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A B S T R A C T   

In a desired environmental protection system, groundwater may not be excluded. In addition to the problem of 
over-exploitation, in total disagreement with the concept of sustainable development, another not negligible 
issue concerns the groundwater contamination. Mainly, this aspect is due to intensive agricultural activities or 
industrialized areas. In literature, several papers have dealt with transport problem, especially for inverse 
problems in which the release history or the source location are identified. The innovative aim of the paper is to 
develop a data-driven model that is able to analyze multiple scenarios, even strongly non-linear, in order to solve 
forward and inverse transport problems, preserving the reliability of the results and reducing the uncertainty. 
Furthermore, this tool has the characteristic of providing extremely fast responses, essential to identify reme-
diation strategies immediately. The advantages produced by the model were compared with literature studies. In 
this regard, a feedforward artificial neural network (ANN), which has been trained to handle different cases, 
represents the data-driven model. Firstly, to identify the concentration of the pollutant at specific observation 
points in the study area (forward problem); secondly, to deal with inverse problems identifying the release 
history at known source location (also in the case with multiple sources); then, in case of one contaminant 
source, identifying the release history and, at the same time, the location of the source in a specific sub-domain of 
the investigated area. At last, the observation error is investigated and estimated. The results are satisfactorily 
achieved, highlighting the capability of the ANN to deal with multiple scenarios by approximating nonlinear 
functions without the physical point of view that describes the phenomenon, providing reliable results, with very 
low computational burden and uncertainty.   

1. Introduction 

Groundwater contamination is an environmental problem that is 
increasing rapidly and need attention. Unfortunately, often it is neces-
sary to treat the water in order to be suitable for drinking. A sustainable 
management could protect the quality of groundwater rather than 
developing expensive treatment systems (Katsanou and Karapanagioti, 
2017). In order to prevent the spread of a pollutant in aquifer, knowl-
edge of the location of the contaminant source and its release over time 
becomes of fundamental importance. Indeed, identifying the source of 
contaminants is a problem that has attracted great attention over the 
past four decades, as highlighted in recent reviews by Gómez-Hernández 
and Xu (2022) and Barati Moghaddam et al. (2021). 

Contaminant source identification starting from few concentration 
observations is a good representative of an inverse problem in hydrol-
ogy. In literature, to solve this kind of problem, a variety of approaches 

exist, and it is possible to classify the inverse methods to numerically 
solve the problem of contaminant source identification in three main 
areas (Barati Moghaddam et al., 2021): mathematics-based, stochastic- 
based, and optimization-based. Mathematics-based methods directly 
tackle to an inverse source problem using numerical or analytical 
techniques. Two common ways to handle stability issue are regulariza-
tion and stabilization methods (Skaggs and Kabala, 1994; Liu and Ball, 
1999). The stochastic approaches (Woodbury and Ulrych, 1996; Butera 
et al., 2013; Cupola et al. 2015; Gzyl et al., 2014; Zanini and Woodbury, 
2016; Xu and Gómez-Hernández, 2016; Todaro et al., 2021; Wang et al., 
2021a,b; Wang et al., 2022) consider the problem in a stochastic 
framework and the parameters to estimate become random variables. 
The optimization-based approaches consist of the integration of both 
simulation and optimization models. The simulation model solves the 
flow and transport equations for given initial and boundary conditions. 
Then, the differences between simulated and observed data are 
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minimized through an optimization algorithm (Ayvaz, 2010; Jamshidi 
et al. 2020). The reader is referred to Gómez-Hernández and Xu (2022) 
and to Barati Moghaddam et al. (2021) for extensive reviews of the 
source reconstruction problem in groundwater hydrology and 
groundwater-surface hydrology, respectively. 

Over the past decade, Artificial Neural Networks (ANNs) have grown 
very rapidly, thanks to improved computing power and technology. 
ANNs were firstly applied to contaminant source reconstruction by 
Singh and Datta (2004) and Singh et al. (2004). They considered the 
concentrations observed at monitoring points as input to the network 
and the release history at the contaminant source as the output. Singh 
and Datta (2004) developed an ANN-based methodology to simulta-
neously solve the problems of groundwater pollution source identifica-
tion and hydro-dispersive parameters of the aquifer. Singh et al. (2004) 
investigated the efficacy of ANN considering multiple source and noise 
on observations. Chaubey and Srivastava (2020) proposed an applica-
tion of ANN to estimate the source location and release concentration 
using a 1D simple study case. Ayaz (2022) proposed an ANN to estimate 
the release history of groundwater pollution source without information 
about the starting time of the release. Recently, Pan et al. (2022) pro-
posed a deep residual neural network as a forward surrogate model 
combined with an ensemble smoother particle filter in order to estimate 
the groundwater contamination source together with the aquifer hy-
draulic conductivity. 

This work proposes an application of ANN to contaminant source 
reconstruction with the objective of minimizing the training period and 
the information required in the inverse procedure. In order to reduce the 
number of the training set the Latin hypercube sampling (McKay et al., 
1979) was considered. Furthermore, to reach the solution in an 
acceptable way for the applications carried out, it is necessary to cali-
brate the network and its parameters adequately. The black box struc-
ture of ANNs allows to consider multiple scenarios by approximating 
any type of function, also strongly non-linear, without the physical point 
of view that describes the phenomenon. This leads to consider new 
scenarios never analyzed before in this field and, at the same time, to 
reduce the computational cost together with the number of observations 
necessary to implement the model. In the present work ANNs have been 
used to estimate the location of the source and its release over time, 
starting from few concentrations observed at monitoring wells. To 
evaluate and compare the proposed procedure, a complex literature case 
study was considered. The procedure is very efficient and allows to 
considerably reduce the number of observations to solve the inverse 
problem. Furthermore, for the first time, ANNs were used to simulta-
neously estimate release history and error on observations. The litera-
ture test case was proposed by Ayvaz (2010) and later adopted by Xing 
et al. (2019) and Jamshidi et al. (2020). The test case consists of a 
heterogeneous aquifer with multiple contaminant sources and seven 
monitoring wells. 

The test case considered is investigated considering different sce-
narios and objectives:  

1. estimation of the pollutant concentration in monitoring wells with a 
release source (direct problem);  

2. estimation of the release history at one contaminant source with 
known location;  

3. estimation of the release history at two contaminant sources with 
known location;  

4. simultaneous estimation of the release history and location of the 
contaminant source with unknown location;  

5. simultaneous estimation of the release history of two sources with 
known location and of the error on observations. 

