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EXECUTIVE SUMMARY 

IntelComp is a project funded by the European Commission whose main objective is the 

development of a software platform that, using the latest generation of Artificial Intelligence 

(AI) and Natural Language Processing (NLP) tools, provides relevant information for the 

management of public policies in the area of Science, Technology and Innovation (STI), to help 

decision making along the whole policy cycle. To do this, the platform will analyze various 

documentary sources (e.g., scientific production documents, research call work programs, 

information on companies available on the Internet, etc.), some of them involving hundreds of 

millions of documents, and, through the application of AI techniques and models, it will extract 

information with a level of detail greater than that available in the metadata that usually 

accompanies these data sources. 

One of the main tools in IntelComp is topic modeling, whose objective is to carry out an 

unsupervised analysis of any set of documents, extracting from a direct analysis of the text the 

main themes the collection of documents deals with, and the relation of each analyzed 

document with the identified topics. Therefore, the main output of Task 3.5 is a python-based 

toolbox (hereinafter “TMT”) which is available at https://github.com/IntelCompH2020/ 

topicmodeler). This document provides information about said toolbox, including a review of 

the techniques implemented, the description of the architecture of the software, and manuals 

for the users of the tool. 

Some of the principles that have guided the design of the toolbox are: 

● inclusion of different algorithmic solutions for the preprocessing of the texts and for the 

topic modeling itself, in order to be able to select the most suitable implementation at 

any time according to the characteristics of the corpus to be analyzed, the scalability 

characteristics of the tools, and the infrastructure available for their execution. 

● incorporation of expert knowledge during the training of the topic models in order to 

take advantage of their previous experience and obtain models that are more 

interpretable by the final users of IntelComp (expert-in-the-loop approach). 

● dockerization of the components to facilitate the future integration of the TMT services 

in IntelComp end-user applications such as the Interactive Model Trainer (hereinafter 

“IMT”). To this end, the implementation of the toolbox has followed the design 

principles provided by WP5. 

● development of two user interfaces in Python, not conceived for use in IntelComp, but 

to make the toolbox itself a completely autonomous software that can be published in 

the open. 

Another output of Task 3.5. is the generation of topic models for the different domains and data 

sources considered in IntelComp. These models will be trained immediately following the 

release of the TMT, and especially after M21 when the IMT will be available to all Living Lab (LL) 

users. The development team of Task 3.5. will then work along with the LL users to provide the 

https://github.com/IntelCompH2020/topicmodeler
https://github.com/IntelCompH2020/topicmodeler
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necessary training to use the topic modeling functionalities in the IMT, and to adopt any 

necessary modifications to improve user experience.  

Taking into consideration all the previous, this document provides: 

● Technical information about the developed software that can be used by other 

implementation teams of IntelComp, particularly addressed to the team responsible for 

integration and implementation of the front end of the Interactive Model Trainer 

● A complete guide of use of the current toolbox release, as well as a number of practical 

advices, that is aimed to LLs users, to provide them with a minimum background 

information about topic modeling, and how to use the toolbox functionalities to obtain 

high-quality topic models 

● Information for a general AI practitioner that may find convenient the use of the toolbox 

for his/her own projects. 
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1. INTRODUCTION 

IntelComp is a project funded by the European Commission whose main objective is the 

development of a software platform that, using the latest generation of Artificial Intelligence 

(AI) and Natural Language Processing (NLP) tools, provides relevant information for the 

management of public policies in the area of Science, Technology and Innovation (STI). To do 

this, the platform will analyze various documentary sources (e.g., scientific production 

documents, research call work programs, information on companies available on the Internet, 

etc.), some of them involving hundreds of millions of documents, and, through the application 

of AI techniques and models, it will extract information with a level of detail greater than that 

available in the metadata that usually accompanies these data sources. Likewise, the extracted 

information will be analyzed jointly with other available metadata through advanced 

visualization techniques included in the various user tools that will be developed in the project. 

The design of automatic analysis tools for those sources must take into account two 

fundamental aspects of great relevance for IntelComp: 1) the sources to be analyzed have a high 

degree of heterogeneity, in the sense that any given data set can deal with very diverse topics, 

but also in terms of the difference in vocabularies used by the various textual sources analyzed 

(e.g., scientific articles vs job offers); and 2) the direct use of AI tools without any type of expert 

validation may produce results that can be difficult to interpret by the end users, which makes 

it advisable to design procedures that allow domain experts to be involved and engaged in the 

creation and curation of the developed models (i.e., following an expert-in-the-loop approach) 

[1]. 

One of the main tools in IntelComp to address the two mentioned challenges is topic modeling 

[2]. The objective of this NLP technology is to carry out an unsupervised analysis of any set of 

documents, extracting from a direct analysis of the text the main themes the collection of 

documents deals with, and the relation of each analyzed document with the identified topics. 

The main advantage of topic modeling compared to other available AI/ML technologies is that 

its application does not require any labels associated with the documents. In addition, the 

widespread adoption of this technology in various fields of application, including studies for STI 

policies [3], [4], [5], [6], [7], suggests that the results obtained with topic modeling provide 

relevant information for STI policy-makers. 

The use of topic modeling tools in IntelComp has a dual purpose: 1) to provide a greater level of 

detail of the data sources used in IntelComp than that available from the originally available 

metadata, and 2) to provide a space of document representation on which other analysis tools 

can be built, such as impact measurement from semantic similarity graphs (considered in Task 

3.7 “Impact and influence using graph analysis”). In this sense, the space provided by topic 

modeling can be used to develop metrics that are aligned with the level of semantic similarity 

among documents [1]. 

The main output of the topic modeling task (Task 3.5) is the python-based Topic Modeling 

Toolbox (TMT) toolbox available in an open Github repository1. This document provides 

 
1 https://github.com/IntelCompH2020/topicmodeler  

https://github.com/IntelCompH2020/topicmodeler
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information about the TMT toolbox, including a review of the techniques implemented, the 

description of the architecture of the software, and manuals for the users of the tool. It should 

be mentioned that the design of the application has taken into account certain integration 

principles agreed within the project, which will allow an easier integration with the Interactive 

Model Trainer (IMT), one of the end users IntelComp applications. 

Regarding the algorithmic developments that have been carried out within the task, the 

software includes different solutions for modeling topics, with the aim of being able to validate 

which of them provides a better tradeoff between performance and computational 

requirements, also considering the various execution scenarios that Barcelona SuperComputing 

has provided for the deployment of IntelComp. In addition, a series of proprietary algorithmic 

improvements have been developed that allow topic models to be curated by domain experts. 

This set of tools is a distinctive feature of topic modeling in IntelComp as it provides an expert-

in-the-loop approach that will ultimately contribute to models that are more aligned with the 

prior experience and needs of IntelComp end users. 

The developed TMT includes two different front-ends for building and curating topic models. 

Both front-ends are developed entirely in python and allow interaction either through a set of 

menus in a command terminal, or through a graphical user interface. Internally, both 

visualizations are decoupled from the actual training and optimization of the models, which will 

facilitate the development of a front-end based on a web service, which will be the option used 

for the IMT, and which is already being developed as part of IntelComp’s Task 4.2. “Interactive 

Model Trainer”. 

Another output of Task 3.5. is the generation of topic models for the different domains and data 

sources considered in IntelComp. These models will be trained immediately following the 

release of the TMT, and especially after M21 when the IMT will be available to all Living Lab (LL) 

users. The development team of Task 3.5. will then work along with the LL users to provide the 

necessary training to use the topic modeling functionalities in the IMT, and to adopt any 

necessary modifications to improve user experience. Other tasks that will take place are the 

dockerization and deployment of services together with Task 5.4 (integration), although the 

development of the toolbox already considered the future needs of the IMT, as we have already 

discussed. 

The rest of the document is structured as follows. In the next section, we present the specific 

objectives of the topic modeling task, which justify the decisions taken during the design of the 

TMT, both in terms of the selection of topic training and curation tools, as well as those related 

to the architecture of the software application. Next, in Section 3, the theoretical principles of 

probabilistic topic modeling are concisely reviewed, and the specific algorithms that have been 

included within the toolbox are described. Section 4 describes the TMT in detail, providing all 

the necessary documentation for its deployment and use. The python tools developed for the 

direct use of the application (terminal-based UI and Graphical User Interface (GUI)) are also 

described. The document ends with a comparative evaluation of the techniques included in the 

software and the corresponding conclusions and lines of improvement that could be addressed. 
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2. OBJECTIVES 

The main objective of Task 3.5 of the IntelComp project is the design and implementation of a 

topic extraction toolbox that can serve the specific requirements of the project, specifically in 

terms of performance, scalability, incorporation of mechanisms to incorporate the knowledge 

of the domain experts (i.e., an expert-in-the-loop approach), and integration with other WP3 

components and the end-user IntelComp tools. This general objective can be broken down into 

the following specific objectives that have guided the execution of the work: 

● Incorporation and testing of different topic extraction libraries, considering both classic 

techniques based on Variational Bayes, as well as more recent ones based on neural 

networks, including implementations that incorporate advanced language models 

(transformers). Specifically, the optimization of the models using Mallet, Spark LDA, 

prodLDA and Contextualized Topic Modeling (CTM) have been incorporated into the 

TMT, evaluating these algorithms in terms of the coherence of the extracted topics and 

their scalability. 

● Definition of a general paradigm for the representation of topic models, regardless of 

the method used for training. In this way, it is intended to provide a general framework 

on which curation tools can be used, regardless of the particularities of the topic 

modeling libraries used to build the model. 

● Exploiting this common representation. It is desired to provide a series of topic curation 

tools to better align the obtained models with the knowledge and previous experience 

of domain experts. These tools will allow performing tasks such as the elimination of 

noisy topics, merge of similar topics, etc., also providing relevant information to carry 

out these actions based on the statistical properties of the topics (e.g., their composition 

or their presence on the documents of the corpus). 

● Provide useful tools and visualizations for the domain experts who are going to carry out 

the curation of the models. Those visualizations will serve as a first test battery for the 

implementation of the final tools that will be available in the IMT, and will allow training 

the first topic models until the IMT is available for general use within the project. In any 

case, the implemented user interfaces will add value to the IntelComp TMT as a self-

contained toolbox that will be released as an open-source project result. 

● Provide a novel implementation of Hierarchical Topic Models (HTMs). We will provide a 

2-level HTM that incorporates tools to allow the user to pick which topics should be 

further split. Again, in addition to the implementation of the hierarchical modeling 

method itself, it is necessary to extract a series of statistics that offer the user 

information about which topics are likely good candidates to be split, as well as the 

goodness of the nested models that are obtained. 

● Serve as a testbench for the integration of machine learning tools in the IMT, using the 

philosophy of providing the services for training, curating, etc. as docker-exec available 

services. These general principles have been established in the IntelComp WP5 and 

allow decoupling the design of AI services from the implementation of user tools, as well 
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as facilitating the deployment of each component in the most suitable infrastructure for 

its execution. 

 

3. TOPIC MODELING 

The growing interest in methods based on NLP and machine learning has driven intense research 

work for its application in the field of STI analysis. Topic modeling aims at analyzing a corpus of 

text documents, and automatically identifying and characterizing the most relevant topics 

appearing in the document collection. Not requiring any previous step in terms of manual 

labeling of the documents that make up the corpus, it is therefore not surprising that topic 

modeling has been widely used in the field of STI analysis, for example to analyze scientific 

production, patents, or research projects, using a variety of corpora of open documents. As an 

example, the proceedings of the latest editions of the Global Tech Mining Conference2 include 

numerous contributions based on topic modeling, and even dedicated sessions in which the 

advantages and disadvantages of this technique for STI analysis are evaluated, offering some 

good practices or algorithmic modifications to improve its characteristics in this field of 

application. 

Although there are some precursor algorithms, we can stipulate that Latent Dirichlet Allocation 

(LDA) proposed by David Blei in 2003 [2] constitutes a turning point in terms of the popularity 

and extensive use of topic modeling tools. So much so that LDA has been applied in a wide 

variety of application areas, and has given rise to a large number of tools and algorithmic 

variants, for example for the temporal analysis of topics [8], the construction of hierarchical 

models [9], or incorporating correlation between topics [10], etc. Recently, with the rise in 

popularity of neural networks and language models based on attentional models (transformers), 

some topic models that make use of these AI tools have been published [11], [12], [13], [14]. 

In order to be able to evaluate the characteristics of the different available libraries, this project 

incorporates some of the most popular and widely used classic tools such as Mallet and Spark 

LDA, both based on the generative model originally proposed by David Blei, as well as others 

more experimental but that promise to be widely adopted in the near future, such as prodLDA 

and, above all, CTM, an extension of ProdLDA that incorporates attentional models based on 

Transformers. All these alternatives are incorporated into the development carried out in Task 

3.5, and have been unified into a Python class that offers a level of abstraction that allows the 

exploitation of any of them with a set of tools for topic curation. 

With respect to the widespread use of statistical approaches supported by taxonomies, LDA has 

some properties that are useful for STI analysis. Among them are: 

● Thematic analysis can be carried out with different levels of resolution, or hierarchically. 

This helps in the survey of specific subject areas with the desired level of detail.  

 
2 http://www.gtmconference.org/  

http://www.gtmconference.org/
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● Its flexibility allows the identification of emerging topics, or the detection of 

hybridization of topics, something hard to do using taxonomies that are often exclusive 

and whose updating imposes certain time delays. 

● Since LDA also provides a vector representation of documents, it is possible to carry out 

a semantic comparison between documents of different data collections, even in the 

absence of a common taxonomic representation. Also, the time shift of certain topics in 

one corpus with respect to another can be studied (lead-lag analysis). 

In IntelComp, the use of topic modeling is considered both as a tool to analyze a certain data set 

of documents with a great variety of topics, and to carry out an analysis with a high level of 

granularity of a specific area, allowing to discover more detailed topics than those available in a 

given taxonomic classification. In any case, the objective of Task 3.5 is to provide a toolbox that 

can be used to train topic models on any collection provided by the user, as well as to curate the 

topics obtained so that the model is more interpretable by the end users who will use it, for 

example, to analyze the relative size of the identified topics, their evolution over time, or the 

strengths or weaknesses of specific geographical areas in terms of their contribution to a specific 

topic. 

For the purposes of a general understanding of the operation of any of the topic modeling tools 

incorporated into the IntelComp Topic Modeling Toolbox, and avoiding an overly technical 

description for which the interested reader can consult a large number of scientific papers3, in 

this document we will adopt a black-box approach of all the topic extraction techniques, whose 

operation can be described in a general way as a block which takes as input the texts that make 

up the collection of documents, and provides the following two outputs: 

- A list of predominant topics, where each topic is defined by a weighted list of 

characteristic terms. 

- A mapping of documents from the word space into a topic space, in which each 

document is characterized by a vector of length equal to the number of topics, each 

component yielding the proportion of the document that is assigned to its 

corresponding topic. 

The different tools used may differ in the way in which these outputs are obtained from the 

inputs, and their detailed description is outside the scope of this document, but our black box 

treatment is sufficient to understand that it is possible to provide a common abstraction that 

allows representing the topic models that are trained by the tool, regardless of the specific 

library used for their training. 

