corresponding ACC verifies our assumption within
the scope of this experiment. Section 7 provide further insights and applications.

Table 1 holds interesting results: First, many combinations achieved a high ACC* even above
0.9. For Pianoroll, this is not unexpected. For MelSpecs, which masks symbolic features due
to its overtone characteristics, the results were surprisingly good. Less surprising is the inferior
performance of MFCCs, since their strength is providing information about timbre [25]. Nevertheless,
the combination MiniCNN-MFCCs was able to achieve the highest ACC* of 0.951. Since all other
models were not successful on MFCCs, we treat that result with caution.

MLPs did well on Pianoroll. They benefit from the consistent chorale form. CNNs, however, show
an ambivalent picture. The deep versions, which are successful in recent applications, performed
worse than MiniCNN. They are presumably too deep to learn the dataset’s distribution. Attached
dense layers also had negative impact. The LSTMs performed satisfactory. LSTM-Pianoroll and
LSTM2dense-MelSpec were the best combinations. The attempts on MidiCSV succeeded and show
potential, but could not be optimized further within the scope of this paper.

5



ACC ACC*
Pianoroll MelSpec MFCCs Pianoroll MelSpec MFCCs MidiCSV

MiniMLP 0.847 0.644 0.505 0.917 0.615 0.503
MLP1 0.863 0.659 0.515 0.935 0.689 0.552
MLP2 0.863 0.569 0.506 0.927 0.694 0.533
MLP3 0.866 0.554 0.506 0.926 0.699 0.500

MiniCNN 0.848 0.838 0.819 0.946 0.942 0.951
MiniCNNdense 0.701 0.678 0.518 0.711 0.645 0.541

DeepCNN 0.505 0.742 0.508 0.500 0.767 0.554
DeepCNNdense 0.505 0.664 0.505 0.500 0.688 0.500

MiniLSTM 0.823 0.821 0.504 0.882 0.901 0.500 0.753
LSTM 0.825 0.768 0.534 0.905 0.744 0.503 0.674

LSTM2 0.758 0.831 0.629 0.797 0.928 0.550 0.669
LSTMdense 0.812 0.814 0.534 0.867 0.919 0.500 0.748

LSTM2dense 0.699 0.832 0.543 0.680 0.931 0.500 0.500

Table 1: Initial comparison of the candidates by accuracy. Smaller numbers are grayed out. Highest
values per column of each ANN type are in bold font.

ACC ACC*
1 s 3 s 5 s 10 s 12 s 1 s 3 s 5 s 10 s 12 s

MelSpec-MiniCNN 0.793 0.838 0.877 0.890 0.892 0.923 0.942 0.948 0.950 0.939
Pianoroll-MLP1 0.806 0.863 0.880 0.914 0.918 0.908 0.935 0.932 0.942 0.943
Pianoroll-MLP3 0.816 0.866 0.892 0.926 0.927 0.916 0.926 0.930 0.957 0.949

Pianoroll-MiniCNN 0.794 0.848 0.875 0.906 — 0.920 0.946 0.949 0.961 —
MFCCs-MiniCNN 0.756 0.819 0.859 0.888 0.894 0.928 0.951 0.958 0.943 0.951

human — 0.630 0.750 0.740 0.690χ

Table 2: Comparison of the previously best combinations with increased input lengths. Value marked
with χ is retrieved from [15, Fig.5].

In the next step, the excerpt length was optimized, cf. Table 2. It can be observed, that ACC* increases
with larger excerpts and reaches its maximum at 10 s. In comparison with human assessment of
600 excerpts with three different excerpt lengths (by one of the authors), small excerpts of 3 s prove
to be the harder task. However, 5 s and 10 s showed no difference. The value below 12 s is retrieved
from the expert evaluation of DeepBach [15]. The lower value is explained by the fact, that the
author gained more experience when preparing the training corpus. The subjects in [15] were experts,
but they were unprepared for the specific task. Nevertheless, all models did indeed outperform the
humans in predicting Bach or fake.