Objectives 2, 3 and 4 were investigated corrupting the observations 
with different errors. 

The paper is organized as follows. In Section 2, the methodologies 
adopted to implement the data-driven model and its application for 

solving a literature case study dealing with several forward and inverse 
scenarios are presented. Then, Section 3 shows the main results that are 
discussed in Section 4 together with the Conclusions. 

2. Material and methods 

2.1. Groundwater flow and transport 

To study contaminant transport problems in the aquifer, it is neces-
sary to know the flow field, in particular, the velocity field. In the 
following, for the sake of simplicity, a confined aquifer, with known 
hydraulic parameters, characterized by a two-dimensional flow equa-
tion (Eq. (1)) is considered; however, the adopted procedure can be 
applicable also for unconfined and three-dimensional aquifers. 
Including the Darcy law, Eq. (1) shows (in cartesian coordinate ξ = (ζ, η)
assumed to coincide with the principal directions of the symmetric 
tensor representative of the transmissivity) the mass balance with regard 
to a heterogeneous and anisotropic confined aquifer: 

∂
∂ζ

(

Tζζ(ζ, η) ∂h
∂ζ

(ζ, η, t)
)

+
∂
∂η

(

Tηη(ζ, η)
∂h
∂η (ζ, η, t)

)

= S
∂h
∂t

(ζ, η, t) +Q(ζ, η, t) (1)  

where Tζζ and Tηη [L2T− 1] represent the principal values of trans-
missivity along the directions ζ and η, t [T] is the time, h is the piezo-
metric head [L], Q [LT− 1] is the flow rate entered or extracted per unit 
area sources (positive if entering) and S [-] is the storativity of the 
porous medium, that represents the volume of water released per unit of 
planimetric area of the aquifer due to a unit lowering of the piezometric 
head. Assuming that the contaminant performs as a tracer, it is possible 
to solve the contaminant problem in two steps: first to solve the flow 
problem, then to solve the transport problem on the know flow field 
having assumed specific boundary and initial conditions. Eq. (2) defines 
the transport process with regard to an injection of non-reactive and 
non-sorbing solute at a point source, 

∂(ϕC(ξ, t) )
∂t

= ∇⋅[ϕD(ξ)∇C(ξ, t) ] − ∇⋅[ϕu(ξ, t)C(ξ, t) ] + s(ξ0, t)δ(ξ − ξ0)

(2)  

where ξ is the position vector of the point location in the two- 
dimensional aquifer, ξ0 is the location of the source, C(ξ, t) [ML− 3] is 
the concentration at specific location ξ and time t [T], ϕ [-] is the 
effective porosity, u(ξ, t) [LT− 1] is the effective velocity vector field at 
specific location ξ and time t [T], D(ξ) [L2T− 1] is the dispersion tensor, ∇
is the differential operator Nabla in the spatial coordinates ξ, s(ξ0, t)
[MT− 1] is the released mass rate of contaminant per unit time injected 
into the aquifer through the source and δ [L− 3] is the Dirac delta func-
tion. 

2.2. Artificial neural network 

Neural networks represent information processing systems inspired 
by the functioning of biological nervous systems. These are formed by 
simple units (neurons) interconnected with each other through ’synaptic 
connections’, which are considered as weights within the neural net-
works. Some of these units receive inputs from the external environ-
ment, others produce outputs that return to the environment and others, 
if any, exchange information within the network itself. In this sense, 
three layers define ANNs: input layer, output layer and hidden layers 
(Hagan et al., 1996). 

Since the neural networks could be composed of more than a single 
neuron and equipped with several synaptic connections, it is appropriate 
to process the system through a vector notation in which the compo-
nents are real numbers; the generic signal (ω) emitted by a layer (hidden 
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or output) which encodes information through numbers, turns out to be: 

ω = g(Wa+ b) (3)  

where a is an input vector for that layer, W is a weight matrix in which 
the entry wi,j in the i-th row and in j-th column is related to the receiving 
neuron i and to the j-th component aj of the input vector a, and b is a bias 
term vector in which the i-th component is related to the receiving 
neuron i. The activation function g processes the input information and 
can take various forms. The most used activation functions are the sig-
moid or hyperbolic tangent for the input-hidden layers and the identity 
or piecewise nonnegative identity function (ReLu, Rectified Linear Unit) 
for the hidden-output layers. Since the term g(Wa+b) represents the 
output of the downstream layer, the values of the net weights and biases 
determine what will be the response of the whole system. With the aim 
to develop a data-driven model that starts from the initial information 
(input) and goes to the desired response (output), the computational 
process modifies the weights and the biases through specific learning 
algorithms in order to obtain the desired output. As in any optimization 
process, a Loss Function (L) is defined, which represents the measure of 
the error that the neural network, interpreted as a differentiable system, 
makes on a specific dataset and with respect to all the matrices of the 
weights W and to all the bias terms b which becomes parameters for that 
differentiable system; in short, it is possible to describe the change of the 
error as a function of the change of the weights and the biases. The L 
function depends only on the weights and biases of the net; therefore, 
the gradient of that function (which represents the maximum growth 
direction of the function) is defined by a vector of partial derivatives of L 
with regard to each weight and bias. According to the fact that the Loss 
Function wants to be reduced and not increased, it is necessary to modify 
the weights and biases in the opposite direction to the gradient of L. The 
algorithm used for multi-layer networks (with at least one hidden layer) 
to compute the derivatives is the back-propagation algorithm in which 
the derivatives are computed from the last layer to the first. In the 
following paragraphs, the network architecture, the characteristic pa-
rameters and the used learning algorithm to update the parameters will 
be described in detail. 

2.3. Architecture of the network 

The network is composed by three layers: input, hidden and output. 
Each layer is a Euclidean vector space. Considering d1, d2, d3 the di-
mensions of such vector spaces, it means that input data are real vectors 
with d1 components, output data are real vectors with d3 components 
and in the hidden layer d2 neurons are considered. 

From a functional analysis point of view the network, interpreted as a 
differentiable system, is simply a composition of multivariable vector- 
valued functions: affine transformations f and linear or nonlinear 
functions g (activation functions), from Rd1 in Rd3 . 