In addition to the previous description, in order to understand the operation of topic analysis 

tools, it must also be considered that these tools are usually based on a representation known 

as a “bag of words” of the corpus documents, which consists of a simple count of the number of 

occurrences of each word within each document. In order to obtain a more effective 

representation, it is essential to eliminate common terms or terms with little semantic 

 
3 E.g., we recommend the comprehensive work of [31] that provides a good balance between simplicity 
of the exposition and technical rigor. 
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importance from the vocabulary, as well as to unify morphological variants of the same word. 

To obtain this representation, IntelComp relies on the NLP pipelines implemented in Task 3.1, 

and specifically on the lemmatization and N-gram identification components. 

Finally, it should be mentioned that in addition to building topic models, it is essential to provide 

the tools that allow inference of the main topics in documents that were not present in the 

training set. For this, it is essential to replicate during the inference process both the analysis 

corresponding to the selected topic model, as well as the previous preprocessing of the text. 

The next subsection presents a more detailed description of the pipelines implemented in the 

toolbox for topic modeling training and curation, as well as for inference on new documents. 

After that, we will turn our attention to the specific procedures that implement each of the 

identified functional blocks. 

3.1. Description of the Pipeline supported by the toolbox 

The construction of a topic model is a procedure that requires the sequential execution of 

various tasks. Figure 1 shows a block diagram that represents the general implementation of the 

procedure in the TMT. 

Figure 1. Workflow for the training and curation of a topic model 

 

The input to the process is a corpus for training the model, for which the toolbox assumes the 

availability of a series of data sets in parquet format, including both the raw text and lemmatized 

versions of the texts that are obtained as output from the NLP pipeline provided by Task T3.1. 

For the construction of a training corpus for a specific model, the implemented SW allows the 

concatenation of documents coming from several data sets. The information necessary for the 

construction of the training corpus from the original data sets available on the platform is stored 

in a JSON file, so that each training corpus is associated with a different JSON file. The TMT 

includes among its tools a series of functions to create, list or delete training corpus for topic 

modeling. 

Once a well-defined training set is available, the next step to be carried out consists of cleaning 

and homogenizing the text of the training data. To this end, the TMT provides a pre-processing 

pipeline that executes a series of basic tasks and that can be adjusted to each training data 

corpus, also incorporating information provided by the experts who are building the model (e.g., 

stopwords, equivalent terms or acronyms for a particular model, etc). It is important to highlight 

that the pre-processing pipeline incorporated in the TMT is not a complete NLP pipeline, but 

only provides additional cleansing and normalization tasks that are usually recommended to be 
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carried out in order to obtain higher quality topic models with more easily interpretable 

descriptions. The TMT assumes that heavy preprocessing, including lemmatization and N-gram 

extraction or entity detection, have been performed previously so that such procedures have 

already been performed on the text before the TMT preprocessing pipeline. The output of the 

preprocessing pipeline will be a training corpus prepared for the subsequent training of the topic 

model, in which each text has been represented as a bag of words (BOW), as well as the 

vocabulary of terms that have been selected for such BOW representations. 

Finally, the training of the topic model itself must be carried out. Depending on the technique 

used, only the BOW representation of the texts, the unprocessed raw text, or both 

representations can be used. For instance, when Mallet is used only the BOW representation is 

required, whereas CTM requires raw text in addition to BOW. As a result of this training, and 

regardless of the technique used, a common representation of the model is generated, on which 

users can perform certain curation tasks, for example, tagging topics, deleting noisy topics, etc. 

The result is a model ready for deployment within the platform. 

As already mentioned, it is important to note that the trained model will be exploited by the 

platform to analyze its composition in terms of the nature of the topics found or its size over 

time, but also to carry out inference tasks on new unseen texts not available during training. 

Such inference will require replicating the processing pipelines used during model training and 

subsequently applying the model inference tool along with the necessary transformations 

associated with expert curation activity. Therefore, during the construction of the model and 

regardless of the tools used, it must be guaranteed that the information necessary for the 

inference of topics is preserved. 

In the rest of this section, we analyze in detail the different components that have been included 

in the TMT from a functional point of view, i.e., describing its operation without going into 

excessive detail about aspects associated with the actual SW implementation. These 

implementation-related aspects will be addressed in Section 4. 

3.2. Description of the Pipeline supported by the toolbox 

This subsection explains the different tasks that the TMT carries out to build a corpus that allows 

the training of a topic model. The TMT assumes that the text of the documents is available in 

parquet format within a folder accessible by it. It is also considered that the text is already pre-

processed so that, together with the raw text, a lemmatized version and/or extraction of named 

entities (or n-grams) is available. For the above, the project SW repository includes several 

auxiliary Jupyter Notebooks, which allow basic lemma extraction using the Spark NLP 

lemmatizer4. 

The construction of the training dataset has as its first step the concatenation of the documents 

that make up the dataset. The provided toolbox includes a training corpus management module, 

which allows documents from different data sets to be incorporated into the same training set. 

 
4 https://nlp.johnsnowlabs.com/docs/en/annotators#lemmatizer  

https://nlp.johnsnowlabs.com/docs/en/annotators#lemmatizer
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This collection of documents where each document is represented as a list of lemmas, is then 

used as input to the preprocessing pipeline consisting of the following steps: 

1. Stopwords removal: lemmas that are included in a list of stopwords are eliminated from 

the set of lemmas of each document. It is important to mention that generic stopwords 

will have already been previously filtered from the input data, and that the objective of 

this new step of eliminating stopwords is to eliminate those words that, although cannot 

be considered as general stopwords for the language used, lack semantic interest for 

the specific dataset analyzed. As an example, "computer" cannot be considered a 

general stopword for the English language, but it is probably best to remove it when 

analyzing a data set restricted to the computer science domain. 

2. Word replacements: it consists of the replacement of certain lemmas for other 

equivalent ones. In this way, words with equivalent semantic meaning, for example 

acronyms, can be mapped to the same terms and treated as a single term during topic 

modeling. Likewise, this component can be used to solve some errors in the 

lemmatization block that will be evident in the visual description of the topics, 

downgrading the apparent quality of the resulting topic model. 

3. Filtering of short documents: those documents that do not have a minimum number of 

lemmas are eliminated from the training set, considering that there is not enough 

information available for a robust estimation of the thematic composition of the 

document. 

4. Vocabulary construction: Particularly important in very large training sets, it is 

convenient to limit the number of terms that make up the vocabulary. Three different 

procedures are applied for this. In the first place, we remove from the vocabulary terms 

that do not appear in a sufficient number of documents, since on a good number of 

occasions they can be typos or, in any case, cannot be reliably assigned to any topic. 

Secondly, those terms that appear in a number of documents greater than an 

established threshold will also be filtered out, considering that they are words of little 

semantic interest for the analyzed corpus. Finally, for practical reasons of scalability of 

the topic extraction tools, the maximum size of the vocabulary is restricted, keeping only 

the most frequent terms that have passed the two previous selection criteria. 

For the generation of lists of stopwords and equivalent terms, the TMT includes a term list 

management component that can be used to create additional lists from the results of a given 

model. Preprocessing allows one or more of such lists to be selected from among the available 

ones, both for the selection of stopwords and for the equivalent terms. 

Once the vocabulary is available, the BOW representation of each document can be calculated 

by simply counting the number of occurrences of each vocabulary term in each document. The 

output of the processing pipeline is therefore a subset of the input documents (those with 

sufficient length) each represented by a vector of length equal to the number of terms in the 

vocabulary, known as a bag of words (BOW) representation, where any type of structure of the 

original document has been discarded and only the information related to the number of 

appearances of each term is preserved. Since a small number of vocabulary words will usually 
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appear in each document, these vectors are usually efficiently represented as sparse vectors in 

which only the non-zero components and their position indices are preserved. The complete 

text preprocessing procedure has been illustrated in Figure 2 for a concrete example. 

Figure 2. Illustration of the operation of the components in the TMT preprocessing pipeline 

 

The tool included in the TMT includes two different implementations that allow highly 

parallelizable executions of the described preprocessing procedures.  

- The first implementation allows parallelizing document transformations using Spark, 

and is considered especially useful since IntelComp has a Spark-based computing cluster 

for deploying the platform with very large horizontal scalability capabilities. In this case, 

the execution of all the components of the processing pipeline can be easily distributed 

among the nodes of the cluster, including the calculation of the vocabulary that is 

performed with the CountVectorizer Spark object.  

- For those cases where deployment to a Spark cluster is not available, we have 

implemented a version of the pipeline based on Dask dataframes5 which is a 

transformation-based preprocessing pipeline enabling parallelization of the operations 

to be carried out on the documents, thus, catering for a better use of computational 

resources and more efficient memory management. This implementation allows you to 

take advantage of the available resources when the container is deployed on a virtual 

machine. However, the vocabulary construction is done using Gensim dictionaries, 

which requires sequential processing of the documents, this procedure being 

considerably slower than the corresponding implementation in Spark. 

3.3. Topic Modeling technologies incorporated in the TMT 

There are different techniques available for extracting the most important topics from a corpus 

of text documents. All the algorithms used within the TMT have in common an output format 

with two output matrices obtained: 

- A topic composition matrix (𝝱): it is a matrix of size (number_of_topics ✕ 

vocabulary_size), in which each row contains the probability distribution that 

 
5 https://www.dask.org/. The concept of a Dataframe in Dask is similar to Pandas, but Dask allows 
dataframe partitioning and paralellel calculations. 

https://www.dask.org/
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characterizes the frequency of appearance of the different terms of the vocabulary for 

each identified topic. Therefore, all elements in matrix 𝝱 are non-negative values, and 

the sum of the elements along each row is one. From this matrix, the nature of each 

topic can be explored from the words that accumulate the highest probability. 

- Matrix of thematic composition of the documents (𝛉): it is a matrix of size 

(number_of_documents ✕ number_of_topics), in which each row contains the 

proportion of the topics identified for the corresponding document. Again, matrix 𝛉 

contains non-negative values, and the sum of the elements in each of its rows is one. 

Matrix 𝛉 allows, therefore, to analyze the most relevant topics for each of the 

documents in the corpus. We refer to the set of topics whose associated weight is larger 

than zero for a document as the active topics of that document. 

Although the output can be described in a common way, a variety of tools that differ in their 

internal characteristics and scalability properties have been incorporated into the toolbox. Next, 

we review the different topic extraction libraries that have been included. 

3.3.1. Mallet 

IntelComp allows the training of topic models using Mallet, a very popular library written in Java 

that presents a highly efficient parallelizable implementation of LDA. Mallet has been 

extensively used by the UC3M and ARC teams in previous projects involving data sources of 

similar nature to the ones used in IntelComp obtaining very satisfactory results. Likewise, Mallet 

has also been exploited in many other works that have appeared in the technical literature over 

the last years. In recent years, other python libraries for LDA have become very popular, such as 

the Gensim and scikit-learn implementations but, in our experience, they offer worse 

performance in terms of topic coherence and scalability than Mallet. Therefore, we stick with 

Mallet as our preferred choice for deployment over machines with sufficient computation and 

memory resources. 

Mallet performs model optimization with Gibbs Sampling, a Markov Chain Monte Carlo (MCMC) 

technique [15] that is well suited for parallel optimization. Multithreading allows Mallet to make 

good use of the available resources leading to fast training. The following list summarizes some 

of the most relevant configuration parameters available for Mallet training. Default settings are 

provided for all of them in the TMT and can be modified in the configuration file of the training 

process. Additionally, the advanced training tools available through both the command line and 

graphical UIs allow users to modify these default settings for each specific training. 

Table 2. Most relevant setting parameters for Mallet Topic Modeling 

Parameter Default Description 

num_topics 25 

Number of topics for the model. A large number of topics will provide 
a higher level of detail, and will allow us to find some very specialized 
topics of small size. One drawback, however, is that larger topics can 
appear repetitive and fragmented. On the contrary, a small number of 
topics is useful to have a first approximation of the main topics of the 
corpus. 

alpha 5 Hyperparameter for the Dirichlet distribution responsible for 
generating the topic vectors of the documents. A small value favors 
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having few active topics per document; on the contrary, a high value 
will generally imply a greater number of active topics. 

num-iterations 1000 
Number of Gibbs sampling iterations. A common setting is 1000, 
although in order to have a rough first model it may be enough to use 
values around 250. 

optimize-interval 10 

Number of Gibbs sampling iterations between reestimates of the 
hyperparameters of the probability distributions. If the parameter is 
set to 0, it implies that the initial values will be preserved, and 
hyperparameters will not be optimized during model training. 

doc-topics-
threshold 

0 Threshold for pruning topics in the document representation matrix. 

num-threads 4 Number of threads for the parallel optimization of the algorithm. 

 

3.3.2. Spark MLLIB 

Spark incorporates a machine learning library, MLLIB, which includes two LDA implementations 

among the available algorithms. The first one is an online implementation of David Blei's original 

algorithm based on Variational Bayes, while the second one is based on an expectation-

maximization algorithm (i.e., two steps are iteratively executed: the calculation of the 

mathematical expectations of a set of latent variables and their maximization). IntelComp offers 

among the available platforms for the deployment of the components a Spark cluster that 

provides a great capacity for the horizontal scaling of the algorithms. For this reason, the 

inclusion of this implementation of topic modeling in the catalog of tools available in the TMT 

has been considered of great interest. 

The LDA implementation of Spark includes a series of parameters that can be modified to adjust 

the behavior of the algorithm. As in the case of Mallet, the toolbox allows configuring default 

values for some of these parameters, as shown below in Table 3. As in Mallet, of all the available 

parameters, the TMT allows modifying only those that have a clearer meaning for the user, such 

as the main optimization parameters (e.g., a greater number of iterations offers greater 

precision at the cost of increased computation time) or those that have a clear impact on the 

results (such as the number of topics or the prior of document distribution, which directly 

influences the average number of active topics). In the case of Spark MLLIB, we deliberately 

avoid offering advanced options for the adjustment of other available parameters that require 

greater expertise from the users, such as the adaptation steps for online learning, or the 

concentration parameter for the word-topic distribution. 

Table 3. Most relevant setting parameters for Spark MLLIB Topic Modeling 

Parameter Default Description 

num_topics 25 

Number of topics for the model. A large number of topics will provide 
a higher level of detail, and will allow us to find some very specialized 
topics of small size. One drawback, however, is that larger topics can 
appear repetitive and fragmented. On the contrary, a small number of 
topics is useful to have a first approximation of the main topics of the 
corpus. This value is commonly referred to as parameter ‘k’ in Spark 
MLLIB documentation. 
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alpha 5 

Hyperparameter for the Dirichlet distribution responsible for 
generating the topic vectors of the documents. A small value favors 
having few active topics per document; on the contrary, a high value 
will generally imply a greater number of active topics. This value is 
commonly referred to as parameter ‘docConcentration’ in Spark MLLIB 
documentation. 

maxIterations 20 Maximum number of iterations for the optimization algorithm 

optimizer ‘online’ 
The algorithm used for algorithm optimization. Two optimizers are 
available in Spark MLLIB LDA: Expectation-maximization (‘em’) and 
online variational Bayes Optimization (‘online’). 

optimizeDocConcen 

tration 
True 

Whether the doc-concentration parameter alpha will be optimized 
during the training of the algorithm. 

subsamplingRate 0.05 
Percentage of documents from the training set that will be used at 
every minibatch. 

