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Dear Susan, dear students and colleagues, I thank you warmly for

making possible this honor and pleasure.

There are several authors who, when citing me mention only my 1963
thesis. Did I really disappear after that? Perhaps through comments and
questions we can arrive at a more explicit historical knowledge of the

subject, which in turn may be of help in future developments.

[s the basic theme of Functorial Semantics, namely the application of
categorical methods to the study of general algebraic systems and their
relationships, indeed still active after 50 years? We can certainly answer
'yves'. For example, Adamek, Rosicky, and Vitale produced a book on the
subject only a couple of years ago and some young people are reading it.
There was one open question of a basic nature, which I thought should
be clarified for any comprehensive treatment. In effect I trusted that
both the solution to that general question, as well as the production of a

book further disseminating these ideas, would be carried out by my able



colleagues who were already contributing substantially to the subject.

This trust turned out to be well justified.

Let me recall what that general question was: It could be succinctly
described as finding a presentation of the dual doctrine to the doctrine
of finite products. Here I use the term 'doctrine’, due to Jon Beck,
signifying 'something like a theory, but higher'. One interpretation of
'higher' was to treat the logic of (a) higher types, but (b) not simply in
terms of predicates on them, using instead a fibrational model of actual
proofs, as opposed to the mere existence of proofs; these conceptions
were embodied in my 1968 notion of Hyperdoctrine (AMS), which has
figured in some later work, for example in Bart Jacobs' thesis (1990), on

comprehension categories.

However, in the present connection, I am referring to doctrines in the
sense of 'theories whose models are theories', and much more
specifically to 2-monads on the category of categories; these are
referred to as 'equational doctrines' in Springer Lecture Notes 80,
(1969). Letus concentrate on those equational doctrines for which the

category S of small sets is an algebra. In particular, the doctrine D whose



algebras are categories with finite products is appropriate to the (many-
sorted) theories of general algebraic systems in the traditional sense.
Because there are 2-dimensional versions of enrichment, and
commutativity, et cetera, we can rather freely make use in the category
of categories of the hom-tensor operations on bimodules coming from
Cartan-Eilenberg 1956. For example, the dual doctrine of any equational
doctrine D is the one whose value at any category C is

D* (C) = D-Hom(S”C,S).
This is clearly the 'algebraic structure’ of all D-algebraic categories D-
Hom(A,S) as A ranges over the category of algebraic theories (= the 2-

category of D-algebras).

In other words, the standard lifting describes the maximum structure
that all algebraic categories have, insofar as structure is to be described
by the meta-doctrine of equational doctrines; an algebraic category is
always more than a mere category, because of the way it arises; indeed
itis a D* algebra, so that if we wish to represent or approximate some
given category by algebraic categories, a first step would be to verify
that it be a D* algebra. That may not be sufficient because properties in

a still stronger logic may need to be invoked; on the other hand,



categorical equivalence (‘recovery' or 'descent’) is not the only goal of
such investigations, because incomplete invariants are often the tool of
choice, as for example in algebraic topology. The dual doctrine D* is a
very definite thing, but to work with it, a presentation is helpful:
obviously small limits, small filtered colimits, and (thanks to Fred
Linton) reflexive coequalizers are ingredients of the D*; moreover, these
commute and distribute with each other in fairly obvious ways. But are
these ingredients sufficient and do these relations generate all the
relations; in other words, does this constitute a presentation of D*? The
answer took a while, Linton being followed several years later by
Pedicchio and Wood, whose results are described, together with much

more, in the book by Adamek, Rosicky, & Vitale.

The use of 2-monads above is of course an extension of the version of
algebraic semantics and algebraic structure discovered by Beck, by
combining the notion of algebraic theory, as extended by Linton, with
the Eilenberg-Moore theory of triples (later called monads). In the case
where adjoints exist, the structure in monad form is obtained by simply
composing a given functor with its adjoint. But note that the case above

is also very special in that the functor whose structure is being extracted



is itself a dualization functor, so that the monad/doctrine/theory is
actually a double-dualization, where the second dualization is strongly
constrained by naturality with respect to the domain category (here is a
striking formal resemblance to functional analysis, except that the basic

'quantities’ are small abstract sets rather than real numbers).