Final comparisons of the seven best performing models include precision P* and recall R* (cf. Ta-
ble 3). We argue that P* is the most important value for our later example use case: since we will try
to find the ‘best’ fake chorale by discarding ‘poor’ ones, we can rather accept ‘good’ chorales mistak-
enly removed (false-negative) than ‘poor’ ones mistakenly accepted (false-positive). Pianoroll-MLP3
with P*=1 did the perfect job on that.

7 The Concept of Bachness as a Quality Measure

As we have seen, ACC* is significantly superior to ACC regarding correct classification. That
proves that the output neuron of class ^ carries information about the reliability of the classification.
Therefore, we are able to not just filter results but to sort them according to their quality. Latter
is expected to not only represent the experienced correctness of the chorales, but also a taste of
magnificence in comparison to J. S. Bach, who was a great master in harmonization [3]. Therefore,
the quality value was named Bachness factor B.
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ACC* P* R*

MelSpec-MiniCNN (10 s) 0.950 0.991 0.908
Pianoroll-MLP1 (10 s) 0.942 0.994 0.889
Pianoroll-MLP1 (12 s) 0.943 0.986 0.900
Pianoroll-MLP3 (10 s) 0.957 1.000 0.913

Pianoroll-MiniCNN (10 s) 0.961 0.984 0.938
MFCCs-MiniCNN (10 s) 0.943 0.981 0.905

MFCCs-MiniCNN (5 s) 0.958 0.983 0.932

Table 3: Final comparison of the best models by chorale-wise accuracy, precision and recall.

Using B needs validation. The models are expected to generate similar values for the fake chorales.
Therefore, a correlation analysis is applied to the top two models Pianoroll-MLP3 and Pianoroll-
MiniCNN from Table 3. Average difference per chorale is ∆B=0.038 with a standard deviation
of σ∆B=0.036. The Pearson correlation coefficient confirms significant correlation with r=0.817.
Even the ranks correlate with r=0.785. Therefore, the concept of Bachness is considered valid. We
may then develop further analysis tools based on B. For now, we propose Bachness graphs (Figure 2).
They plot B over time visualizing changes of B within one chorale. The resulting B-t diagrams are
used to identify ‘good’ and ‘poor’ segments. All models show similar curves. That strengthens the
argument of a general validity of B further.

Figure 2a shows the lowest rated chorale from FAKE369. It shows massive tone repetitions creating
stagnation. This is correctly detected because typical for Bach. Figure 2b shows the ‘best’ fake
chorale. The artificial producer detects imperfections at the beginning. And indeed, e.g., around t=4 s

there is an A major chord {C]4, A4, E5} on top of the bass note C(\)
3 . The disharmonic minor ninth

interval is noticeable even for inexperienced listeners, thus correctly detected. Figure 2c has average
Bachness. It attracts attention because of its fluctuations. Heavy harmonic movement is accredited
high Bachness while long notes are penalized. Comparisons confirm that preference of Bach. Fig. 2d

MLP1 Pianoroll MiniCNN Pianoroll MiniCNN MelSpec MiniCNN MFCC LSTM Pianoroll LSTM MelSpec
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Figure 2: Bachness graph of the six best models, Pianorolls in backgrounds.
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shows the ‘poorest’ of Bach’s chorales. Again, movement is rewarded. The upper voices of the G
major chord around t=16 s are {G4, B4, D5} and bass note is B2. This is a large interval of a tenth
plus another octave. It cannot be said (of course) that this is incorrect or disharmonic, but such a large
range is rare to find in Bach chorales and thus a special difficulty for the artificial producers. Despite
those interesting findings, further theoretical investigations remain future work.