 

3.3.3. Neural Topic Models 

Bayesian-based topic models (BTMs), with Latent Dirichlet Allocation (LDA) as a representative, 

have been a powerful technique for text analysis in many fields for almost two decades. Yet, in 

today’s era headed by unprecedented interest in AI, conventional BTMs have started to wear 

out. In this regard, we can cite three main weaknesses of BTMs: 1) Their inference process 

(carried out through a Bayesian inference process, e.g., variational inference of Monte Carlo 

sampling methods) needs to be usually ad-hoc customized and the inference complexity may 

grow with the model difficulty. 2) The inference process may be hard to scale, especially with 

collections of documents; additionally, these processes are not easily leveraged through parallel 

computing facilities like GPUs. 3) It may be useful to benefit from the joint combination of topic 

models and deep-structured neural networks, in particular specific neural structures such as 

BERT and Transformers, that allow to boost the topic model learning process incorporating 

language information gathered from processing huge data sets. 

Hence, aiming to boost performance and provide conventional topic models with flexibility and 

scalability capabilities, neural topic models (NTMs) have gained a huge research interest, and 

many variants are currently in development. This has led to the application of NTMs to important 

tasks in the field of NLP, including text generation, and document summarization, which are 

areas in which conventional topic models are not straightforward to apply. 

One current appealing line of research in the field of NTMs is the incorporation of pre-trained 

language models as a means of endowing topic models with more advanced and finer-grained 

abilities to capture aspects of linguistic context through contextual word- and sentence-vector 

representations, see e.g., BERTopic [14], TopicBERT [16] or Neural Variational Document Model 

(NVDM) [17], just to name a few examples. Though most of these proposals are still in a 

preliminary stage, the project has chosen to incorporate two of the most representative NMT 

techniques to evaluate their performance in comparison with the classical approaches described 

in Subsections 3.3.1 and 3.3.2. In particular, the NTMs incorporated into the TMT are the 

following ones: 
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Product-of-Experts LDA 

ProdLDA (Product-of-Experts LDA) [11] is a state-of-the-art neural topic model that utilizes 

Autoencoded Variational Inference for Topic Models (AVITM), a black-box variational inference 

method [18] that can be easily applied to new models and reduce the computational cost 

associated with the posterior distribution‘s computation in conventional topic models.  

AVITM has its basis on mean-field variational inference, but in contrast to the traditional mean-

field approach, the variational parameters are computed through a neural network that takes 

the observed data w (the documents) in BOW format as input and maps them into a continuous 

latent representation. Then, a second neural network (decoder) is in charge of performing the 

inference process, i.e., of reconstructing the BOW by generating its words from the latent 

document representation.  

With respect to the AVITM based implementation of LDA, the authors constructed a Laplace 

approximation to the Dirichlet prior utilizing Gaussian distributions. Then, ProdLDA can be 

described as a modification of the AVITM-based implementation of LDA, in which the word-level 

mixture over topics is carried out in a natural parameters space, i.e., the topic matrix is not 

constrained to exist in a multinomial simplex prior to mixing. That is, the only difference 

between LDA AVITM-based and ProdLDA is that in the latter, a weighted product-of-experts [19] 

replaces the multinomial distribution over individual words.  

The network structure of prodLDA has been represented in Figure 3. Each document BOW 

representation (of dimension equal to the vocabulary size) is processed by a set of hidden layers 

that learn the mean and variance of a Gaussian distribution. Based on these parameters the 

document representation is obtained as a set of K values from which the network tries to recover 

the initial document representation. The topic modeling inference consists of learning the 

network parameters to optimize the reconstruction, and document topic-based representations 

and topic characterizations are obtained as a subproduct of this process. 

Figure 3. High-level sketch of ProdLDA 

 

The claimed advantages of ProdLDA include 1) better topics than LDA in terms of coherence; 2) 

training is fast and efficient like standard mean-field, and when trained on new data, much faster 

as only one pass through the neural network is required. 
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The TMT toolbox allows both the training of the AVITM-based implementation of LDA and 

ProdLDA; Table 4 summarizes their most relevant configuration parameters. These parameters 

can be configured by the user, in addition to some other advanced settings that are only shown 

if the user requests them 

Table 4. Most relevant setting parameters for AVITM Topic Modeling 

Parameter Default Description 

num_topics 25 

Number of topics for the model. A large number of topics will provide 
a higher level of detail, and will allow us to find some very specialized 
topics of small size. One drawback, however, is that larger topics can 
appear repetitive and fragmented. On the contrary, a small number of 
topics is useful to have a first approximation of the main topics of the 
corpus. This value is commonly referred to as ‘number of components’ 
in the AVITM implementation. 

model_type ProdLDA The AVITM implementation used for training, namely ProdLDA or LDA. 

num_epochs 100 
Number of complete passes through the training dataset over which 
the model will be trained. It can be set to an integer number between 
zero and infinity 

batch_size 64 
Number of samples in the minibatch for neural network training.  It 
should have a value larger or equal to one and less or equal than the 
number of samples in the training dataset. 

 

Contextualized Topic Models 

Contextualized Topic Models [12], [13] consist of a family of neural network-based topic 

modeling algorithms. Currently, four different versions of CTMs have been proposed by the 

authors, namely CombinedTM, ZeroShotTM, Supervised CTM, and β-CTM, all of which are 

constructed by extending AVITM under different conditions. 

● CombinedTM combines the BoW representation already given as input to ProdLDA with 

SBERT embeddings, as shown in Figure 4(a). This process seems to increase the 

coherence of the predicted topics. 

● ZeroShotTM utilizes only SBERT embeddings as input to the inference network (Figure 

4(b)), thus making it adequate for zero-shot topic modeling and capable of dealing with 

unseen words at test time, since the BoW representation, which cannot account for 

missing terms, has been disregarded. Additionally, this NTM can be used for cross-

lingual topic modeling, i.e., training and test sets’ languages do not need to be the same. 

● Supervised CTM (SuperCTM) is inspired by the work from [20], in the sense that the 

authors implement their approach under the CTM architecture. Therefore, SuperCTM 

adds to either CombinedTM or ZeroShotTM a set of labels (Figure 4(c)) to give more 

information to the model, which should increase the correlation of the topics with 

respect to the labels. 



 

25 

 

IntelComp D3.5 Topic Modeling Service 

● β-CTM implements the intuitions behind the work of [21] under the CTM architecture. 

The key idea is to apply a weight to the Kullback-Leibler loss function to help create 

representations by forcing independence in the components. 

CTMs have one limitation inherited from the contextualized embeddings, namely that the 

contextualized representation of a document is limited to the pre-trained language model’ 

sentence-length; that is, for the case of using SBERT embeddings, if the document length is larger 

than 512, the rest of the document will be discarded.  

Note that CTMs perform better when the BOW size has been restricted to not exceed 2,000 

elements. This is because the contextualized embeddings are projected into the vocabulary 

space, so the bigger the vocabulary, the more parameters are needed, thus hardening the 

training and making it prone to bad fitting. 

Figure 4. High-level sketch of Contextualized Topic Models 

    (a) Combined TM                    (b) ZeroShotTM             (c) SuperCTM 

 

Although the TMT includes in its implementation all the approaches that we have just reviewed, 

only the CombinedTM has been selected for its use in IntelComp, and this document will focus 

solely on the evaluation of this algorithm, since this is the architecture whose functionality can 

be more easily compared to that of the other topic modeling tools included. The preliminary 

tests that have been carried out suggest that CombinedTM provides topics with very high 

coherence, thus being a very interesting option as long as high training and processing times 

during inference are acceptable and/or the component is deployed with access to GPU 

hardware. 

Two other approaches that could be of interest in certain situations are ZeroShotTM, which 

provides a multilingual model if an appropriate embedding model is used, and SuperCTM for 

those cases in which labels are available. The use of these tools, which, as mentioned, are 
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already available (though not directly accessible through the developed UIs) in the TMT, could 

be reconsidered based on the requirements posed by the users during the execution of the LLs. 

Similar as for the AVITM implementations, the TMT offers the possibility of configuring a set of 

default and advanced settings; Table 5 summarizes the most important of these default 

parameters. 

Table 5. Most relevant setting parameters for Contextualized Topic Modeling 

Parameter Default Description 

num_topics 25 

Number of topics for the model. A large number of topics will provide 
a higher level of detail, and will allow us to find some very specialized 
topics of small size. One drawback, however, is that larger topics can 
appear repetitive and fragmented. On the contrary, a small number of 
topics is useful to have a first approximation of the main topics of the 
corpus. This value is commonly referred to as ‘number of components’ 
in the CTM implementation. 

model_type ProdLDA 
The underlying AVITM implementation used for training, over which 
the contextualized topic model is constructed, namely ‘ProdLDA’ or 
‘LDA’. 

num_epochs 100 
Number of complete passes through the training dataset over which 
the model will be trained. It can be set to an integer number between 
zero and infinity 

batch_size 64 
Number of samples in the mini batch for neural network training.  It 
should have a value larger or equal to one and less or equal than the 
number of samples in the training dataset. 

 

3.3.4. Construction of Hierarchical Topic Models 

Previous analysis conducted by several IntelComp project partners has shown that the topics of 

a flat model (like the ones described in Subsections 3.3.1-3.3.3) do not possess the granularity 

expected by STI domain experts, thus making it necessary to perform a thematic analysis with 

different levels of resolution. Simply increasing the number of topics does not resolve this 

problem because in that case one typically ends up with redundant or unnecessary topics. 

Hence, we have provided within the TMT two novel approaches for assembling hierarchical topic 

models that allow the incorporation of domain experts’ knowledge into the hierarchy 

construction. The proposed schemes consist of: 

1. Initial modeling of a selected dataset using a standard topic modeling algorithm. We will 

refer to this initial modeling as a level-1 topic model. 

2. Nested modeling of user-selected first-level topics to increase the granularity of the 

analysis. We will refer to these submodels as level-2 topic models. 

Although the process could be iterated, currently the TMT only supports hierarchical topic 

models with two levels. Both level-1 and level-2 topic models are trained using any existing topic 

modeling algorithm (for the current version of the TMT, one chosen between Mallet, SparkLDA, 

ProdLDA, or CTM). However, level-2 submodels are trained over specific training datasets that 

are dependent on the topic that is being expanded. Two different approaches for creating these 
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datasets can be used, giving place to the two novel solutions for hierarchical topic modeling: For 

HTM-WS (HTM with word selection) a synthetic corpus is generated by keeping the words from 

each document in the level-1 model that were assigned to topic being expanded, whereas for 

HTM-DS (HTM with document selection) a reduced training set is generated keeping only those 

documents of the original corpus whose weight for the selected topic is above a threshold. Table 

6 summarizes the parameters implied in the construction of the HTMs, and Figure 5 provides a 

graphical representation of the corpus generation under each of the two HTM versions. 

Table 6. Setting parameters for the construction of level-2 topics models 

Parameter Default Description 

htm_version htm-ds 
Hierarchical topic model schemes used for the generation of the level-
2 model’s training corpus, either ‘htm-ws’ or ‘htm-ds’. 

thr 0.2 
Document-topic threshold that a document in the level-1 topic 
model’s corpus must have to be kept in the level-2 model's corpus 
(only applies to HTM-DS). 

 

Figure 5. Graphical representation of HTM-WS and HTM-DS corpus generation for fictional 
topic 2 (represented in blue) 

 

3.4. Topic Modeling technologies incorporated in the TMT 

One of the distinctive elements of the TMT is the inclusion of a series of tools designed to 

incorporate the prior knowledge and experience of domain experts into the topic models. In this 

way, it is intended both to obtain models of higher quality and more interpretable topics, as well 

as to align the trained models to the needs of the experts. To achieve these objectives, the 

toolbox incorporates two types of procedures: 

1. Topic model visualization tools: they allow the user to explore the topic model and to 

know the nature of the obtained topics, their composition, the relationship between 

them, etc. This is fundamentally statistical information that may require a long time for 

its calculation, so the execution of these tools is carried out right after the training of a 

given model. In this way, although training times are lengthened, the user can navigate 
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more easily with the available models. Also note that increasing the training time does 

not have a significant impact on the usability of the tool, since this is a task that will take 

place asynchronously in any case. 

2. Curation tools: they allow deletion or merge of topics, tagging them manually, deleting 

some of the words that characterize them, etc. This set of tools has been designed with 

the aim of being as real-time as possible, as their use is expected to take place in an 

interactive manner at the IMT. Although this set of tools can be very useful in order to 

obtain a more interpretable model, it must be considered that their use may degrade 

the internal coherence of the model, e.g., resulting in an inappropriate resizing of the 

topics of the model, and presence of "super-topics" with overestimation of their size in 

the corpus. 

Use of curation tools is recommended only for the final adjustment steps of a model. Previously, 

it is recommended to train a series of initial auxiliary models, with the mere objective of 

identifying a series of stopwords and relevant equivalences for the corpus that is being analyzed. 

Schematically, to obtain high-quality models, it is recommended to iterate the following steps 

through the functionalities provided by the UIs: 

● Obtaining a representative vocabulary: it is especially important to clean the terms that 

appear in the representation of the topics. For this, the following steps should be 

iterated: 

- Training of a topic model with a moderate number of topics (e.g., 30-40 topics). 

This training includes the preprocessing of the text prior to model training. 

- Vocabulary cleaning according to the following criteria: 

➢ uninformative terms for the corpus in question should be marked as 

stopwords. 

➢ terms that appear highlighted in several topics of different nature 

should be marked as stopwords. 

➢ Equivalent terms should be used to correct errors in the NLP pipelines, 

in particular it is important to correct lemmatization errors. 

➢ Equivalent terms should be used to map synonyms to a common form, 

including acronyms that have not been correctly identified by the 

Named Entity Recognition module. 

● Curation of a final model with the desired number of topics. To obtain an easily 

interpretable model, it is recommended to slightly overestimate the number of topics 

in the model, and subsequently merge topics of a similar nature if necessary. 

The remainder of the section briefly describes the visualization and curation tools available in 

the TMT to support these procedures. For the most part, these tools are available in the two 

available UIs: graphical and terminal-based. 
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3.4.1. Topic visualization and annotation 

Visualization of topics statistics 

A first tool for browsing the topics obtained consists of directly providing the list of topics that 

make up the model together with their description. As an example, Figure 6 includes the 

description of the first 13 topics of a model of 60 topics trained on the S2CS corpus (Papers of 

Semantic Scholar in the Computer Science category). The topics are ordered according to their 

size, and for each topic the following information is shown: 1) its relative size; 2) the 

corresponding label (automatically or manually generated); and 3) its description in terms of the 

most relevant words of the topic. 