Rd1 →
f1

Rd2 →
g1

Rd2 →
f2

Rd3 →
g2

Rd3 (4) 

In this framework any finite dataset with N data can be considered as 
an indexed family 

{(
x(i), y(i)

) }

i=1,⋯,N⊂Rd1 × Rd3 of ordered couples 
where, each y(i) is the vector target corresponding to the arbitrary input 
data x(i). With the aim to analyse the analytic expressions of the func-
tions of the network individually, for future convenience superscripts to 
better identify layers and their dimensions will be used, and the inde-
pendent variable x of the first space Rd1 will be denoted as x = a(1). The 
first function of the network is an affine transformation: 

f1
(
a(1)) = W(1)a(1) + b(1) (5)  

where W(1) ∈ Md2×d1 (R) is a matrix of real numbers (weights) with d2 

rows and d1 columns, b(1) ∈ Md2×1(R) is a column vector (biases) with d2 

rows and 1 column, a(1) ∈ Md1×1(R) is a column vector with d1 rows and 

1 column and the operations of multiplication and addition are the usual 
ones in the algebra of matrices. Let’s denote by z(2) = f1

(
a(1)

)
the image 

of the first function, where z(2) ∈ Rd2 . The second function of the 
composition is g1, the first activation function of the network, and it 
could be defined for example using the hyperbolic tangent function on 
each component as: 

g1

(
z(2)1 ,⋯, z(2)d2

)
=

⎛

⎝ 2

1 + exp
(
− 2z(2)1

) − 1,⋯,
2

1 + exp
(
− 2z(2)d2

) − 1

⎞

⎠

(6) 

Note that such g1 shrinks every value of z(2) into the open interval 
(− 1, 1)d2 . The input data for the output layer has been denoted as a(2) =

g1
(
z(2)

)
. The third function of the network is still an affine 

transformation: 

f2
(
a(2)) = W(2)a(2) + b(2) (7)  

where W(2) ∈ Md3×d2 (R) is a matrix of real numbers (weights) with d3 

rows and d2 columns, b(2) ∈ Md3×1(R) is a column vector (biases) with d3 

rows and 1 column, a(2) ∈ Md2×1(R) is a column vector with d2 rows and 
1 column; z(3) = f2

(
a(2)

)
is the image of the third function, where 

z(3) ∈ Rd3 . The last function of the composition is g2, the second acti-
vation function of the network and it could be defined, for example, as: 

g2

(
z(3)1 ,⋯, z(3)d3

)
=

(
z(3)1 ,⋯, z(3)d3

)
(8) 

In this case g2 is the identity function of Rd3 . The network, written as 
a composition of functions, gives the following output: 

hW,b(x) = g2
(
W(2)g1

(
W(1)x + b(1))+ b(2) ) (9)  

which depends on the independent variable x, the matrices W(1), W(2)

and the biases terms b(1), b(2) parameters for the resulting composed 
function. Processing the function hW,b on a dataset 

{(
x(i), y(i)

) }

i=1,⋯,N is 

possible to evaluate the error between hW,b
(
x(i)) and the related target 

y(i) as ‖hW,b
(
x(i)

)
− y(i)‖, where ‖ − ‖ is the Euclidean norm in Rd3 . In 

Fig. 1, the architecture of the neural network is reported. 
For future convenience the resulting composed function hW,b, which 

globally describes the network, will be denoted as hΘ in which Θ = (θ1,

⋯, θn) ∈ Rn is an ordered vector of n components and where 
n = d1d2 +d2d3 +d2 +d3 is the numbers of elements in W(1), W(2), b(1), 
b(2). 

2.4. Loss Function-MSE 

The neural network performance index is a function of all the 
network parameters Θ = (θ1,⋯, θn) (weights and biases) and it is 
defined: 

Fig. 1. Sketch view of the network.  
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L(Θ) =
1

Nd3

∑N

i=1

∑d3

j=1

(
hΘ

(
x(i))

j − y(i)j

)2
=

1
Nd3

∑N

i=1
‖hΘ

(
x(i)) − y(i)‖2 (10)    

• N is the number of ordered couples in the dataset  
•
(
x(i), y(i)

)
∈ Rd1 × Rd3 is the i-th couple ordered of the dataset where 

y(i) is the vector target corresponding to the input data x(i) and 
i ∈ {1,⋯,N}

• hΘ
(
x(i)

)
is the response of the network computed on the i-th input 

data x(i) and it depends on all the network parameters Θ  
• ‖ − ‖ is the Euclidean norm in Rd3  

• ‖hΘ
(
x(i)) − y(i)‖ is the distance, in the Euclidean metric space Rd3 , 

between the response of the network and its target computed on the 
i-th input data x(i) and it represents the magnitude of the i-th error 
ei(Θ). 

The aim of network training is to optimize the loss function L by 
searching for those parameters Θ that minimize L making the error small 
on the whole given dataset. The algorithm is iterative. 

2.5. Levenberg-Marquardt algorithm 

The Levenberg-Marquardt numerical optimization technique, which 
can be considered as a modification of Newton’s method, is very well 
suited in those neural networks in which the performance index is 
defined by the mean squared error of nonlinear functions. Note that the 
Levenberg-Marquardt algorithm, as well as the Gauss-Newton method, 
does not require calculation of second derivatives, reducing the 
computational cost during the training phase. 

For the sake of brevity, the reader is directed to (Hagan and Menhaj, 
1994) for details that lead to the Levenberg-Marquardt algorithm: 

Θ(k+1) = Θ(k) −
(
JT ( Θ(k) )J

(
Θ(k) )+ μkI

)− 1JT ( Θ(k))e
(
Θ(k)) (11)  

where e
(
Θ(k)) is the vector which represents all the errors, JT(Θ(k)) is the 

Jacobian matrix related to the function e(Θ) and μk is a value which 
depends by the eigenvalues of JT ( Θ(k) )J

(
Θ(k) ). Note that when μk ap-

proaches to zero the algorithm becomes Gauss-Newton. 
The numerical implementation of the Levenberg-Marquardt algo-

rithm is based on the backpropagation procedure in which derivatives 
are computed from the last layer to the first. 