8 The Perfect Fake Chorale

In this application scenario, DeepBach creates chorales nonstop. Meanwhile, the artificial producer
(Pianoroll-MLP3) sorts them by B. Within the scope of this study 1744 new chorales were gener-
ated.2 Their duration was defined as BACH369’s average of 24 s. Further statistics can be found in
Appendix B: Fig. 3 shows the distribution of all 1744 B values. The climbing gradient to the right
shows, that ‘good’ compositions are less frequent than those of mediocre quality.

On first listening impression, the results sound indeed as ‘good’ as claimed by [15]. The voices of the
‘best’ chorale provide sort of a contrapuntal movement. The second best takes some harmonic risks
that Bach would rather have avoided, but dissonances are always resolved. The Top 10 compositions
are pleasing even though showing brief moments of clumsiness.

At first sight, the Bottom 10 also seem quite fair. This impression is caused by the predominant use
of major and minor triads. On further examination, we found heavy repetitive chords, tone repetitions
and parallel harmonic movement. Some chorales just sound wild (negatively speaking).

In conclusion, the artificial producer was capable of filtering out chorales that had severe construction
problems. That said, it definitely succeeded in improving DeepBach’s results. Besides, we observed
that our concept brought additional excitement to the task of listening to the sorted collection of fake
chorales. That is a quality, that must not be underestimated, because it can boost motivation and
inspiration of both researchers and artists.

9 Conclusions and Outlook

The aim of this paper was to formalize a concept of composer-producer collaboration. Musical taste
was defined as binary classification task. The simplistic approach showed major benefit when applied
in a proof-of-concept experiment: Bach chorales were implicitly determined as generally appreciated
by composers and musicologists. The publicly available Bach-style chorale generator DeepBach
was used as an artificial composer. Various types of ANNs and music data representations were
evaluated on their performance in discriminating the real Bach chorales from fakes. It was shown that
improvement of results by filtering is possible and raw symbolic as well as raw audio information is
suitable to predict (subjective) quality. The concept of Bachness as a measure of quality was verified
by reliability assumptions about the output neurons. Bachness was then used to interpret model
predictions and explain single decisions on the musical material. In a conclusive application scenario,
we showed that a well-trained ANN can function as an artificial music producer filtering the output
of a music generator.

Future work will include the application on other generators. Presumably, conducting a survey with
human test subjects will be necessary to gain data on musical taste of different individuals. It will
be of particular interest to investigate, if one single architecture is able to predict multiple human
tastes, because it is likely that taste decisions base on dissimilar musical features. This will widen the
application range of ML classification methods beyond objective tasks towards creative applications,
e.g., controlling result characteristics (a current research topic, see [5, Section 6.10]).

Further, novel algorithmic composition systems should use a self-reporting artificial producer in
different steps of their generation procedure (e.g., as successfully demonstrated by the artificial
critic from [30]). An artificial composer may then more fully simulate the process of creativity in
human artistic creation. This may also have reverse impact on the way developers think about their
systems. In future, developing multi-agent systems with independent composer and producer units is
a promising approach (as equally discussed in [5, Section 8.4]). Besides, we proposed our concept
inside the domain of algorithmic music composition, but of course Fig. 1 can be effortlessly adopted
to match other problem domains, e.g., artificial painters, sculptures, writers, architects, fashion
designers, etc.

8



References
[1] M. Allan and C. K. I. Williams. Harmonising chorales by probabilistic inference. In 17th

International Conference on Neural Information Processing Systems, NIPS’04, pages 25–32,
Cambridge, MA, USA, 2004. MIT Press.

[2] C. Ames and M. Domino. Cybernetic composer: An overview. In Understanding Music with
AI: Perspectives on Music Cognition, pages 186–205. MIT Press, Cambridge, USA, 1992.

[3] J. S. Bach. Die Kunst der Fuge. In Bach Werke Verzeichnis, BWV 1080. 1751.

[4] J. Berger. Who cares if it listens? An essay on creativity, expectations, and computational
modeling of listening to music. In D. Cope, editor, Virtual Music – Computer Synthesis of
Musical Style. MIT Press, Cambridge, USA, 2001.