Figure 6. Topics description for a topic model of 60 topics of S2CS (Computer Science papers 
in Semantic Scholar).  The first 13 topics are shown. 

 

The tool also calculates other additional statistics for each topic, which are only shown to 

facilitate the development of certain operations. Its general inclusion could be considered, 

although in this first version of the TMT it has been considered more sensible to omit such 

statistics so as not to overwhelm the user with possibly unnecessary information: 

● The description (word distribution) of the topic with a penalty for the most common 

terms. When obtaining the description of a topic, it is usual to select the words with the 

highest frequency of appearance. An alternative that is actually used by default in the 

TMT is to penalize the representation of those terms that appear with high probability 

in a large number of topics (similarly to the penalty according to Inverse Document 

Frequency applied to the BOW representation of a text). 

● Number of documents in which each topic is present (N Active docs): this value gives an 

idea of the level of use of a certain topic throughout the entire corpus, so that those 

topics that are more widespread and have a more horizontal character, are therefore 

less semantically discriminating. Noisy topics are expected to trigger a high number of 

topics, so this information will be provided when the users request to delete topics from 

the model. 

● Entropy: Gives an idea of whether a topic is characterized by a reduced number of terms 

or by a broad set (each of them in a smaller proportion). More information about this 

statistic is shown in Section 3.5. This statistic was originally calculated also with the aim 



 

30 

 

IntelComp D3.5 Topic Modeling Service 

of helping in the detection of generic or noisy topics, but we found that the number of 

active docs was a more useful indicator for that. 

● Coherence: Gives an idea of the degree of cohesion of the high probability terms for a 

given topic. More information about this statistic is shown in Section 3.5. The coherence 

of topics can be used as an indicator to help the user decide which topics are good 

candidates to be further split. 

Automatic labeling of topics 

Once the topics are generated, labels that may describe those topics are automatically 

generated to ease the interpretation of the topics. If necessary, the user will be able to later 

modify and curate the labels provided by the automatic system. 

The automatic labeling system assigns labels taken from a list of feasible labels that can be 

created by the user (similarly to lists of stopwords or keywords). The current implementation of 

the system incorporates a set of labels taken from the collection of categories available in 

wikipedia. 

For the Automatic Topic Labeling itself, i.e., the system that assigns to each collection of words 

characterizing one of the topics in the model a specific label from the list, a zero-shot-classifier 

available at HuggingFace is used. Zero-shot-classifiers are an excellent technology for those 

cases in which the set of categories is known but no labeled data is available for supervised 

training. More information on this kind of classifiers can be found in IntelComp deliverable D3.4. 

- Classification Service. 

To be more specific about the solution implemented, we have used a HuggingFace pipeline 

defined by two essential arguments, the classifier type (“zero-shot-classification”) and the model 

itself (“facebook/bart-large-mnli”)6. This model has proved to perform well in most cases both 

in terms of time and accuracy.  

For example, given the following sentence: "one day I will see the world", and candidate labels 

['travel', 'cooking', 'dancing'], the output would contain a score for each label 

{'labels':['travel','dancing','cooking'],'scores':[0.994,0.003,0.003]…}, from 

which the final label assigned to the topic would be “travel”. 

Stopwords suggestion tool 

As has already been mentioned, the TMT aims to make it easier for the user both to obtain a 

final high-quality topic model which can be taken to production, and to obtain auxiliary models 

that help in the task of identifying potential stopwords that should be eliminated. To help with 

the latter task, the software incorporates a functionality that suggests to the user a list of 

candidate terms to be considered as stopwords based on the following rules: 

 
6 The full description, use cases and interactive examples can be found in its original HuggingFace 
webpage: https://huggingface.co/facebook/bart-large-mnli.  

https://huggingface.co/facebook/bart-large-mnli
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● The user initially selects a series of topics that are considered to be of little semantic 

value (e.g., noisy topics, too generic topics, irrelevant topics, etc) 

● The user also provides a probability threshold to select the terms to be included in the 

tool's analysis. 

● The tool explores the appearance of the terms present in the topics selected by the user 

in the rest of the topics of the model. Based on this, it provides two lists: 

○ a first list with the terms that only appear in noisy or irrelevant topics, and that 

can be considered as stopwords with great probability (the user can then choose 

to directly create a list of stopwords with these terms, or to carry out a manual 

inspection). 

○ a second list of terms that are not suggested as stopwords, as those are terms 

that appear in other topics of the model. The user is recommended to monitor 

at least the first terms of the list, in search of possible additional stopwords. 

pyLDAvis 

A graphical visualization of the topic model is provided through the LDAvis tool developed by 

Carson Sievert and Kenny Shirley7, making use of the pyLDAvis Python library. In order to obtain 

a representation of sufficient quality, but that can be calculated quickly, the visualization is 

calculated on a maximum of 10,000 documents taken at random from the corpus, so the 

visualization is not deterministic and could change slightly with each run for a fixed model. 

An example of such visualization is provided in Figure 7. In the subfigure on the left there is a 

map of topics, in which each topic is represented with a bubble whose size is proportional to 

that of the topic. Similar topics appear close together in the figure. A more or less homogeneous 

distribution of the topics covering the entire two-dimensional mapping space, suggests that the 

optimization of the model has been carried out correctly. 

For the analysis of each topic, the user can select directly from the navigation tool at the top, or 

by clicking on the desired topic, and the right subfigure will show a histogram of the terms, with 

their frequency of appearance in the selected topic and in the complete corpus. The sliding bar 

that is provided in the upper right part (parameter λ) allows us to measure the relevance of each 

term for a given topic, penalizing those terms that appear in a large number of topics. 

The pyLDAvis tool requires an external browser, so users of the terminal-based UI must directly 

access the generated file available in the model folder. In the case of the graphical interface, the 

HTML file is embedded directly, facilitating user navigation. 

 

 

 

 
7 https://github.com/cpsievert/LDAvis.  

https://github.com/cpsievert/LDAvis
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Figure 7. pyLDAvis output for a topic model of 60 topics of S2CS (Computer Science papers in 
Semantic Scholar). Topic 32 (NLP) has been selected. 

 

 

3.4.2. Topic curation tools 

We present in this subsection a set of tools designed to improve the quality of the final model. 

Manual labeling of topics 

Although the toolbox includes an automatic topic annotation tool, the functionality of such tool 

is far from perfect, and the user may wish to annotate one or several topics of the model 

according to their preferences. To this end, the user is provided with the possibility of providing 

a text-free label, or resorting to the description of the topic based on the concatenation of the 

most relevant terms for the topic in question. This decision can be made on a topic-by-topic 

basis, that is, the user could keep the automatic labels for a subset of the topics, and provide a 

manual label or keep the word list individually for each of the other topics in the model. 

Suggestion of similar topics 

As a previous step to merging the model's topics, the toolbox provides the option of exploring 

pairs of topics that can be merged because they are considered semantically close. To do this, 

two different criteria have been implemented: 

● First, the co-occurrence of topics in the corpus documents is analyzed, i.e., topics that 

activate the same documents are searched for. For this, each topic is represented as a 

vector with length equal to the number of documents, with the weights of each 

document for the topic in question, and the correlations between the vectors thus 
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constructed are analyzed. In this way, the topics with the highest correlations are 

proposed as possible candidates to be merged. 

● Secondly, we directly exploit the composition of the topics in terms of the words that 

characterize them. Therefore, we measure the distance between the rows of matrix 𝛃, 

and we select as candidates those topics that have a small distance between them. Since 

we are analyzing distances between vectors that represent probability distributions, the 

tool applies the Jensen-Shannon distance as the selected criterion. 

Figure 8 below shows the most similar pairs of topics for a particular topic model. The user of 

the TMT can then use or ignore these suggestions to decide which topics should be merged. For 

taking a more informed decision, the user can also combine suggestions provided using both 

criteria with location of topics in the pyLDAvis tool. 

Figure 8. Suggestion of most similar pairs of topics for a topic model of 60 topics of S2CS 
(Computer Science papers in Semantic Scholar). 

 

Topic model edition 

Finally, we include a series of procedures for modifying the very matrices that define the topic 

model: 
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● Fusion of topics. The user selects the topics that must be merged, and the tool carries 

out a series of actions to guarantee the probabilistic integrity of the model. In the first 

place, the vector representation of the new topic, obtained as a fusion of the selected 

ones, is obtained as a weighted average of the representation of the existing topics. 

Second, the weight that corresponds to each document for the new merged topic is 

obtained as the sum of the weights of the original topics. Finally, statistics such as 

entropy, number of documents in which the merged topic is active, description, etc, 

must be calculated from scratch. 

● Sorting out the topics of the model: it consists of a simple operation of reordering the 

topics according to size, that allows the largest topics to be placed first. This operation 

is of special interest after the merge of topics. 

● Topic deletion. The user provides a list of topics to remove, and the tool removes the 

corresponding rows from matrix 𝛃, and the corresponding columns from matrix 𝝷, 

followed by normalization of the rows in 𝝷. It should be mentioned that these 

operations can be useful to eliminate topics of little interest from the model, but they 

result in the loss of the internal coherence of the model, since the calculation of the 

representation of each document is carried out in a simplistic way, i.e., proportionally 

resizing the weights of all the topics, without taking into account that not all the topics 

will be equally related to the eliminated topic, and therefore the proportional 

reallocation of weights could not be correct. 

● Topic model reset. If the users find that the accumulation of included changes has led 

to an unwanted model, they can choose to discard all changes, and return to the original 

model obtained after the initial training. 

3.5. Evaluation of topic models 

In this subsection we will describe some of the metrics that have been incorporated to the TMT, 

under which the different topic model technologies can be compared. We focus just on metrics 

for topic model assessment with respect to the quality of the extracted topics, not the scalability 

of the implementations. 

● Log-likelihood. The log-likelihood score of a set of unseen documents measures how 

probable such data given a learned topic model is, that is, the model’s ability to replicate 

the statistics of the held-out documents. Therefore, the larger the log-likelihood score 

associated with a topic model is, the better the model is considered.  

One problem associated with this score is that for some models, such as LDA, it may be 

intractable to compute, thus making it necessary to approximate the probability, as 

shown by [22]. 

● Perplexity. It measures the ability of a trained topic model to predict previously unseen 

data (i.e., held-out documents). As the perplexity consists of a decreasing function of 

the likelihood of new documents, there is an inverse proportional relationship between 

the likelihood of the words appearing in new documents and the perplexity. Hence, a 
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“good” topic model should be characterized by a low perplexity score, as it would imply 

that it can form reliable predictions for words appearing in a new document. 

Note [23] showed that perplexity and the human judgment of topics generated by topic 

models do not correlate, meaning that, as the perplexity score improves, the human 

interpretability of the topics’ coherence can actually get worse. 

Perplexity’s weaknesses include the inability of capturing contextual information, i.e., 

the relationship between words in a topic or topics in a document.  

● Coherence. It measures how semantically cohesive the inferred topics of a topic model 

are. The conditioned probability between two terms (i.e., probability of a word to occur 

given the other) is used to calculate the coherence score, thereby giving a certain 

context to all the words conforming to a topic, as all topic's terms will be related to a 

certain degree. 

There exist multiple coherence measures which calculate the score under different 

assumptions. Among them, it is worth mentioning the ones included in Table 7, but for 

the sake of the evaluation of the TMT we will only utilize Umass and CNPMI. 

Table 7. Most relevant coherence metrics in the literature 

Coherence Paper presented 

CUCI [24] 

Umass [25] 

CNPMI [26] 

Cv [27] 

CWE (WETC)  [28], [12] 

 

While Umass is based on the co-occurrence of the words within the documents being 

modeled and does not rely upon any external reference corpus, CNPMI utilizes the 

normalized pointwise mutual information (NPMI) for the calculation of the coherence 

score and does rely on an external source. By using these metrics, we can evaluate both 

the capability of the topic models for correctly identifying words that frequently co-

occur in documents as a topic (i.e., the topics represent the corpus accurately) and the 

frequency of the words appearing together in alignment with a purported assessment 

of consistency in the hands of an expert.  

● Entropy. By definition, it is a measure of the average amount of uncertainty or 

information that is intrinsic to each random variable assignment. In particular, for this 

project, we will consider document entropy and topic entropy.  

If the topics belonging to a topic modeling outcome are evenly distributed across many 

documents, the model is considered to have a high document entropy; otherwise, the 

model has a low entropy when the topics are just concentrated in a few documents.  
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Similarly, if a topic is composed of most of the words present in the vocabulary, we are 

dealing with a high topic entropy, while a topic that comprises just a few words will have 

a low topic entropy.  

● Inverted Rank-Biased Overlap (Inverted RBO). Metric that evaluates the diversity of the 

topics generated by a single model. Exploited in [12], it is defined as the reciprocal of 

the standard RBO [29], [30]. RBO is based on a probabilistic model in which the overlaps 

between the top word of two topics is calculated, by allowing the topics to be composed 

of different words and utilizing weighted ranking (i.e., lists that share the same words 

but with different rankings are less penalized than two lists sharing the same words at 

the highest rank. This measure ranges between 0 and 1, where 0 is indicative of the 

topics under study being identical. 

 

4. SOFTWARE DOCUMENTATION 

In this section we document the TMT software itself. We will start by describing the architecture 

of the repository and the documentation associated with it. The dependencies of the software 

and the configuration file whose settings must be adjusted depending on the characteristics of 

the environment in which the topic modeling is going to be executed are also described. 

The execution of the software is based on “projects”, so that different projects can coexist with 

their own data, models, etc. Each project is associated with a directory whose organization is 

briefly described. We conclude the documentation about the software by describing the access 

to the functionality implemented by the different components that have been dockerized, as 

well as the Python front-ends developed on the services. 

4.1. Software architecture 

The software package can be downloaded from the IntelComp repository in GitHub8. It contains 

all software modules and its documentation. The documentation has been generated using 

Sphinx in ReadTheDocs format and is available under the /docs folder of the project. Figure 9 

shows a snapshot of the page describing one of the components of the project. 

The overall organization of the software is described below. Next to each folder we provide a 

brief description of its purpose, indicating relevant files or subfolders when necessary: 

 

 

 

 

 
8 https://github.com/IntelCompH2020/topicmodeler.  

https://github.com/IntelCompH2020/topicmodeler
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root 

├───config.cf.default: Template for projects configuration files 

├───ITMT_mainCMD.py: Main file to start the console-based UI 

├───ITMT_mainGUI.py: Main file to start the GUI 

├───requirements.txt: File with required library information 

│ 

├───aux: auxiliary python scripts and notebooks for lemmatization and 

│   │    HDFS management 

│   ├───fromHDFS: notebooks and pyspark script to import datasets from 

│   │             HDFS space at UC3M 

│   └───lemmatization: notebooks to carry out lemmatization of data sets 

├───config: Folder containing other configuration information 

├───docs: HTML, js and csv files for sphinx documentation 

│   └───html 

├───sphinx-settings: documentation configuration for HTML files in docs/ 

├───src: source code of the application 

│   ├───gui: Graphical User interface elements 

│   │   ├───resources 

│   │   │   └───images 

│   │   ├───uis 

│   │   └───utils 

│   ├───manageCorpus: provides functionality to manage training datasets 

│   ├───manageLists: provides functionality to manage wordlists 

│   ├───menu_navigator: class to manage the user navigation through a 

│   │                   multilevel options menu. 