2.6. Procedure to generate the training and validation ANN dataset 

In order to build a data-driven model with ANN it is mandatory a 
training and validation dataset, that consists in input and output values 
of a process. In the present work, two different approaches have been 
considered: forward ANN that considers the released mass fluxes at the 
sources as input and concentrations observed at monitoring points as 
output; inverse ANN that considers concentrations observed at moni-
toring points as input and released mass fluxes at the sources as output. 
The purposes of the approaches are different: the forward one predicts 
concentrations at monitoring points starting from a known mass flux 
release at the source, while the inverse one estimates the released mass 
flux at the source starting from known concentrations observed at the 
monitoring points. In general, the training and validation dataset, for 
data-driven models, can be generated by field data or through the results 
of a numerical model. In this case, the synthetic example of Ayvaz 
(2010) has been considered and the dataset has been generated through 
a numerical model built by means of MODFLOW (Harbaugh, 2005) and 
MT3D (Zheng and Wang, 1999). The procedure applied to generate the 
dataset consists of the following steps:  

1. building of groundwater flow and transport numerical models that 
reproduce the studied aquifer;  

2. definition of the mass released at the source;  
3. multiple execution of forward flow and transport models in order to 

compute the concentrations at the monitoring points. 

The crucial point is the definition of the size of the dataset and of the 
extreme values of the mass released. The size of the training and vali-
dation dataset (which corresponds to the number of forward simulations 
of the numerical model) is defined based on the complexity of the sce-
nario considered. Moreover, the size is usually defined in order to reduce 
as much as possible the computational cost and, at the same time, in 
such a way that the dataset itself satisfies the training and validation 
process of the network. To reduce the number of input dataset, required 
for the training and validation, Latin Hypercube Sampling (LHS) was 
considered. LHS randomly generates variables, sufficiently equally 
distributed and, at the same time, strongly not correlated, from a 
multidimensional distribution. For forward ANNs the range of the mass 
released should covers the available mass release data. For inverse 
ANNs, knowing the concentrations observed at monitoring wells (Ctrue), 
the extremes could be defined through a preliminary run of the nu-
merical flow and transport models that allows to evaluate the relation-
ship between source and observations. The procedure consists in 
injecting a constant mass rate (M0) at the source, observing the 
maximum concentrations at monitoring wells (Cmax) and computing the 
ratio between Ctrue and the maximum concentrations computed by the 
numerical model (R = Ctrue/Cmax) by injecting M0. Approximating with 
a linear relationship between the mass release and concentrations at 
monitoring wells it is possible to define the upper limit of the input 
dataset as a value greater than M0⋅R. The lower limit is 0. 

2.7. Evaluation of performance 

In order to have a comparison on the results obtained by the data- 
driven model and that obtained by the physical model, the metrics 
have been defined according to those used in Ayvaz (2010) and Jamshidi 
et al. (2020): normalized error (NE), percent average estimation error 
(PAEE), standard deviation (SDt), mean error (ME), mean absolute error 
(MAE), root mean squared error (RMSE) and normalized root mean 
squared error (NRMSE). The metrics are defined as follow: 

NE(%) =

∑M
i=1|Ẑ i − Zi|
∑M

i=1Zi
⋅100 (12)  

PAEEi(%) =
|Ẑ i − Zi|

Zi
⋅100 (13)  

SDt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑NR

r=1

(
Ẑ t,r − Ẑ t

)2

NR − 1

√
√
√
√
√

(14)  

ME =

∑M
i=1(Ẑ i − Zi)

M
(15)  

MAE =

∑M
i=1|Ẑ i − Zi|

M
(16)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

i=1
(Ẑ i − Zi)

2

M

√
√
√
√
√

(17)  

NRMSE(%) =
RMSE

(Zmax − Zmin)
⋅100 (18)  

where M is the number of unknowns, Zi is the actual observed value 
(concentration observed at monitoring points for the forward problem 
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and mass flux released at the source for the inverse one) Ẑi is the esti-

mated value, Ẑt,r is the estimated value at time t and realization r, Ẑt is 
the estimated value at time t averaged on NR realizations. Zmax and Zmin 
are respectively the maximum and minimum actual observed value. 

2.8. Study case 

To assess the reliability of the proposed approach, a literature case 
study, presented by Ayvaz (2010) and adopted by Xing et al. (2019) and 
Jamshidi et al. (2020), has been considered. Firstly, the model has been 
set up according to Ayvaz (2010). The domain of the solution is a 
network with block-centered grids. Fig. 2 shows the discretization grid 
of the numerical model of the domain. Table 1 summarizes the hydraulic 
and geometry characteristics. Concerning the boundary conditions, the 
specified head boundary conditions on the upper-left (A-B) and lower- 
right (C-D) have been defined, otherwise no-flow boundary conditions 
have been considered for the remainder of the domain. The aquifer is 
structured in five zones (Fig. 2) with different hydraulic conductivity 
(HK) values: HK1 = 0.0004m/s, HK2 = 0.0002m/s, HK3 = 0.0001m/s, 
HK4 = 0.0003 m/s and HK5 = 0.0007m/s. Hydraulic conductivity is 
uniform in each zone; therefore, the flow conditions are defined as 
steady-state and non-uniform. Inside the aquifer, there are two active 
sources and seven monitoring locations. The simulations cover a total 
period of five years divided into ten stress periods (six-months each). 
The sources are active for the first two years of simulation, releasing a 
conservative contaminant (golden-test) as proposed by Ayvaz (2010). In 
this regard, the contaminant transport process is transient. 

The longitudinal and transverse dispersivity coefficients αL and αT 
are related to the longitudinal and transversal dispersion components DL 
and DT of the dispersion tensor D by the following relationship DL = αLu 
e DT = αTu, where u is the effective velocity of the flow field. 

The data-driven model has been trained and validated for solving 
two different study cases: forward and inverse transport problems. For 
the forward approach one scenario has been developed: estimation of 
the contaminant in terms of concentration values due to the action of 
two sources at a known position (FWD 1). For the inverse approach 
different scenarios have been proposed: estimation of the release history 
of one source with known position (INV 1), estimation of the release 
history and the location of one source with unknown position (INV 2), 
estimation of the release histories of two sources with known positions 
(INV 3) and estimation of the release histories of two sources with 
known positions together with the order of magnitude of the 

observations error (INV 4). 