What is this notion of algebraic structure? Refuting the idea that an
algebraic theory can only arise syntactically, it simultaneously refutes
the idea that algebraic theories constitute a 'new' or 'alternative
approach’ or 'categorical counterpart' to universal algebra; in fact they
constitute an essential feature that was long implicitly present, for
example in the study of cohomology operations. Of course it is often
helpful if, moreover, a presentation can be found for it. Algebraic
structure results simply from the application of the general notion of
Natural Structure within the doctrine of algebraic theories. In that case,
one could say that it is just a particular case of the fact that for any given
object in a category with products, the clone of its finite powers
constitutes a single-sorted algebraic theory. But the other crucial aspect
of this construction is that the given object is in a functor category, so

that the basic naturality condition may severely reduce the size of its



algebraic theory, even reducing it to manageable dimensions because a
presentation can often be found for it. As a very simple example,
suppose that U is a functor whose codomain is the category of finite sets
(here U is the traditional symbol used in this context, though it may not
resemble any 'underlying set' for the objects X in the domain of U). How
much information about the objects X can be extracted from applying
the functor U? The first naive answer is of course that with each object
is associated a natural number, namely n(X) = the cardinality of U(X).
However, consider the group G of automorphisms of the functor U. The
functor U lifts to a new functor & to finite G-sets; knowledge of G-sets
tells us immediately that the mere n is canonically expressible as a
linear combination of other invariants, one for each (conjugacy class of)
subgroup(s); the coefficients provide a much more refined
measurement for distinguishing objects of the domain category. Going
beyond the doctrine of group actions, we could consider not necessarily
invertible natural endomorphisms, including for example idempotents,
so that the basic measurement U is still further refined; or we could go

to arbitrary finitary operations, dealing thus with algebraic structure.



Natural structure with respect to a given doctrine is thus a precise
mathematical model for a very general scientific process of concept
formation. Observing a domain of individuals that form a collective due
to definite mutual relations, and recording these observations as
structure that varies in a natural way with respect to those mutual
relations, leads to the emergence of general concepts that are abstracted
from all the individuals, but that may then be applicable to a larger
population, and in terms of which a more precise analysis of the

individuals becomes possible.

The mutual relations need not be composable, since in any case the
naturality condition that they impose depends on only finitely many at a
time; expansion of the sampling graph, causes the partial structures to
converge by approximation to the full structure. Since the process of
extracting structure is a left adjoint to a contravariant functor, the final
result is an inverse limit of the approximations. On the other hand, if the
mutual relations can indeed be construed as a category, then there is the
possibility that the basic measurement functor might be representable,

so that the whole natural structure would be entirely determined by the



mutual relation of a small set of special individuals, such as the
Eilenberg-Mac Lane spaces in the case of cohomology operations.

The lifted ® itself sometimes has a left adjoint, that can be considered as
the best attempt at descent. It is of interest even if it is not actually
inverse. In the case of dual doctrines it is given by the formula D*Hom
(( ), S), applied to any given D*-algebra (ie to any algebraic category in

the case of the specific D for finite products).

The deeper categorical study of Syntax (in terms of pairs of signatures,
etc) has been somewhat neglected due to the two oversimplified views
(a) that only Syntax matters, or (b) (the 'new revolutionary' claim) that
it does not matter at all. The syntactical presentation of a theory is not
unique; moreover even the style of what is meant by presentation is
subject to some choice: the usual choice for single-sorted algebraic
theories of course involves the functor that assigns to each theory the
'signature’, that is the sequence of sets whose nth term is the set of all n-
ary operations provided by the theory. That functor has a left adjoint
that assigns to every signature the associated free algebraic theory,
whose own underlying signature is much bigger. Like many adjoint

pairs this one can be factored into two stages, with the intermediate



category incorporating a second signature of names for equational
axioms and a way of relating the latter to the signature of generators.
Here again there are several styles of how this relation could be
expressed, so that the factorization is not unique, but in any case the
second stage of the factorization involves taking a coequalizer in the
category of algebras (or of theories if appropriate). Such procedures are
most successful if the adjoint pair is monadic. A categorical study of the
various styles of such factorization, as well as of the underlying syntax
functors, might be useful. For example, instead of giving two arbitrary
maps ('left and right-hand sides of an equation') from relation names to
the composite generator names, one could arrange that every basic
relation is of the special form stating that a complex expression is to be
identified with a mere variable (i.e. a generator) so that all desired
axioms can be derived from the fact that two different complex
expressions can be identified with the same simple expression.
Moreover, an important improvement would exploit the special role of
reflexive relations in general algebra, by including in the presentation
structure itself a definite proof of each trivial equation x =x. (The

inclusion of such axioms is motivated by the preservation of finite



products under the process of extraction of connected components of
reflexive spatial objects such as graphs or globes.)

An old conjecture of William Boone suggests that among the
presentations under the category of algebraic theories there would be
the same analogous relation to recursivity as is known to hold under the
category of groups (Higman) or under the category of first-order
theories (Craig & Vaught): A finitely-generated theory can be described
by a recursive set of axioms if and only if it can be embedded
monomorphically in a larger theory that is finitely-presented. It should

be possible to settle this conjecture.

The noble goal of general theory is to illuminate the path of further
struggles, both practical and theoretical. That goal can be obscured by
the allure and attraction of a 'new’ or 'even more universal' theory,
deviating us from the path. We are therefore especially happy to have
seen that universal concepts, that had been generalized by Birkhoff and
others from the work of Galois, Dedekind, Hilbert, and Noether, have
again been particularized by our colleagues in a categorical way that

illuminates commutative algebra itself.