│   ├───project_manager: functions needed to create, load and set up an 

│   │                    execution project. 

│   │                    Python Front-ends for the Topic Modeling Toolbox 

│   └───topicmodeling: provides several classes for Topic Modeling (string 

│       │              cleaning, training, edition, representation) 

│       ├───mallet-2.0.8: mallet LDA model training implementation 

│       └───neural_models 

│           ├───contextualized_topic_models 

│           │   ├───ctm_network 

│           │   ├───datasets 

│           │   └───utils 

│           ├───pytorchavitm 

│           │   ├───avitm_network 

│           │   ├───datasets 

│           │   └───utils 

│           └───utils: Contains an implementation of EarlyStopping used  

│                      by the neural models 

│    

└───wordlists: Folder containing lists of stopwords and equivalent terms 

               Some default lists are provided to facilitate user start up 

 

 



 

38 

 

IntelComp D3.5 Topic Modeling Service 

Figure 9. Snapshot of the software documentation 

 

The main components of the folder structure in the software repository are: 

● docs/: Documentation folder.  

● src/: The python software package. Contains all classes and methods. 

● Main scripts: two executable python scripts that can be used to test all software 

modules through a terminal/command window (ITMT_mainCMD.py) or through a 

PyQT6 GUI (ITMT_mainGUI.py). 

The classes and methods in folder src/ are structured in several modules: 

● Modules related to the topic modeling back-end services. These are the key components 

that implement the back-end services provided by the TMT, responsible for the creation 

of training corpus and training of topic models. These services have been dockerized 

and are the only ones that are needed by the IMT operation. The corresponding 

command line API for using the services provided by these components is described in 

Subsection 4.5. Here, we describe the general purpose of each component: 

○ manageCorpus/: Contains a series of utilities to 1) download data sets available 

as parquet files from an HDFS, 2) create training data sets from the downloaded 

datasets, and 3) standard operations for listing, removing, renaming, etc, the 

generated training datasets.  



 

39 

 

IntelComp D3.5 Topic Modeling Service 

○ manageLists/: Contains a series of utilities to work with lists of words 

representing stopwords, equivalent terms, keywords, or labels for the 

automatic topic labeling service. Provided methods allow creation, edition and 

removal of wordlists. 

○ topicmodeling/: This folder contains two different components: 

■ topicmodeling.py: implements 1) text preprocessing for generating the 

data sets in the format needed to train the topic models, and 2) the 

training of the topic models. 

■ manageModels.py: implements 1) general operations on topic models 

(e.g., listing of models, removing or renaming them), and 2) the service 

to represent, visualize, and curate topic models, independently of the 

algorithm that was used to train them. 

● Modules related to the Python front-ends: 

○ gui/: contains all classes and methods related to the GUI. 

○ menu_navigator/: Contains the class MenuNavigator, which reads and 

interprets the menu structure (defined in a configuration file) that will be used 

by the console-based UI. 

○ project_manager/: Contains the classes implementing the operations to create 

a new project and, most importantly, the logic of operations for both the 

console-based and graphical UIs. Some important classes for the operation of 

the UIs are: 

■ class ITMTTaskManager: Centralizes the use of the back-end services. 

The methods in this class compose the commands that need to be run 

to parse the input and output that is required by the services. 

■ class ITMTTaskManagerCMD: Derived from the previous, it manages 

user interaction in the console-based UI. I.e., for each method the class 

will retrieve the user required information, then call the corresponding 

method in the parent class to execute the operations required by the 

user, and finally parse the results that need to be provided back to the 

user. 

■ class ITMTTaskManagerGUI: Also derived from class ITMTTaskManager, 

it provides extra functionality to the task manager, to be used by the 

GUI. 

○ utils/: Contains some useful auxiliary methods used by the console-based UI, 

e.g., to request user information, confirmation of actions, etc. 
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4.2. Requirements 

The software has been developed mostly in Python, and so, several libraries are required to 

execute the code. They can be found in the requirements.txt file, and installed using the 

following command in a terminal: 

pip install -r requirements.txt 

Table 8. List of libraries used by the Topic Modeling Toolbox. For each required library we 
indicate the version that has been used for the current release and their licenses 

Library Version License 

PyQt6 6.3.0 GPL v3 

PyQt6-Qt6 6.3.0 LGPL v3 

PyQt6-WebEngine 6.3.0 GPL v3 

PyQt6-WebEngine-
Qt6 

6.3.0 LGPL v3 

PyQt6-sip 13.3.1 SIP 

Sphinx 5.0.2 BSD 

colored 1.4.2 MIT 

dask 2022.7.0 BSD 

fastparquet 0.8.1 Apache Software 

gensim 4.0.1 LGPL-2.1-only 

ipython 8.0.1 BSD 

ipywidgets 7.6.5 BSD 

langdetect 1.0.9 Apache Software 

matplotlib 3.5.1 Python Software Foundation 

nltk 3.7 Apache Software 

numpy 1.22.4 BSD 

pandas 1.4.1 BSD 

pyLDAvis 3.3.1 MIT 

pyarrow 8.0.0 Apache Software 

pyspark 3.3.0 Apache Software 

regex 2021.11.2 Apache Software 

scikit-learn 1.0.2 new BSD 

scikit-optimize 0.9.0 BSD 

seaborn 0.11.2 BSD 

sentence-
transformers 

2.2.2 Apache Software 

sphinx-rtd-theme 1.0.0 MIT 
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torch 1.10.2 BSD 

tqdm 4.62.3 MIT; MMPL 2.0 

For the development of the TMT and, in particular, for the inclusion of the neural topic modeling 

tools, we have recurred also to third-party implementations, making use of a number of Github 

repositories as listed below (both licensed under MIT license): 

● https://github.com/estebandito22/PyTorchAVITM  

● https://github.com/MilaNLProc/contextualized-topic-models 

4.3. Configuration file 

The root folder of the project must contain a file with the settings for the application to work 

correctly in each specific environment. Such configurations include paths to directories/files, 

model parameters, etc. Default settings are provided in file config.cf.default available in the 

Github repository. After creating a project folder, such file should be copied in the root folder of 

the project under the name config.cf, and configuration settings modified as needed. 

The configuration parameters are described next. Default values included in file config.cf.default 

are generic values that are known to work well in general situations, and are widely used in the 

scientific literature or open-source software libraries. 

Section logformat: specify format for the log outputs 

Parameter Description Default value 

filename Destination file for the logging 
messages 

msgs.log 

datefmt Timestamp format %%Y-%%d-%%m %%H:%%M:%%S 

file_format Format for the log messages written to 
file 

%%(asctime)s | %%(levelname)-8s | 
%%(message)s 

file_level MInimum level for the log messages 
written to file 

INFO 

cons_level Minimum level for the log messages 
shown in the console 

DEBUG 

cons_format Format for the log messages displayed 
in the console 

%%(levelname)-8s | %%(message)s 

Section Spark: 

Parameter Description Default value 

spark_available Whether spark is available True 

machines Number of machines to include in 
Spark cluster (this is dependent on how 

10 

https://github.com/estebandito22/PyTorchAVITM
https://github.com/MilaNLProc/contextualized-topic-models
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Spark tasks are submitted in UC3M 
infrastructure) 

cores Number of cores per Spark node (this 
is dependent on how Spark tasks are 
submitted in UC3M infrastructure) 

4 

script_spark Location of script to execute spark 
notebook 

/export/usuarios_ml4ds/jarenas/script-
spark/script-spark 

token_spark Token to execute spark /export/usuarios_ml4ds/jarenas/script-
spark/tokencluster.json 

Section Dask: 

Parameter Description Default value 

num_workers Number of workers to use in the Text 
Preprocessing for Topic Modeling when 
recurring to Dask. Should be less than 
the available number of cores. 

Use 0 to use Dask default value (i.e., 
number of available cores). 

0 

Section HDFS: These paths should be adjusted to each particular deployment 

Parameter Description Default value at UC3M 

Semantic Scholar  Parquet table for the Semantic Scholar 
dataset 

/export/ml4ds/IntelComp/Datalake/Semant
icScholar/20220201/papers.parquet 

PATSTAT  Parquet table for PATSTAT /export/ml4ds/IntelComp/Datalake/PATSTA
T/2022_Spring/patstat_appln.parquet 

CORDIS  Parquet table for the CORDIS dataset /export/ml4ds/IntelComp/Datalake/CORDIS
/20220221/new_parquet/projects.parquet 

Section Preproc: Text Preprocessing for preparing the datasets for Topic Modeling 

Parameter Description Default value 

min_lemas Minimum number of words to keep 
document in corpus 

15 

no_below Remove words with less than 
no_below occurrences 

10 

no_above Remove words appearing in more than 
a given percentage of documents 

0.6 

keep_n Maximum number of words in 
vocabulary 

500.000 

Section TM: Common settings parameters for all Topic Modeling algorithms 
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Parameter Description Default value 

ntopics Default setting for number of topics 25 

thetas_thr Threshold for topic activation in a doc 
(sparsification) 

3e-3 

Section MalletTM: Parameters for Mallet Topic Modeling 

Parameter Description Default value 

mallet_path Path to mallet binary ./mallet-2.0.8/bin/mallet 

token_regexp Regular expression for token 
identification 

[\p{L}\p{N}][\p{L}\p{N}\p{P}]*\p{L} 

alpha Sum over topics of smoothing over 
doc-topic distributions 

5 

optimize_interval Number of iterations between 
reestimating dirichlet hyperparameters 

10 

num_threads Number of threads for parallel training 4 

num_iterations Number of iterations of Gibbs sampling 1000 

doc_topic_thr Threshold for topic activation in a doc 
(mallet training) 

0 

num_iterations_inf Number of iterations 100 

Section SparkLDA: Parameters for SparkLDA 

Parameter Description Default value 

alpha Hyperparameter for the Dirichlet 
distribution responsible for generating 
the topic vectors of the documents. 

5 

maxIterations Maximum number of iterations for the 
optimization algorithm 

20 

optimizer The algorithm used for algorithm 
optimization, either ‘em’ or ‘online’ 

online 

optimizeDocConcen
tration 

Whether the doc-concentration 
parameter alpha will be optimized 
during the training of the algorithm 

True 

Section ProdLDA: Parameters for ProdLDA 

Parameter Description Default value 

n_components Number of topic components 10 
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model_type Type of the model that is going to be 
trained, 'prodLDA' or 'LDA' 

prodLDA 

hidden_sizes Size of the hidden layer (100,100) 

activation Activation function to be used, chosen 
from 'softplus', 'relu', 'sigmoid', 
'leakyrelu', 'rrelu', 'elu', 'selu' or 'tanh' 

softplus 

dropout Percent of neurons to drop out 0.2 

learn_priors If true, priors are made learnable 
parameters 

True 

lr Learning rate to be used for training 2e-3 

momentum Momentum to be used for training 0.99 

solver NN optimizer to be used, chosen from 
'adagrad', 'adam', 'sgd', 'adadelta' or 
'rmsprop' 

adam 

num_epochs Number of epochs to train for 100 

reduce_on_plateau If true, reduce learning rate by 10x on 
plateau of 10 epochs 

False 

batch_size Size of the batch to use for training 64 

topic_prior_mean Mean parameter of the prior 0.0 

topic_prior_varianc
e 

Variance parameter of the prior None 

num_samples Number of times the theta needs to be 
sampled 

10 

num_data_loader_
workers 

Number of subprocesses to use for 
data loading 

0 

Section CTM: Parameters for Contextualized Topic Models 

Parameter Description Default value 

num_topics Default setting for number of topics 10 

model_type Type of the model that is going to be 
trained, 'prodLDA' or 'LDA' 

prodLDA 

ctm_model_type 'CombinedTM', 'ZeroShotTM' CombinedTM 

hidden_sizes Size of the hidden layer (100,100) 

activation Activation function to be used, chosen 
from 'softplus', 'relu', 'sigmoid', 
'leakyrelu', 'rrelu', 'elu', 'selu' or 'tanh' 

softplus 

dropout Percent of neurons to drop out 0.2 
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learn_priors If true, priors are made learnable 
parameters 

True 

batch_size Size of the batch to use for training 64 

lr Learning rate to be used for training 2e-3 

momentum Momentum to be used for training 0.99 

solver NN optimizer to be used, chosen from 
'adagrad', 'adam', 'sgd', 'adadelta' or 
'rmsprop' 

adam 

num_epochs Number of epochs to train for 100 

num_samples Number of times the theta needs to be 
sampled 

10 

reduce_on_plateau If true, reduce learning rate by 10x on 
plateau of 10 epochs 

False 

topic_prior_mean Mean parameter of the prior 0.0 

topic_prior_varianc
e 

Variance parameter of the prior None 

num_data_loader_
workers 

Number of subprocesses to use for 
data loading 

0 

label_size Number of total labels 0 

loss_weights Dictionary with the name of the weight 
parameter (key) and the weight (value) 
for each loss 

None 

sbert_model_to_lo
ad 

Model to be used for calculating the 
embeddings. Available models can be 
checked here. 

paraphrase-distilroberta-base-v1 

Hierarchical: Parameters for the hierarchical topic models 

Parameter Description Default value 

expansion_tpc Topic in the 1-level model that is going 
to be expanded for the generation of 
the 2-level model’s training corpus. 

0 

htm_version Hierarchical topic model algorithm 
under which the 2-level model’s 
training corpus is going to be 
generated, ‘htm-ws’ or ‘htm-ds’. 

htm-ds 

thr The proportion of the expansion topic 
documents that a document must have 
to be kept in the 2-level model’s 
training corpus. Only used when the 
htm_version is ‘htm-ds’. 

0.2 

https://huggingface.co/models?library=sentence-transformers
https://huggingface.co/models?library=sentence-transformers
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4.4. Topic Modeling project description 

4.4.1. Input folders 

So as the system to work, three input folders must be provided, namely the project folder which 

serves the purpose of giving persistence to the TMT’s outputs, and a set of external folders that 

provide the TMT with the required inputs, in addition to storing reasons, as it will be below 

explained. 

Project folder structure 

The project folder (hereafter referred to as project_folder) consists of the folder in which all the 

results related to the application’s execution are saved. It must be provided at starting time by 

specifying an existing location, or a location in which it is desired to locate it, and is indispensable 

for the application’s functioning at the current development state. In case it does not exist, the 

application creates it at the specified location, along with the file and folder structure required 

to store the output files. This folder hosts the following items: 

● datasets/: It will store a json file for each (logical) training dataset created by the user 

during the application execution. Each json file will contain all the information that is 

necessary for the creation of the corpus at the training phase. 

● TMmodels/: It contains all the topic models created by the user. A subfolder will be 

created for each trained topic model. Within these (sub)folders, we can distinguish 

several common elements between all topic modeling algorithms, namely: 

○ trainconfig.json: A json file containing all the information necessary for the 

training of the model, as described in Subsection 4.4.2. 