2.9. Training and validation of the network 

Before training the network, as a preprocessing phase of the dataset, 
the mapminmax (MATLAB Release, 2021) function has been used to 
rearrange the input 

{
x(i)

}

i=1,⋯N and the output 
{

y(i)
}

i=1,⋯N dataset into 
{

x̃(i)
}

i=1,⋯N 
and 

{
ỹ(i)

}

i=1,⋯N 
with values in the range [ − 11] according 

to the following formulas performed on each component j ∈ {1,⋯, d1}

and h ∈ {1,⋯, d3}: 

x̃(i)j = 2

⎛

⎜
⎝

x(i)j − min
k=1,⋯,N

{
x(k)j

}

max
k=1,⋯,N

{
x(k)j

}
− min

k=1,⋯,N

{
x(k)j

}

⎞

⎟
⎠ − 1 (19)  

ỹ(i)h = 2

⎛

⎜
⎝

y(i)h − min
k=1,⋯,N

{
y(k)h

}

max
k=1,⋯,N

{
y(k)h

}
− min

k=1,⋯,N

{
y(k)h

}

⎞

⎟
⎠ − 1 (20) 

Then, during the training and validation phases of the network, 
“control” criteria, to evaluate the performance of the two phases, have 
been set up. Firstly, the maximum number of training epochs has been 
defined equal to 1000. Secondly, to avoid overfitting, the number of 
validation checks has been fixed to 6. Table 2 describes the input and 
output dataset used for all the scenarios investigated. For each scenario 
analyzed, 70% of the dataset was used to train the network while the 

Fig. 2. Discretization grid of the two-dimensional aquifer.  

Table 1 
Hydraulic and geometry characteristics of the study domain.  

Parameters Values 

Effective porosity, ϕ 0.3 
Longitudinal dispersivity, αL(m) 40 
Transverse dispersivity, αT(m) 4 
Saturated thickness, b(m) 30 
Grid spacing in the ζ direction, Δζ(m) 100 
Grid spacing in the η direction, Δη(m) 100 
Length of the stress periods, Δt(months) 6 
Initial concentration (ppm) 0  

Table 2 
Summary of the input–output data for the investigated scenarios.  

Scenario Size of the 
train/ 
validation 
dataset 

Input data Output data 

FWD1 500 Mass release at 2 sources 
for 2 years every 6 
months: 8 data 

Concentrations at 7 
monitoring points 
observed for 5 years, one 
time per year: 35 values. 

INV1 256 Concentrations at 7 
monitoring points 
observed at time 5 years 
after the release: 7 data 

Mass release at one 
source for 2 years every 
6 months: 4 data 

INV2 2304 Concentrations at 7 
monitoring points 
observed at time 5 years 
after the release: 7 data 

Mass release at one 
source for 2 years every 
6 months. Planar 
coordinates of the source: 
6 data 

INV3 500 Concentrations at 7 
monitoring points 
observed for 5 years, one 
time per year: 35 data, 
reduced to 26 

Mass release at 2 sources 
for 2 years every 6 
months: 8 data 

INV4 500 Concentrations at 7 
monitoring points 
observed for 5 years, one 
time per year: 35 data, 
reduced to 26 

Mass release at 2 sources 
for 2 years every 6 
months. Error on 
observations: 9 data  
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remaining 30% for validation. 

2.10. Forward approach 

2.10.1. Two sources with known positions (FWD 1) 
In this scenario, the goal was to obtain the concentration values at 

the observation points for each year for a total of 35 values (7 moni-
toring points for 5 years of simulation). A dataset of 500 input data (six- 
month release history) and 500 output data (concentrations values at 
each year) has been used to train and validate the network (Table 2). For 
the testing phase, reference is made to the concentration values tested in 
the original Ayvaz (2010) case study. The input layer is the real linear 
space of dimension eight composed by eight neurons which represent 
the six-month release history values of the two sources. The hidden layer 
is composed by 10 neurons activated by the hyperbolic tangent function. 
The output layer is the real linear space of dimension thirty-five 
composed by 35 neurons which represent the concentrations values 
observed in the monitoring locations for each simulation year. The 
activation function used between the hidden and the output layers is the 
identity function. For the weights correction procedure, the Levenberg- 
Marquardt algorithm has been used. 

2.11. Inverse approach 

2.11.1. One source with known position (INV 1) 
A dataset of 256 input data (concentrations at the time t = 5 years) 

and 256 output data (six-month release history) has been used to train 
and validate the network (Table 2). The golden-test has been used to 
assess the good result of the training and validation phases. The input 
layer is the real linear space of dimension seven composed by seven 
neurons which represent the seven concentration values at monitoring 
locations at the time t = 5 years. The hidden layer consists of 10 neurons 
activated by the hyperbolic tangent function. The output layer is the real 
linear space of dimension four composed by four neurons which repre-
sent the four six-month release history values. The activation function 
used between the hidden and the output layers is the identity function. 
For the weights correction procedure, the Levenberg-Marquardt algo-
rithm has been used. 

2.11.2. One source with unknown position (INV 2) 
In this scenario, the goal is to identify the release history of the 

Source 2 together with the location, by estimating the coordinates ζ and 
η. Nine possible cells of the study domain in which the source can be 
located have been selected. Each cell is identified by its ζ and η co-
ordinates. These values will be returned as output from the network, 
along with the released mass rate values of the six-month release history. 
A dataset of 2304 input data (concentrations at the time t = 5 years) and 
2304 output data (six-month release history and coordinates of the 
source) has been used to train and validate the network (Table 2). The 
size of the dataset equal to 2304 derives from using nine dataset of size 
256 referred to each hypothetical location of the source within the 
domain. The type and structure of the network are the same as described 
for INV1, the only difference is that the output layer is the real linear 
space of dimension six composed by six neurons which represent the 
four six-month release history values and the ζ and η coordinates. The 
same activation functions between the layers and the same learning 
algorithm have been used. 

2.11.3. Two sources with known positions (INV 3) 
In this application a dataset of 500 input data (concentrations) and 

500 output data (six-month release history) has been used to train and 
validate the network (Table 2). Concerning the testing phase, the six- 
month release history values tested in the original Ayvaz (2010) case 
study are used in this work. The input data are no longer the concen-
tration values at the monitoring locations at time t = 5 years, but they 
are the concentration values recorded each year at the observation 

points, for a total of 35 values (7 monitoring points for 5 years of 
simulation). Considering that 9 out of 35 monitoring points present, 
independently of the mass released, values close to zero, the input data 
was reduced to 26 values for the 500 synthetic simulations. Therefore, 
the input layer is the real linear space of dimension 26 composed by 26 
neurons. The hidden layer consists of 10 neurons activated by the hy-
perbolic tangent function. Since there are two sources, the output layer 
is the real linear space of dimension eight composed by eight neurons 
which represent the four six-month release history values for the two 
sources within the domain. Again, for the weights correction procedure 
the Levenberg-Marquardt algorithm has been used. 