[5] J.-P. Briot, G. Hadjeres, and F.-D. Pachet. Deep Learning Techniques for Music Generation.
Springer, 2020.

[6] N. Collins. “...there is no reason why it should ever stop”: Large-scale algorithmic composition.
Journal of Creative Music Systems, 3(1), 2018.

[7] D. Cope. Experiments in Musical Intelligence. A-R Editions, Middleton, WI, USA, 1996.

[8] D. Cope. 5000 works in bach style, 2012. URL http://artsites.ucsc.edu/faculty/
cope/5000.html. Link to former project website: Download is currently unavailable. (ac-
cessed: 25/07/2022).

[9] M. S. Cuthbert and C. Ariza. music21: A toolkit for computer-aided musicology and symbolic
music data. In J. S. Downie and R. C. Veltkamp, editors, 11th International Society for Music
Information Retrieval Conference, pages 637–642, 2010.

[10] C. Donahue, J. McAuley, and M. Puckette. Adversarial audio synthesis. In ICLR, 2019.
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A Exact parameters of the ANN models

All hidden layers are using the ReLU activation function.
Output neurons are using softmax, except LSTMs are using sigmoid.

type param.

Flatten
Dense 32
Dropout 0.5
Dense 2

(a) MiniMLP

type param.

Flatten
Dense 256
Dropout 0.5
Dense 2

(b) MLP1

type param.

Flatten
Dense 256
Dropout 0.5
Dense 128
Dropout 0.5
Dense 2

(c) MLP2

type param.

Flatten
Dense 256
Dropout 0.5
Dense 128
Dropout 0.5
Dense 64
Dropout 0.5
Dense 2

(d) MLP3

Table 4: MLP candidates.

type param.

Conv2D 16 Kernel (3× 3)
Conv2D 16 Kernel (3× 3)
Flatten[

Dropout
Dense

0.5
128

]
Dropout 0.5
Dense 2

(a) MiniCNN[dense]

type param.

Conv2D 16 Kernel (3× 3)
Conv2D 16 Kernel (3× 3)
MaxPool 2× 2 (Schritt 2)
Dropout 0.25
Conv2D 32 Kernel (3× 3)
Conv2D 32 Kernel (3× 3)
MaxPool 2× 2 (Schritt 2)
Dropout 0.25
Conv2D 64 Kernel (3× 3)
Conv2D 64 Kernel (3× 3)
MaxPool 2× 2 (Schritt 2)
Dropout 0.25
Conv2D 128 Kernel (3× 3)
Conv2D 128 Kernel (3× 3)
MaxPool 2× 2 (Schritt 2)
Flatten[

Dropout
Dense

0.5
128

]
Dropout 0.5
Dense 2

(b) DeepCNN[dense]

Table 5: CNN candidates.

type param.

Dropout 0.5
LSTM 128
Dropout 0.5
LSTM 32
Dense 2

(a) MiniLSTM

type param.

Dropout 0.5
LSTM 256[

Dense 128
]

Dense 2

(b) LSTM[dense]

type param.

Dropout 0.5
LSTM 256
Dropout 0.5
LSTM 256[

Dense 128
]

Dense 2

(c) LSTM2[dense]

Table 6: LSTM candidates.
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B Statistics on the perfect fake chorale

id rk B
01059 1 0.651
00237 2 0.604
00068 3 0.599
00123 4 0.593
00938 5 0.576
01331 6 0.533
01433 7 0.494
01378 8 0.489
00285 9 0.486
01297 10 0.484

...
...

...
00525 1724 0.006
00774 1725 0.006

0087 1726 0.006
00705 1727 0.006

0018 1728 0.005
0123 1729 0.004

00663 1730 0.004
0082 1731 0.003

00399 1732 0.003
01142 1733 0.002

Table 7: Top 10 and Bottom 10 list of chorales sorted by the artificial producer (Pianoroll-MLP3).
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Figure 3: Bachness (B) distribution of all 1744 fake chorales.
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