○ vocabulary.txt: Text document with the training corpus vocabulary. 

○ TMmodel/: It stores all the required files for the curation of the topic model. 

In case the vocabulary is created with the CountVectorizer Spark object, only the 

vocabulary.txt file described above will be created; otherwise, when the parallelization 

is carried via Dask and thus the vocabulary construction is done using Gensim 

dictionaries, an additional file dictionary.gensim will be created; this file contains the 

Gensim dictionary of the corpus with which the model was trained. 

For those cases where deployment to a Spark cluster is not available, we have 

implemented a version of the pipeline based on Dask dataframes9, which is a 

transformation-based preprocessing pipeline enabling parallelization of the operations, 

thus, catering for better use of computational resources and more efficient memory 

management. This implementation allows us to take advantage of the available 

resources when the container is deployed on a virtual machine. However, the 

vocabulary construction is done using Gensim dictionaries, which requires sequential 

 
9 https://www.dask.org/. The concept of a Dataframe in Dask is similar to Pandas, but Dask allows 
dataframe partitioning. 

https://www.dask.org/
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processing of the documents, thus, this procedure being considerably slower than the 

corresponding implementation in Spark. 

 Additionally, the following folders are noteworthy: 

● modelFiles/: It stores all the files generated during the training of the model 

itself. Except for the ‘thetasDist.pdf’ (file containing a figure in which the effect 

of thresholding in the thetas distribution is illustrated), the content of this 

directory varies depending on the algorithm used for the training of the model. 

In case Mallet was used, it stores, in addition, all the output files generated by 

Mallet; if a neural model is used, this folder only contains one extra file, namely, 

the corpus used for training of the model saved in text format10. 

● either a file named corpus.txt or a folder named corpus.parquet, depending on 

which topic modeling algorithm is used for training (corpus.txt for Mallet, 

corpus.parquet for the neural models and SparkLDA). 

Note that in case a level-2 model is generated for any of the level-1 models, a new folder 

containing the same information as described above will be created within the level-1 

model’s folder. For example, if we had a theoretically level-1 model (Mallet-25) trained 

with Mallet, from which a level-2 model (Sub-Mallet-25-WS-topic4-10) has been 

generated, also using Mallet, its folder structure would be the following: 

 

Mallet-25 

├───trainconfig.json  

├───dictionary.gensim 

├───vocabulary.txt 

├───TMmodel/ 

├───modelFiles/ 

├───corpus.txt 

└───Sub-Mallet-25-WS-topic4-10 

    ├───trainconfig.json: 

    ├───dictionary.gensim 

    ├───vocabulary.txt 

    ├───TMmodel/ 

    ├───modelFiles/ 

    └───corpus.txt 

 

Apart from the previous folders and files, related to training datasets and topic models, a series 

of other files need to be included in the project folder for configuration purposes: 

● config.cf: the local configuration file of the project, that can be modified by the user 

manually or through the GUI. 

 
10 Note here that for the neural models we make a distinction between training and validation corpus. 
Here we are only saving in a text file the corpus used for training, as it is the one utilized for the extraction 
of the actual topic modeling results and the generation of the 2-level submodels’ corpus. 



 

48 

 

IntelComp D3.5 Topic Modeling Service 

● config.cf.default: the configuration file of the project with the default values. It cannot 

be modified by the user, so it is only used for being able to restore the changes made in 

the config.cf to their initial state. 

● metadata.yaml: a file with metadata that stores the status of the project. 

● msgs.log: log file of the latest code execution with this project. 

External folder’s structure 

As external folders, i.e., folders that need to be provided as input to the application for it to 

work, we consider two, one containing the local data sets that are assumed to have been 

downloaded from the data catalog (parquet_folder), and a second one for storing the set of 

wordlists customized by the user (wordlists_folder).  

The parquet_folder must be characterized by the following structure: 

● <dataset>.parquet, where <dataset> is the name of a local dataset. The parquet_folder 

must contain as many <dataset>.parquet folders as datasets have been downloaded, 

and each of the folders will be composed of a set of parquet partitions with the data. 

● datasetMeta.json: Json file containing the information about each of the downloaded 

datasets, so it must contain one entry per <dataset>.parquet available within the 

parquet_folder,  as described in Subsection 4.4.2 

The wordlists_folder serves a dual purpose. On the one hand, it functions as input to the IMT 

application, in the sense that it provides the lists created by the user outside the application. On 

the other hand, it is used to store the wordlists generated during the application execution. It 

will be composed of one json file per available wordlist. The wordlists must be located under 

this folder and follow the format described in Subsection 4.4.2.  

4.4.2. Description of entities 

Within the TMT, we work mainly with four entities, namely local datasets, (logical) training 

datasets, wordlists, and topic models, each of them managed by the modules related to the 

topic modeling back-end services above mentioned (i.e., manageCorpus for the local datasets 

and the training corpora; manageLists for the wordlists; and topicmodeling, for the topic 

models). Below we offer a more detailed description of these entities. 

● Local dataset. It represents a dataset that has been downloaded from the data catalog. 

It is provided to the application through one of the external folders parquet_folder (see 

Subsection 4.4.1 for details) and all the information related to it must be enclosed within 

a json file named datasetMeta.json, which must contain a set of required fields (Table 

9) for each local dataset, as exemplified below. As it can be seen, datasetMeta.json 

contains a dictionary of dictionaries, where each key indicates the path where each local 

dataset is available (relative to parquet_folder). Note that all the information related to 
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the local datasets must be provided within one unique json file (datasetMeta.json), but 

not one per dataset11. 

{ 

 "CORDIS.parquet": { 

   "name": "CORDIS.parquet", 

   "description": "All FP7 and H2020 projects in CORDIS", 

   "visibility": "Public", 

   "download_date": "2022-06-12 00:15:15.843834", 

   "records": 61163, 

   "source": "CORDIS", 

   "schema": [ 

     "id", 

     "title", 

     "objective", 

     "startDate", 

     "ecMaxContribution", 

     "euroSciVocCode", 

     "rawtext", 

     "lemmas" 

     ] 

   } 

} 

 

Table 9. Fields of the TMT entity “Local dataset” 

Field Description 

name Name of the local dataset 

description Description of the local dataset 

visibility 
Visibility level of the local datasets, i.e., ‘public’ (everyone 
has access to it) or ‘private’ (only the user that created the 
dataset has access to it) 

download_date The date at which the local dataset was downloaded 

source  
Name of the directory within the parquet_folder in which 
the dataset is contained. 

schema 
Columnar information saved for each element in the 
dataset in the parquet files 

 

 
11 The final format of the downloaded datasets and the json file associated with them must in any case be 
agreed during the integration of the TMT and the IMT with other IntelComp components, in particular 
with the data mediators that provide access to the available data sets. 
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● (Logical) training dataset. It represents a subset of one or several local datasets that can 

be used for training. At the time being, the TMT only supports the creation of training 

datasets for topic modeling, the functionality so all types of training datasets which must 

be supported by the ITM can be generated. All the information related to it is stored in 

a json file entitled with the same name the entity has. It must have a set of fields, as 

described in Table 10. Below, we show an example of this json file for a topic modeling 

training dataset. 

{ 

 "name": "Cordis", 

 "description": "Cordis training dataset for TM", 

 "valid_for": "TM", 

 "visibility": "private", 

 "Dtsets": [ 

   { 

     "parquet":"/Users/Documents/Intelcomp/fromHDFS/CORDIS.parquet", 

     "source": "CORDIS", 

     "idfld": "id", 

     "lemmasfld": [ 

       "rawtext" 

     ], 

     "filter": "" 

   } 

 ], 

 "creation_date": "2022-07-12 15:15:24.070089" 

} 

Table 10. Fields of the TMT entity “Training dataset” 

Field Description 

name Name of the training dataset 

description Description of the training dataset 

valid_for Purpose of the training dataset, e.g. ‘TM’ (topic modeling) 

visibility 
Visibility level of the training dataset, i.e., ‘public’ 
(everyone has access to it) or ‘private’ (only the user that 
created the dataset has access to it) 

Dtsets  

A list describing the group of local data sets utilized for 
the generation of the training dataset. The dictionary 
describing each of the local datasets must have the 
following fields: 

- parquet: Path to the local dataset 
- source: Name of the local dataset 
- lemmasfld: Field(s) of the local dataset used for 

the lemmas 
- filter: It can be provided by advanced users to 

filter the local dataset under some conditions. 
(currently not functional) 
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creation_date Date at which the training dataset was created. 

 

● Wordlists. It defines a list of words that can be of multiple types, namely: stopwords, 

equivalent terms, keywords, or labels for the automatic topic labeling service. It can be 

created outside of or through the TMT (by means of one of the external folders 

wordlists_folder). In both cases, it must be saved in a json file following a fixed schema, 

as described in Table 11. Below, an example of a wordlist is provided12: 

{ 

 "name": "english_generic", 

 "description": "List of English stopwords", 

 "valid_for": "stopwords", 

 "visibility": "Public", 

 "wordlist": [ 

   "a", 

   "able", 

   "about", 

   "above", 

   "according", 

   "accordingly", 

   "across", 

   "actually", 

   ], 

 "creation_date": "2022-06-08 21:03:46.983949" 

} 

 

Table 11. Fields of the TMT entity “Wordlist” 

Field Description 

name Name of the wordlist 

description Description of the wordlist 

valid_for 
Type of list, which must be one of ‘stopwords’, 
‘equivalences’, ‘keywords’ or ‘atl’ 

visibility 
Visibility level of the wordlist, i.e., ‘public’ (everyone has 
access to it) or ‘private’ (only the user that created the 
wordlist has access to it) 

wordlist  The actual content of the wordlist 

creation_date The date at which the wordlist was created 

 

 
12 For convenience, a small portion of the actual wordlist is shown.  
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● Topic Model. It represents a trained topic model. Again, all its information is saved in a 

json file named trainconfig.json, which is stored within the folder created for the training 

of the topic model in the project folder. The json file must contain the fields described 

in Table 12. Below, an example of a level-1 model trained with Mallet is given. 

{ 

 "name": "Mallet-25", 

 "description": "Mallet-25", 

 "visibility": "Private", 

 "trainer": "mallet", 

 "TestSet": "/Users/Intelcomp/project_folder/datasets/Cordis.json", 

 "Preproc": { 

   "min_lemas": 15, 

   "no_below": 10, 

   "no_above": 0.6, 

   "keep_n": 500000, 

   "stopwords": [], 

   "equivalences": [] 

 }, 

 "TMparam": { 

   "mallet_path": "/Users/topicmodeler/mallet-2.0.8/bin/mallet", 

   "ntopics": 25, 

   "alpha": 5.0, 

   "optimize_interval": 10, 

   "num_threads": 4, 

   "num_iterations": 1000, 

   "doc_topic_thr": 0.0, 

   "thetas_thr": 0.003, 

   "token_regexp": "[\\p{L}\\p{N}][\\p{L}\\p{N}\\p{P}]*\\p{L}" 

 }, 

 "creation_date": "2022-07-20 10:48:11.125048", 

 "hierarchy-level": 0, 

 "htm-version": null 

} 
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Table 12. Fields of the TMT entity “Topic Model” 

Field Description 

name Name of the topic model 

description Description of the topic model 

visibility 
Visibility level of the topic model, i.e. ‘public’ (everyone 
has access to it) or ‘private’ (only the user that created the 
topic model has access to it) 

trainer Topic modeling algorithm used for training the topic 
model (‘mallet’, ‘sparkLDA’, ‘prodLDA’ or ‘ctm’). 

TrDtSet  Path to the json file describing the training dataset 

Preproc Dictionary describing the preprocessing settings used 

TMparam 
Dictionary describing the training parameters, whose 
fields are dependent on the topic modeling algorithm used 
for training 

creation_date The date at which the model was created 

hierarchy-level 
0 or 1 describing whether the model is a level-1 or level-2 
topic model 

htm-version 
Only different from null when the model is a level-2l topic 
model, it specifies the HTM algorithm used for the 
generation of the model’s training corpus 

 

4.5. Command line API for Backend services support 

In this section, the commands required to execute the back-end application services are defined. 

The application is divided into subsections that manage a certain part of the entire application 

and will be dockerized (i.e., one or more docker images will be created with the applications 

components) and executed separately. The source code for these components is provided in the 

following folders of the project: 

● src/manageCorpus 

● src/manageLists 

● src/topicmodeling (two components) 

Following WP5 indications, interaction with the back-end services will be based on the execution 

of independent commands on these dockers, i.e., each interaction will run a different command 

and context between commands will be lost. For this reason, project information will be shared 

in a common folder that will be mapped to each docker after initialization. Since context 

information will not be available, all necessary status information needs to be saved to these 

folders, using the kinds of entities and folder structure described in Subsection 4.4. 

Another relevant issue is that of information exchange between the calling process and the back-

end service. The preferred method for this will be through parameters provided in the command 

function. When this is not practical due to the complexity of the information that needs to be 
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exchanged, a JSON file will be exchanged using STDIN and/or STDOUT. In particular cases, it 

could also be considered to use temporary files written to a standard location. Currently the 

toolbox does not use such an approach for any of the services, but future updates will 

accommodate the needs for integration of the toolbox with other IntelComp tools. 

Before moving forward to the description of the specific functionalities that are provided by the 

TMT components, we provide a general specification about how components will expose their 

functionality to other IntelComp components. 

This definition depends on the inner organization of the application. It is probably best to 
use an entrypoint when creating the dockerfile so that the user selects only the specific 
arguments. 

E.g.: 

dockerfile: entrypoint [“python”, “main.py”] 

command: docker run image arg1 arg2 

command effectively executed in app: python main.py arg1 arg2 

Also, we need to add the necessary volumes. 

Base: 

docker run <--rm> -i <--name container_name> <-v 

/path/tp/local:/path/to/container> image_name <args> 

● <container_name> 

Unique name for the container, can be a combination of username, date, etc. 

● image_name 

Image name generated in build 

● <args> 

List of arguments for each service 

 

Flags: 

● --rm 

Remove the container when execution ends. (optional) 

● -i 

Set interactive mode. It is required to use standard input 

● --name 

A name for the container. (optional) 

● -v 

Volume binding. It maps a local directory to a directory inside the container so that local 

files can be accessed from it. The format is: 

/absolute/path/to/local/dir:/absolute/path/to/container/dir 
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4.5.1. Corpus Management services (src/ManageCorpus) 

Used to manage all corpus services. 

image_name: mng-corpus 

● List downloaded corpus: returns all available Datasets in HDFS. 

--listDownloaded: List datasets downloaded from HDFS with metadata. 

 

● List logical corpus: returns all available logical Datasets for training. 

--listTrDtsets: List Training Datasets 

 

● Add corpus: creates a new logical Dataset from a json description. 

--saveTrDtset: Create and save Training Dataset 

Currently, a new word list is created using the standard input, thus adding all elements 
manually in the terminal. In future updates, a file can be passed as an argument where 
all the required information is previously stored. 
 