2.11.4. Two sources with unknown observation error (INV 4) 
The last application aims to estimate the release history of the two 

sources with known position together with the estimation of the order of 
magnitude of the observations error. The training dataset is the same 
used for INV3, with the exception of the output dataset which included 
also the value describing the order of magnitude of the observations 
error (Table 2). Therefore, the output layer is the real linear space of 
dimension nine composed by eight neurons which represent the four six- 
month release history values for the two sources within the domain and 
the order of magnitude of the observation error. 

3. Results 

In this Section, the results related to the forward and inverse ap-
proaches of the data-driven models are described. All the results, ac-
cording to the metrics defined in Section 2.7, were obtained as the 
average of the outputs produced by 10 neural networks trained with the 
same dataset. For each run of the network, the dataset is randomly 
divided into training and validation sets. Furthermore, the initialization 
of the weights represents another random process within the training 
and validation procedure. According to this, the 10 neural networks 
provide modestly different results. Mainly, the choice to work with 10 
networks is related with the aim to identify, together with the desired 
output, the uncertainty of the results. In this regard, in the metrics 
defined in Section 2.7, the Eq. (21) indicates the confidence interval in 
which the processed output, obtained as the average of the 10 re-
alizations, falls. Furthermore, if the number of parameters of the 
network, a priori dependent on the choice of its architecture, is com-
parable with the total number of points in the training set or if the data is 
noisy, one way to prevent overfitting is to train multiple neural networks 
and average their outputs. 

3.1. Forward 

The results produced by the data-driven model concerning the FWD 
1, well suit with the one processed by the numerical model. The FWD 1 
scenario represents the only scenario in which the data-driven model 
replaced the numerical model as a surrogate. The estimated concen-
trations denote a good agreement with the actual values, as shown in 
Fig. 3. In Table 3, the computed metrics on concentrations at monitoring 
wells, shows that the difference between estimated and the real values is 
negligible, highlighting the success of the network. Furthermore, the 
ANN response is extremely fast (0.2 s), while MODFLOW + MT3DMS 
require about 6 s to run. 

3.2. Inverse 

3.2.1. One source with position and with concentrations in monitoring 
points known (INV 1) 

The first application INV 1 deals with an inverse simulation with one 
release source at known position, concentrations in monitoring locations 
ξ and different error level. The error is processed as: 

Cerror(ξ, t) = Creal(ξ, t) +αεCreal(ξ, t) (21) 
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where ε is a random value obtained from a Gaussian standard distri-
butions and α is the order of amplitude of the error. Normal random 
errors equal to 0.1%, 1%, and 10% of the standard deviation have been 
tested in these applications. In Fig. 4 the results obtained for the error- 
free data and corrupted data with α = 0.1 are reported. For both sets 
of error, the result appears to be quite similar and in accordance with the 
true release history (golden-test). Also, for this inverse application, the 
ANN is totally able to well recognize the desired output. As evidence, in 
Table 4 the observed and estimated source release histories, together 
with the computed metrics for the different error level are reported, 
while in Table 5 the metrics for all the error level are described. 

3.2.2. One source with position unknown and with concentrations in 
monitoring points known 

In inverse application INV 2, although the described problem is more 
complex than the previous one, the results achieved by the data-driven 
model are quite satisfactory. In this case, the observations for scenario 
INV 2 are the same used for the scenario INV 1, but unknows have been 
risen from 4 (4 releases, INV 1) to 6 (4 releases and source coordinates, 

INV 2). For this reason, the output reproduced by the ANN is not ac-
curate as the output reproduced for the INV 1 scenario. However, by 
increasing the number of observations and, consequently, the number of 
information entering the neural network, the network itself would be 
able to perform better also in the INV2 scenario. In any case, the ANN 
manages to estimate quite well not only the release history, but also the 
location of the source for different set of error level. In Table 6, the 
actual and estimated coordinates of the source highlight how the 
network is able to provide well predictions dealing with different errors. 
Visually, this can be noticed in Fig. 5 where the estimated releases mass 
rate is compared to the real values, highlighting a good agreement. 
Table 7 and Table 8 show the computed metrics for the different set of 
error. 

3.2.3. Two sources with position and with concentrations in monitoring 
points known 

Scenario INV 3 deals with the estimation of the release history of two 
sources with known position by means of concentrations in monitoring 
points of the domain and different level of error. The results obtained by 
the data-driven model have been compared to those produced by other 
two literature study cases, example 2 of Ayvaz (2010) and first case of 
Jamshidi et al. (2020), in order to assess the reliability of the neural 
network. Although the results previously obtained from the two litera-
ture studies are absolutely valid, the neural network is capable to esti-
mate the release histories with greater precision. In fact, by way of 
example, referring to the metrics shown in Table 9, the NE (%) value 
obtained in the present work, for the corrupted error level α = 0.1, is 
equal to 1.23% that is much lower if compared with the values obtained 
in Ayvaz (2010) and Jamshidi et al. (2020) which are respectively 
8.06% and 18.06%. In Fig. 6 the results of the estimated release 

Fig. 3. Observed and estimated concentration at 7 monitoring wells for 5 years of simulation recorded one time per year, forward simulation with two release 
sources (FWD 1). 

Table 3 
ME, MAE, RMSE, and NRMSE computed on 
concentrations (mg/l) and related to the 35 
average concentration values of the 7 moni-
toring wells (FWD 1).  

ME (g/L) 0.0028 
MAE (g/L) 0.0096 
RMSE (g/L) 0.0153 
NRMSE 0.52%  

Fig. 4. Observed and estimated release obtained as average of the results of 10 neural networks at known source, inverse simulation with one release source and 
different error level, error-free data (α = 0) and corrupted data (α = 0.1) (INV 1). 
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histories, for the error free level α = 0 and the corrupted error level α =

0.1, are shown, highlighting the agreement between the ANN prediction 
and the actual values. A final purely visual comparison is shown in Fig. 7 
where it is possible to notice that the release histories reproduced 
through the neural network are better suited to describe the real ones. 
Furthermore, the error bars related to one time the standard deviation 
were reported in order to highlight the reliability of the results. Table 10 
shows a comparison of statistical metrics between literature cases and 
the present work for different error level. 

3.2.4. Simultaneous estimation of the release history and of the error on 
observations 

Scenario INV 4 represents a novelty in the literature: together with 
the release histories, the order of magnitude of the error on observations 
has been calculated. The network is able to well recognize the error on 

Table 4 
Observed and estimated source release histories (g/s) obtained as average of the results of 10 neural networks with related metrics NE, PAEE, SD for different error 
level, error-free data (α = 0) and corrupted data (α = 0.1) (INV 1).     