● Remove corpus: deletes a logical Dataset 
--deleteTrDtset <corpusname>: Delete a Training Dataset 

 

● Rename corpus 

--rename <corpusname> <new_name>: Rename a Training Dataset. 

 

● Copy corpus 

--copyCorpus <corpusname>: Make a copy of a corpus with the name corpusname-copy. 

 

Examples: 

Execute help. Help is the default option when executing the container, as specified in dockerfile 

docker run --rm -i --name cnt-ja-mc -v 

/Users/josea/datasets/logical:/data/logical mng-corpus 

List of downloaded corpus 

docker run --rm -i --name cnt-ja-mc -v 

/Users/josea/datasets/logical:/data/logical mng-corpus --

listDownloaded 

List of logical corpus 

docker run --rm -i --name cnt-ja-mc -v 

/Users/josea/datasets/logical:/data/logical mng-corpus --

listTrDtsets 

Create a new logical corpus 
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docker run --rm -i --name cnt-ja-mc -v 

/Users/josea/datasets/logical:/data/logical mng-corpus --

saveTrDtset 

Delete logical corpus 

docker run --rm -i --name cnt-ja-mc -v 

/Users/josea/datasets/logical:/data/logical mng-corpus --

deleteTrDtset test 

Rename logical corpus 

docker run --rm -i --name cnt-ja-mc -v 

/Users/josea/datasets/logical:/data/logical mng-corpus --

renameTrDtset test test_renamed 

Copy logical corpus 

docker run --rm -i --name cnt-ja-mc -v 

/Users/josea/datasets/logical:/data/logical mng-corpus --

copyTrDtset test 

4.5.2. List Management services (src/ManageLists) 

Used to manage all list management services. 

image-name: mng-lsts 
● List wordlists 

--listWordLists: List available WordLists 
  

● Add wordlist 
--createWordList: Save wordlist 
Currently, a new word list is created using the standard input, thus adding all elements 
manually in the terminal. 
  

● Remove wordlist 
--deleteWordList <wordlistname>: Delete wordlistname element. 
 

● Rename wordlist 
--renameWordList <wordlistname> <new_name>: Change old wordlistname to 
new_name. 
 

● Copy wordlist 
--copyWordList <wordlistname>: Make a copy of the element with name wordlistname-
copy. 
  

Examples: 

Execute help. Help is the default option when executing the container, as specified in dockerfile 
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docker run --rm -i --name cnt-ja-ml -v 

/Users/joseantem/Documents/projects/dock-

TM/ManageLists/wordlists:/data/wordlists mng-lsts 

List of wordlists 

docker run --rm -i --name cnt-ja-ml -v 

/Users/joseantem/Documents/projects/dock-

TM/ManageLists/wordlists:/data/wordlists mng-lsts --

listWordLists 

Create a new word list 

docker run --rm -i --name cnt-ja-ml -v 

/Users/joseantem/Documents/projects/dock-

TM/ManageLists/wordlists:/data/wordlists mng-lsts --

createWordList 

Delete wordlist 

docker run --rm -i --name cnt-ja-ml -v 

/Users/joseantem/Documents/projects/dock-

TM/ManageLists/wordlists:/data/wordlists mng-lsts --

deleteWordList test 

Copy wordlist 

docker run --rm -i --name cnt-ja-ml -v 

/Users/joseantem/Documents/github/topicmodeler/wordlists:/data/w

ordlists mng-lsts --copyWordList test 

4.5.3. Topic Modeling services (src/topicmodeling) 

Used to manage all topic modeling services. Contain two ‘managers’ 

topicmodeling: 
Manages the preprocessing, generation and training of a topic model. 

image-name: tmt-mdls 

● Create model 
--spark: whether spark is available. 
--preproc: whether to preprocess training data. 
--train <configfile>: train topic model according to configuration file. 
--hierarchical <configfilechild>: create submodel according to ‘child’ configuration file 
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Examples: 

Create a new model 

docker run --rm -i --name cnt-ja-tm -v 

/Users/joseantem/Documents/models:/models tmt-mdls --preproc --

train /models/mallet-30t-ai/config.json 

manageModels: 
Topic model manager, similarly to corpus and wordlists managers, allows the removal, 

renaming, copying, etc. of topic models. 

image-name: mng-mdls 

● List models 
--listTMmodels: List available models 

 
● Remove model 

--deleteTMmodel <modelname>: Delete modelname element. 
 

● Rename model 
--renameTM <modelname> <new_name>: Change old modelname to new_name. 
 

● Copy model 
--copyTM <modelname>: Make a copy of the element with name modelname-copy. 
 

● Show model topics 
--showTopics <modelname>: retrieve topic labels and word composition for selected 
model. 
 

● Set topic labels 
--setTpcLabels <modelname>: set topic labels for selected model. 
 

● Remove topics 
--deleteTopics <modelname>: removes topics from selected model. 
 

● Sort topics 
--sortTopics <modelname>: sort topics according to size. 
 

● Reset model 
--resetTM <modelname>: reset model to its initial state. 

 

Examples: 

Execute help. Help is the default option when executing the container, as specified in dockerfile 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls 
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List of models 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --

listTMmodels 

Create a new model. 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --createModel 

Delete model 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --

deleteTMmodel test 

Rename model 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --renameTM 

test 

Copy model 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --copyTM test 

Show model topics 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --showTopics 

test 

Set topic labels 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --

setTpcLabels test 

Remove topics 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --

deleteTopics test 

Sort topics 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --sortTopics 

test 
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Reset model 

docker run --rm -i --name cnt-ja-mm -v 

/Users/joseantem/Documents/models:/models mng-mdls --resetTM 

test 

4.5.4. Deployment flow 

An example of the actual development of the aforementioned services is described below, in 

particular the generation of a topic model as the wordlist management is straightforward and 

the corpus management follows a similar schema. 

1. Generate docker services 

In some cases, such as wordlist management, only a container is required to run at the 

same time, as the operations are not time-consuming. On the other hand, the creation 

of models may take hours or days to complete, thus dedicated containers will be 

created. 

2. Create a model 

The first step will always be generating a configuration file that contains all the desired 

model parameters. This is an example of a standard config.json file to create a mallet 

topic model: 

 

The entire folder structure of the model will be constructed taking this file as base. 

3. Model training 

For the training, a corpus must be selected and optionally preprocessed and the training 

process will automatically begin with the create model command from topicmodeling. 

The training process includes: 

a. Creation of an adjusted model usable for inference. 

b. Coherence measures. 

c. Automatic labeling of the topics. 

d. Other model files such as alphas, betas, thetas or vocabulary. 
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In this case there is no final output, just the files created. 

4. Tuning 

In case it is necessary, the model can be tuned following any of the other command 

options. 

The final structure of the model directory will result in something similar to this: 

 

4.6. TMT Front Ends 

As already mentioned, the toolbox provides two user interfaces, one based on interaction with 

the user through a terminal, and the second based on a GUI. These tools will be useful both to 

IntelComp operators (during the period where the IMT is not available for use), as well as to the 

IMT front-end developers. 

In this subsection we describe the operation of both UIs. The functionalities of both UIs are 

equivalent except for the availability of an additional functionality in the terminal-based UI to 

copy data from the local HDFS infrastructure at UC3M to folder parquet_folder; this 

functionality was only necessary for development purposes, as it will be replaced by IntelComp 

data mediators during integration in the IMT. Apart from this, the only difference between the 

terminal-based and graphical UIs is how the information is presented to and input is taken from 

the user. 
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4.6.1. Execution commands 

In order for the user to start any version of the application, the following command needs to be 

executed: 

python main_script --p project_folder --parquet parquet_folder  

—-wdlist wordlists_folder 

where: 

- main_script refers to the script that relates to the version of the application to be 

executed. Use 

- ITMT_mainCMD.py for the command line user interface,  

- ITMT_mainGUI.py, for the graphical user interface. 

- project_folder is the path to a new or an existing project in which the application’s 

output will be saved. 

- parquet_folder is the path to the downloaded parquet datasets. 

- wordlists_folder is the path to the folder in which the wordlists are saved. 

Note that for the case of the graphical user interface, the application can also be invoked without 

parameters, being possible to select them from the application front page as follows: 

python ITMT_mainGUI.py 

If the application is invoked with parameters, the project folder, parquet folder and wordlists 

folder paths are written on their respective text boxes (i.e., white spaces located at the right of 

each selection button), as shown in Figure 10, being possible to change the selection by clicking 

on their respective associated button.  

Figure 10. Graphical user interface; The welcome page 
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Given that the application is invoked without parameters, the text boxes are shown empty.  In 

each of the three options, the user’s file system is popped-up so that she/he can easily search 

for the project/parquet/wordlists folders. Alternatively, if it is not the first time that the 

graphical user interface is initiated, the user can select the project/parquet/wordlists folder 

from the “Recent” folders shown in the bottom of the application. 

For the case of the command-line application, its main menu is shown immediately after the 

invocation of the execution command. As for the graphical user interface, once the input folders 

have been selected, the menu buttons are unlocked, and the user can proceed with any of the 

GUI’s functionalities. 

4.6.2. Command line user interface 

This user interface is based on a menu, as shown in Figure 11. The user can navigate through the 

application by writing the number associated with each functionality. When the application 

needs input from the user, she/he will be requested to do so. 

Figure 11. Command line user interface main menu 

 

As the user interacts with the application, new options will be shown. A configuration file is 

available in /config/ITMTmenu.yaml, defining the logic of operation of the console-based 

interface. 

4.6.3. Graphical user interface 

The graphical user interface is composed of four main subwindows, each of them relating to one 

of the distinct functionalities the application has, in addition to one more subwindow for the 

welcome page. The latter can be accessed by their corresponding buttons on the left menu. 

Below we describe thoroughly each functionality/subwindow. 

Corpus Management subwindow 

As shown in Figure 12 and Figure 14, two different views are available: one visualizing and 

operating the available local datasets (obtained from the parquet folder), and a second one for 

the same functions but for the training datasets. 
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Figure 12. Available local datasets view 

 

From the first view, we can create a new training dataset by selecting the checkboxes of the 

downloaded datasets that we want to use for generating the training dataset and clicking the 

“Generate train dataset button”. This action leads to a new window (Figure 13), from which the 

user can select the characteristics of each of the selected datasets that are going to be used for 

the training dataset generation; these include, for each selected dataset: 1) the fields to be used 

for the raw text; 2) the fields to be used for the lemmas; 3) additional filter conditions that can 

be specified from the “Advanced filter options” tab. Additionally, the id to be used as an 

identifier, the privacy level, name and description of the new training dataset must be specified. 

Once all the fields have been filled out, the user can click the “Create training dataset” button, 

which leads to the creation of the new training dataset. 

Figure 13. Training dataset generation window 
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Figure 14. Available training datasets view 

 

Regarding the second view of the corpus management subwindow, it allows the user to visualize 

the available training datasets, as well as delete any of them. Additionally, this view leads to the 

topic modeling training functionalities: by clicking on the dataset that is desired to be trained on 

(i.e., the “Train dataset” button), the user is redirected to a sequence of two new windows 

(Figure 15 and Figure 16) that allows the preprocessing and training of the selected dataset. 

Preprocessing and topic modeling training windows 

From the preprocessing window (Figure 15) the user can select the settings that are going to be 

used for the preprocessing of the selected training dataset, namely the minimum number of 

lemmas that a document must have to be kept in the final training corpus (min_lemmas);  the 

maximum and the minimum number of occurrences (no_above and n_below) according to 

which the words are removed (words with too high frequencies, infrequent words or very rare); 

and the maximum number of words to be kept in the vocabulary (keep_n). Additionally, by 

navigating to Stopwords and Equivalences tabs, the user can select one or more lists of 

stopwords and equivalences to be used to filter the corpus. 

Once the preprocessing parameters have been specified by the user, the training window (Figure 

16) immediately pops up. From this window, the user can select which topic modeling technique 

(LDA-Mallet, Spark-LDA, AVITM, or CTM) is going to be used for the training of the previously 

selected training corpus (buttons located at the top of the window). The parameters shown in 

the middle, left panel in the ‘Settings’ and ‘Advanced Settings’ will be updated according to the 

selected algorithm, and will be initialized with the default values. The user can update these 

values, but at the time the “Train” button is clicked, parameter checking will be carried out to 

ensure that the selected values meet the requirements necessary for each parameter. In case 

any of the parameters do not have a correct value, the symbol  will be shown next to it; 

otherwise, the symbol will appear. 
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Additionally, the middle, right panel displays the logs of the training of the models and the 

bottom options allow the user to specify the name and description of the to-be-trained topic 

model, as well as its visibility level (public or private). 

Figure 15. Topic modeling preprocessing window 

 

Figure 16. Topic modeling training window 

 

 

Wordlists management subwindow 

Wordlists functionalities are held in the subwindow shown in Figure 17. Apart from the wordlist 

visualization, the user can edit or delete an existing wordlist, or create a new one, by either 

selecting the to be modified/deleted wordlist and the corresponding button, or by directly 

selecting the “Create new wordlist” button.  

In both cases, creating or editing a wordlist, a new window is opened. The new wordlist creation 

subwindows (Figure 18(a)) facilitate the user in the determination of 1) the wordlist type; 2) its 

privacy level; 3) its name; 4) the wordlist content. The window for editing an existing wordlist 

(Figure 18(b)) is equivalent to the one just presented, with the only difference being that 1), 2) 
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and 3) are not editable, and the current content of the under edition wordlist is shown and can 

be modified as desired. 

Figure 17. Wordlists management subwindow 

 

Figure 18. Wordlists creation (left) / edition (right) subwindows 

 
(a)                                                                  (b) 

 

Models’ management subwindow 

All model-related functionalities are accessible from the Models management subwindow, as 

shown in Figure 19.  

At the top, we can see a list in which all the topic models trained for the project in use are listed; 

note that if 2-level topic models have been generated, they will be gradually listed. By clicking 

on one of these models, the middle table shows the information related to the model selected 

(i.e., name, description, visibility, trainer, training dataset, hierarchical level, and type and 

creation date) as well as the information related to each of its topics (id, size, label, number of 

active documents and description) shown in the table at the bottom of the page.  
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Figure 19. Model management subwindow 

 

 

In the middle of the view, we can distinguish a row of 4 buttons that allow the user to create a 

copy of, rename or delete a topic model. Additionally, the button “Curate model” allows the 

user to access a new window view with the curation tools (see Subsection 3.4.2 for a detailed 

description of all available curation tools), as shown in Figure 20. On the top of this view, we can 

visualize the same topics’ information of the selected model for curation, as  presented above; 

though, in this case, the table serves  two additional purposes: 1) the user can manually modify 

the content of each row (topic) of the column “Label” and subsequently click the button “Label 

Topics” to manually label the topics; 2) the user can select as many topics by clicking on the 

checkboxes located at the first column on the table and subsequently click on one of the buttons 

“Fuse topics” or “Delete topics” to fuse and/or delete topics, respectively. Additionally, topics 

can be sorted by clicking on “Sort topics”; the PyLDAvis graph can be visualized by clicking on 

the PyLDAvis button; the model can be reset to its default value before curation by clicking on 

the “Reset model” button. 