α = 0 α = 0.10 

Source Stress period Actual source fluxes 
(g/s) 

Average estimated source fluxes 
(g/s) 

NE 
(%) 

PAEE 
(%) 

SDt 
(g/s) 

Average estimated source fluxes 
(g/s) 

NE 
(%) 

PAEE 
(%) 

SDt 
(g/s) 

S2 1 24 23.61 1.22 1.65 0.39 23.48 1.63 2.18 0.32 
2 56 56.88 1.58 0.75 57.07 1.92 0.92 
3 43 42.52 1.12 0.65 42.33 1.56 0.78 
4 35 35.16 0.47 0.37 35.30 0.86 0.37  

Table 5 
ME, MAE, RMSE, and NRMSE computed on source fluxes (g/s) described by four 
stress period and obtained as average of the results of 10 neural networks for 
different error level (INV 1).   

α = 0 α = 0.001 α = 0.01 α = 0.10 

ME (g/s) − 0.04 − 0.02 − 0.05 − 0.04 
MAE (g/s) 0.48 0.34 0.53 0.64 
RMSE (g/s) 0.55 0.42 0.63 0.70 
NRMSE 1.71% 1.32% 1.97% 2.19%  

Table 6 
Actual and estimated source location (ζ, η) obtained as average of the results of 
10 neural networks with different data error level, error-free data (α = 0) and 
corrupted data (α = 0.1) (INV2).    

α = 0 α = 0.10 

Source Actual 
location 

Average 
estimated 
location 

SDt 
(–) 

Average 
estimated 
location 

SDt 
(–) 

S2 ζ = 4 ζ = 4.02 0.199 ζ = 4.16 0.212 
η = 4 η = 3.83 0.178 η = 3.85 0.271  

Fig. 5. Observed and estimated release obtained as average of the results of 10 neural networks at estimated unknown source, inverse simulation with one release 
and different error level, error-free data (α = 0) and corrupted data (α = 0.1) (INV 2). 

Table 7 
Observed and estimated source release histories (g/s) obtained as average of the results of 10 neural networks with related metrics NE, PAEE, SD for different error 
level, error-free data (α = 0) and corrupted data (α = 0.1) (INV 2).     

α = 0 α = 0.10 

Source Stress 
period 

Actual source 
fluxes 
(g/s) 

Average estimated source 
fluxes 
(g/s) 

NE 
(%) 

PAEE 
(%) 

SDt (g/ 
s) 

Average estimated source 
fluxes 
(g/s) 

NE 
(%) 

PAEE 
(%) 

SDt (g/ 
s) 

S2 1 24 18.21 5.54 24.13 3.98 19.59 9.92 18.41 6.40 
2 56 58.09 3.74 8.31 61.73 10.24 10.67 
3 43 42.80 0.47 7.08 39.33 8.54 9.99 
4 35 35.67 1.91 8.53 36.85 5.27 7.43  

Table 8 
ME, MAE, RMSE, and NRMSE computed on source fluxes (g/s) described by four 
stress period and obtained as average of the results of 10 neural networks for 
different error level (INV 2).   

α = 0 α = 0.001 α = 0.01 α = 0.1 

ME (g/s) 0.81 1.80 0.58 0.13 
MAE (g/s) 2.19 2.07 4.32 3.92 
RMSE (g/s) 3.10 3.46 4.83 4.16 
NRMSE 9.69% 10.81% 15.11% 13.01%  
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observation as shown in Table 11 where the actual and estimated values 
of the observation errors are reported. Furthermore, as described by 
Fig. 8 and Table 12, the real and estimated source fluxes for α = 0 and 
α = 0.1 are in agreement. In Table 13 the statistical metrics computed on 
source fluxes, for different estimated error level, are reported. 

4. Discussion and Conclusions 

In the present work, neural networks have been used as data-driven 
model to solve different applications related to forward and inverse 

transport problems, using the concentration values in different moni-
toring points and release histories as data necessary for the training 
phase. To summarize, the obtained results show that this data-driven 
technique is well suited with the aim to provide solutions with very 
low computational costs for a transport problem that can be useful to the 
aquifer manger in order to define rapidly remediation strategies. The use 
of the LHS represents a first advantage of the work carried out, as it 
allows to reduce the number of forward simulations necessary for the 
network training, reducing the computational burden. In this regard, 
Ayvaz (2010) approach minimized an objective function on the basis of 

Table 9 
Comparison of the estimated and actual source release histories described by four stress period at two known sources obtained as average of the results of 10 neural 
networks with Ayvaz (2010), Jamshidi et al. (2020) and the present work, with level error α = 0.1 and related statistical metrics (INV 3).   

Source S1 S2  

Stress period 1 2 3 4 1 2 3 4  

Actual source fluxes (g/s) 35 90 65 47 24 56 43 35 

Ayvaz (2010) Average estimated source fluxes (g/s) 35.4 87.5 62.9 53.4 31.5 48.5 46.9 33.6 
NE (%) 8.06 
PAEE (%) 1.23 2.8 3.27 13.7 31.1 13.4 9.14 4.13 
SDt (g/s) 3.1 6.56 15.5 9.6 7.97 10.9 13.5 6.07 

Jamshidi et al. (2020) Average estimated source fluxes (g/s) 41.6 63.3 77.7 43.6 22.2 48.5 47.7 27 
NE (%) 18.06 
PAEE (%) 18.9 29.6 19.5 7.15 7.6 13.4 11 22.8 
SDt (g/s) 8 29.9 42.1 23.5 11.8 35.2 42 16.9 

Present Work Average estimated source fluxes (g/s) 35 89.2 64.9 47.3 23.6 58.3 42.1 35 
NE (%) 1.23 
PAEE (%) 0.05 0.9 0.15 0.69 1.76 4.09 2.06 0.01 
SDt (g/s) 0.17 0.43 0.34 0.34 0.29 0.81 0.79 0.27  

Fig. 6. Observed and estimated release described by four stress period and obtained as average of the results of 10 neural networks results, inverse simulation with 
two release sources and different error level, error-free data (α = 0) and corrupted data (α = 0.1) (INV 3). 

Fig. 7. Estimated release histories in reference works for corrupted data (α = 0.1) and, for any time step, the error bars related to one time the standard deviation 
(INV 3). 
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the output reproduced by the forward model. This led to a large number 
of forward simulations to achieve convergence (32,859 simulations). 
The approach used by Jamshidi et al. (2020) is based on the transfer 
function theory, with the advantage to run the simulation model only 
once. The resulting transfer matrices has achieved convergence by 
means of an optimization algorithm in less than 600 iterations, a com-
parable number with the simulations processed in the present study. 
Hence, although the approach described by Jamshidi et al. (2020) is 
very performing from a computational point of view, the results 

achieved in the present work are far better. Furthermore, both Ayvaz 
(2010) and Jamshidi et al. (2020), during the optimization process, use a 
dataset of observations equal to 140 concentration values. This results in 
a much lower number of unknowns parameters than the number of 
measurements. The results obtained through the proposed procedure 
were carried out by using only 26 observations, substantially limiting 
the number of a priori information provided to the model. According 
with the computed metrics for the performance evaluation (Tables 10 
and 13), in general, the ANN leads to good results and better if compared 
with the other two literature cases. For instance, the SDt values 
computed for the INV 3 application show a less extensive confidence 
interval, highlighting that the results obtained as average of the 10 re-
alizations (run of the network) is characterized by a low uncertainty if 
compared with the SDt values of the two other studies (Fig. 7). Also, the 
SDt values calculated for the INV 4 application highlight the capability 
of the ANN to deal with the observations error estimation, allowing to 
manage with a new topic never discussed before in the scientific ANN 
literature. Established that the results are satisfactorily achieved, the 
greatest advantage obtained from a data-driven model developed as 
ANN is the possibility of producing solutions computationally efficient. 
In fact, once trained, the network will provide the relative outputs 
without the need to work with the complex numerical model. Neural 

Table 10 
Comparison of statistical metrics with Ayvaz (2010) and Jamshidi et al. (2020) 
for different error level, error-free data (α = 0) and corrupted data (α = 0.1)
(INV 3).   

α = 0 α = 0.10  

Ayvaz 
(2010) 

Jamshidi 
et al. 
(2020) 

Present 
Work 

Ayvaz 
(2010) 

Jamshidi 
et al. 
(2020) 

Present 
Work 

ME (g/s) 0.00 − 2.92 − 0.02 0.58 − 2.91 − 0.05 
MAE (g/s) 0.85 5.65 0.63 3.98 8.92 0.61 
RMSE (g/s) 1.06 7.34 0.90 4.77 11.58 0.93 
NRMSE 1.6% 11.1% 1.4% 7.2% 17.5% 1.4%  

Table 11 
Actual and estimated order of magnitude obtained as average of the results of 10 
neural networks of the error on concentrations (INV 4).  

Actual value Average estimated value SDt (–) 

α = 0 α̂→0 →0 
α = 0.001 α̂ = 0.00080 0.00011 
α = 0.01 α̂ = 0.00996 0.00080 
α = 0.10 α̂ = 0.10058 0.00530  

Fig. 8. Observed and estimated release described by four stress period at two known sources obtained as average of the results of 10 neural networks at known 
source, inverse simulation with two release sources, under different estimated error level, error-free data (α̂ → 0) and perturbated data (α̂ ∼ 0.10) (INV 4). 

Table 12 
Observed and estimated source release histories (g/s) described by four stress period at two known sources obtained as average of the results of 10 neural networks 
with related metrics NE, PAEE, SD for different estimated error level, error-free data (α̂ → 0) and perturbated data (α̂ ∼ 0.10) (INV 4).     

α̂→0 α̂ ∼ 0.10 

Source Stress 
period 

Actual source fluxes 
(g/s) 

Average estimated source 
fluxes (g/s) 

NE 
(%) 

PAEE 
(%) 

SDt (g/ 
s) 

Average estimated source 
fluxes 
(g/s) 

NE 
(%) 

PAEE 
(%) 

SDt (g/ 
s) 

S1 1 35 34.59 2.24 1.17 0.69 34.58 2.65 1.19 0.57 
2 90 88.40 1.78 0.83 88.33 1.86 0.76 
3 65 64.17 1.28 1.42 63.63 2.11 1.16 
4 47 49.29 4.86 0.67 49.69 5.72 0.54 

S2 1 24 24.10 0.38 1.15 24.71 2.95 1.32 
2 56 58.14 3.84 1.93 57.88 3.37 2.02 
3 43 41.71 2.99 1.19 41.50 3.48 1.26 
4 35 34.80 0.58 0.67 34.79 0.59 0.81  

Table 13 
ME, MAE, RMSE, and NRMSE computed on source fluxes (g/s) described by four 
stress period at two known sources obtained as average of the results of 10 
neural networks for different estimated error level (INV 4).   

α̂→0 α̂ ∼ 0.001 α̂ ∼ 0.01 α̂ ∼ 0.10 

ME (g/s) − 0.02 − 0.03 0.00 − 0.01 
MAE (g/s) 1.11 1.11 1.27 1.31 
RMSE (g/s) 1.37 1.36 1.57 1.52 
NRMSE 2.1% 2.1% 2.4% 2.3%  
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networks use the forward numerical model only to derive the training 
dataset, which is defined within a certain range. Therefore, the network, 
if well trained, will be able to return the desired output. As reported in 
Chen et al. (2021), one of the most criticisms in literature, is the diffi-
culty of applying these procedures in practice. Usually, the parameters 
of the aquifer are assumed to be known, when actually they are sparsely 
known and highly heterogeneous. However, based on the results ach-
ieved in the present work, future works will focus on the simultaneous 
estimation of the network parameters together with the identification of 
the release history. Furthermore, a topic widely discussed in the scien-
tific community concerns the ability of ANNs to generalize. Neural 
networks have been shown to be able to generalize, but only within the 
training range and not outside of it. In this regard, to implement a neural 
network, there is the necessity to have a priori information in order to 
define the training intervals suited to the problem to be described and 
the potential source locations. With the aim to deal with the general-
ization issue, possible future works may concern the application of a 
new field, always in the artificial intelligence environment, known as 
“Physically Informed Neural Networks” (PINNs - Raissi et al., 2019). 
Without going into detail, this model adds to the usual neural network, 
information about the physical phenomenon described by general 
nonlinear partial differential equations (PDEs). In this deep learning 
method, the physical law becomes a constraint of the network itself as an 
addition to the objective function to be minimized. The network will be 
trained and at the same time constrained to the physic that describes the 
problem. This modeling technique already has achieved good results in 
the literature (Pang et al., 2019; Mao et al., 2020; Wang et al., 2021a,b) 
and this motivates the possibility of using it for transport forward and 
inverse problems which are described by partial differential equations. 
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