Lastly, clicking on one of the topics related to the selected model and the button at the bottom 

with the name “Train submodel ” will lead to the opening of the training window Figure 16), but 

with two additional parameters to select: 1) the hierarchical topic model version that is going to 

be used for the creation of the 2-level topic model’s training corpus (‘htm-ds’ or ‘htm-ws’), and 

2) if ‘htm-ds’ is selected as HTM version, a value for the parameter “threshold” must be provided 

as well. Once these two parameters have been selected, the training of the submodels proceeds 

in the same way the training of a 1-level model does, being again possible for the user to select 

the topic modeling algorithm for training and configure its parameters; in this case, though, no 

preprocessing is carried out. 
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Figure 20. Curation subwindow 

 

Settings subwindow 

From this view (Figure 21), the user can manage all the configuration settings implied in the TMT 

tool, logging, and Spark settings, as well as those directly related to the preprocessing pipeline 

and the topic modeling algorithms. Fundamentally, it allows the user to modify the parameters 

given in the configuration file, as specified in Subsection 4.3. 

Figure 21. Settings subwindow 

 

 

5. PERFORMANCE EVALUATION 

In this section, we report on a series of experiments regarding the evaluation of the performance 

of the different techniques implemented in the TMT toolbox, in order to understand their 
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properties in terms of scalability and quality of the topics obtained, thus providing information 

that can guide the selection of one or another tool for different situations and data sets. 

In Section 5.1, we evaluate the TMT data preprocessing workflow and the alternative 

options/configurations offered by the TMT toolbox. To this end, a set of experiments were 

conducted with the focus on scalability. In the next section, we evaluate topic models by 

employing two well-known coherence measures as proxies to the quality of the topics provided 

by the different TMT models.    

5.1. Data Preprocessing 

The TMT toolbox offers two possibilities to parallelize the preparation of the training dataset by 

exploiting two different distributed frameworks: the use of the Dask framework on a powerful 

machine (physical or virtual) or parallelization over a Spark cluster. Given the differences of the 

two solutions at the infrastructure level, it is not possible to make a direct comparison between 

them, so their properties in terms of scalability will be analyzed independently. Nevertheless, 

the required computation time and the characteristics of the infrastructure on which the 

experiments have been carried out will allow drawing some conclusions regarding the 

preference for one or another solution. 

5.1.1. Parallelization by employing the Dask framework 

To begin with, we have carried out the analysis of the execution times for the preprocessing of 

a small training dataset. This dataset consists of the summaries of the projects available on 

CORDIS (FP7 and H2020) that represent a total of 60,596 documents.  

Data preprocessing in the TMT implementation with Dask consists of the following steps: 

T1. Text homogenization, elimination of specific stopwords, and application of word 

replacements (i.e., equivalences), 

T2. Creation of a dictionary and filtering of terms of little or excessive use, 

T3. Export of the training dataset 

The first and third steps have been parallelized with Dask, while the second step was carried out 

in a single thread with Gensim. 

To analyze the scalability of the provided implementation, experiments have been carried out 

selecting a variable number of workers.  This first set of experiments was run on a server with 

40 Intel Xeon cores @ 2.4 GHz, each with two threads, and a total RAM of 128 GB. 

Figure 22 shows the time consumed for the homogenization and cleaning phase (left) and for 

the export of the data set to the format required by Mallet (right). For reference, the time 

required for Gensim dictionary generation in this specific case was just around 8 seconds. Our 

analysis shows that parallelization with Dask allows the processing time to be reduced 

approximately proportionally to the number of workers employed, although when using more 

than 16 or 32 workers the improvement flattens, and the times are saturated, even becoming 

slightly higher when using Dask default setting (i.e., number of available nodes, 40 in this case) 
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which is depicted with a blue horizontal line. Therefore, in this case it seems advisable to adjust 

the number of workers to approximately half the available cores in order to optimize 

performance vs. resource consumption. 

Figure 22. Cleaning and export times for the CORDIS dataset using Dask with a variable 
number of workers 

 

Scalability analysis for varying data set size 

To evaluate the scalability of preprocessing with Dask at a larger scale, we have carried out 

processing time measurements working on a second training dataset consisting of all articles in 

the field of "Computer Science" present in the January 2022 edition of the Semantic Scholar 

dataset (hereinafter the S2CS dataset). This dataset is made up of a total of 14,801,878 

documents; to evaluate the scalability we have also used random samples of the S2CS dataset 

keeping 30%, 10%, 3% and 1% of its documents. 

The machine used in these simulations has 48 Intel(R) Xeon(R) Silver cores at 2.4 GHz, with two 

execution threads per core, and 128 GB of RAM available on the server. 

Figure 23 shows the computational resources required (number of CPUs used, RAM memory 

and virtual memory) when processing the S2CS dataset with a 10% sampling, while using 4, 8, 

16 and 32 workers for parallelization with Dask. In this case, we show resource consumption as 

a function of time. Our analysis can be summarized in the following points: 

- All figures show a similar pattern consisting of the concatenation of tasks T1, T2, T3. 

Gensim dictionary generation (T2) is defined by the interval where CPU usage is reduced 

to one, whereas T1 and T3 occur before and after this phase and are characterized by 

using as many CPUs as made available for the simulation. 

- The homogenization and cleaning phase (T1), as well as the export of the processed 

dataset (T3), reduce their duration inversely proportional to the number of cores used. 

- Gensim dictionary generation uses a single server core in any case, and its duration is 

practically independent of the number of workers employed. Its relative duration is 

obviously greater when the number of workers employed grows, due to the shorter 

duration of the other phases that benefit from parallelization. 
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- RAM memory consumption is practically not affected by the number of workers used, 

although the virtual memory used does grow with the number of workers. 

Figure 23. Memory and CPU usage for preprocessing and corpus preparation tasks using 
Dask with a variable number of workers. Dataset S2CS sampled at 10% (1,480,804 

documents) 

 

Figure 24 shows the same information when processing the entire S2CS dataset. The conclusions 

are similar to those already raised, observing the following main differences: 

- Although memory consumption again remains relatively independent of the number of 

workers employed, it is approximately 10 times greater than that observed in Figure 23, 

because the processed dataset size has also grown in that proportion. 
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- Gensim dictionary generation phase seems to have a longer relative duration. This 

suggests that the duration of this second step grows more than linearly as the size of 

the dataset increases. In order to better appreciate this, Figure 25 shows the dictionary 

generation time by varying the size of the dataset. We can see how when going from 

10% to 30%, and from 30% to 100%, the vocabulary generation time grows by a factor 

greater than 3 (note the logarithmic scale of the x-axis). The results in the figure also 

confirm our previous statement that the dictionary generation time is practically 

independent of the number of workers employed. 

Figure 24. Memory and CPU usage for preprocessing and corpus preparation tasks using 
Dask with a variable number of workers. Dataset S2CS (14,801,878 documents) 
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Figure 25. Time for generating the Gensim dictionary for the S2CS dataset as a function of 
the number of documents (varying sampling rate) 

 

We conclude this subsection showing in Figure 26 the total time required for preparing the 

training datasets when using the Dask implementation. For the largest dataset up to around 

16,000 seconds are needed, which can be reduced to roughly 6,000 seconds if using at least 16 

workers. Approximately 65% of this time is consumed by the Gensim dictionary generation 

process, this being therefore the most demanding process, thus, the stumbling block in terms of 

efficiency, when processing large datasets. 

All things considered, the Dask implementation allows for very important processing time 

savings for small and moderate size datasets (up to 3-5 million documents), but for larger size 

datasets the computation time savings are not that significant in relative terms since in this case 

the Gensim dictionary generation process becomes the most decisive limiting factor. 

Figure 26. Total time for the S2CS dataset preprocessing (left) and total time just for the 
parallelized tasks as a function of the number of documents (varying sampling rate) 
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5.1.2. Parallelization by employing the Spark Framework 

The second implementation available for data preprocessing involves three phases equivalent 

to those used in the case of Dask: 

T1. Text homogenization, elimination of specific stopwords, and application of word 

replacements (equivalences), 

T2. Creation of a Spark CountVectorizer object that allows TMT users/operators to select 

the words in the dictionary and obtain the vector representation of the documents, 

T3. Export of the training dataset. 

In this case, the three steps can benefit from the parallelization offered by having several 

processing cores, although the second of the steps listed involves the exchange of information 

between the nodes of the cluster, which in principle could even slow down the processing. 

The exhaustive measurement of computational resources is not possible in the infrastructure 

available at UC3M, so only the total execution times have been measured. Even in this case, 

there may be non-negligible differences between executions, since the typology of cluster nodes 

may vary between them. Still, the results are clear enough to draw some useful conclusions 

regarding the efficiency of this implementation. 

Figure 27 shows the execution times when processing the S2CS dataset using different sampling 

factors (full dataset, 30% and 10%), and using a variable number of cores in each of the 10 

execution nodes. The results show: 

- Shorter execution times are required for preprocessing as compared to Dask 

implementation, e.g., when using 4 cores per node (40 cores in total) the processing 

time was around 2,000 s (a reduction greater than 70% with respect to Dask) 

- This implementation scales sublinearly: increasing the size of the training dataset by a 

factor of 10 implies an increase in processing time of less than that factor. This is 

probably due to a more efficient implementation of the dictionary computation task, 

although a greater benefit of the dataframe parallelization process should also be 

considered as the size of the training set increases. 
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Figure 27. Total time for S2CS dataset preprocessing using the Spark based implementation 
running over a Spark cluster with 10 nodes, using a varying number of cores per node 

 

5.2. Topic Modeling 

The objective of this section is to provide a measure of the performance of the different topic 

modeling techniques included in the TMT in terms of their training time and the quality of the 

topics obtained. The simulations that have been carried out constitute only a first approximation 

to the analysis of the available techniques and are subject to the following limitations. 

- Regarding the quality of the models, the measure of coherence of their topics has been 

employed. In general, there is controversy about the usefulness of the coherence 

measures available in the literature, and there are even studies that show a negative 

correlation between some of these measures and the interpretability evaluated by 

human experts. For this reason, our experiments use two different coherence measures: 

c_nmpi and u_mass. 

- Regarding the scalability of the topic modeling implementations, the different 

techniques available in the TMT require different architectures, so we have run our 

simulations on a server that has a graphic card for the training of the models based on 

prodLDA and CTM13. Still, the training time required by mallet and neural techniques are 

not comparable. Lastly, the server does not have access to the Spark cluster, so it was 

not possible to include spark LDA in the comparisons. 

- Note also that in this case, limitations of the memory of the GPU card available on the 

server impose a limit on the size of the training set, so we had to work with 1% of the 

documents available in the S2CS data set. More exhaustive experiments will be carried 

out after the TMT and IMT are deployed at the BSC infrastructure. 

Despite these limitations, the experiments carried out allow us to draw a first series of 

conclusions, which will have to be subsequently validated by the users, both in terms of the 

 
13 Intel(R) Xeon(R) Gold 5122 16 CPUs @ 3.60GHz 32GB and GPU Quadro P4000 8GB 
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quality of the topics obtained from the different techniques, and in terms of the usability of the 

tools derived from the training time they require (i.e., acceptability of the training time). 

We start evaluating the results in terms of c_nmpi, a coherence metric that relies on external 

sources. Figure 28 shows c_npmi coherence vs model training time for all simulated models 

using a diversity of training parameters, whereas Figure 29 includes just a subset of those models 

that have been selected according to their relevance to make a comparison. In all cases, the 

number of iterations allows for a good convergence of the algorithms. 

Both figures show clear clusters in terms of performance and coherence, that can be each of 

them assigned to a different model type. Some conclusions can be extracted from an analysis of 

these results: 

- With respect to variability of the models, we can see that, in spite of the non-

deterministic nature of all topic modeling algorithms, the variability of the different runs 

is smaller within one model type than when compared to other models, which is why 

we were able to define the three clusters. 

- In terms of coherence, Mallet is the algorithm showing the least dispersion followed by 

CTM and prodLDA. For the latter, more topics and more iterations seem to result in 

better coherence. 

- With respect to training time, Mallet is more competitive than the neural models, and 

from the latter, ProdLDA is faster compared to CTM, mainly due to the addition of the 

time consuming construction process of the contextualized representations in CTM. It is 

noteworthy that this behavior in the neural models was to be expected when the 

training is carried out on a corpus with a large vocabulary size, as the S2CS dataset: at 

the end, both ProdLDA and CTM are not more than a neural model that reconstructs the 

input BoW; hence, the bigger the vocabulary, the more parameters we get, thereby the 

training becoming more difficult and prone to overfitting. The latter is especially 

emphasized with CombinedCTM, as the BoW reconstruction is added to the projection 

of the contextualized embeddings to the vocabulary space. In fact, the most competitive 

neural model w.r.t. coherence and topics’ meaningfulness, that is the CTM model, 

requires over half an hour to train on this reasonably small dataset. Since training times 

scale linearly with the number of samples for these modes, this would imply over 50 

hours of training time for the whole S2CS (for a fixed vocabulary size). In general, as we 

have already mentioned, more realistic simulations need to be carried out in the HPC 

infrastructure available at BSC. Note also that, in case Mallet remains competitive in 

terms of coherence, this is also a parallel implementation that can be sped up when 

running with more threads (up to 8 threads were used in the simulation). 

- A major difference of neural implementations with respect to Mallet implementation is 

that (for a fixed infrastructure) both implementations scale roughly linearly with the 

number of training documents, but varying the number of topics has a close to linear 

impact on mallet training time whereas the training time of neural implementations are 

barely affected. On the other hand, the number of parameters of the neural networks 

increase with the vocabulary size, implying also considerable increments on training 
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time. This implies that filtering the most relevant words in the dictionary is critical for 

these implementations. 

Figure 28. Topic model comparison in terms of c_nmpi coherence for a variety of training 
parameters for Mallet, ProdLDA, and CTM implementations 

 

Figure 30 and Figure 31 display the same models mentioned previously, but showing model 

quality in terms of average u_mass coherence, a coherence measure that is based  on the 

training set for calculation. The same cluster distributions can be observed, so most of the 

conclusions already described remain valid. 

However, an important difference is that u_mass coherences have an opposite interpretation: 

the lower the u_mass values, the better the topics. This implies that according to this metric 

Mallet would show the worst results of all methods. This fact, together with the already 

discussed controversy about the use of coherence metrics for topic model evaluation, reinforces 

the need to carry out subjective experiments within the IntelComp project to assess the quality 

of the topic models obtained from all these techniques. In any case, note that all techniques will 

be available for use in the IMT, so in the end it will be up to the Intelcomp user/operator to 

explore the quality of the topics for each specific use case and training data set. 
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Figure 29. Topic model comparison in terms of c_nmpi coherence for a variety of training 
parameters for Mallet, ProdLDA, and CTM implementations. A selection of the most relevant 

models for comparison is included (with the legend showing the settings for each 
experiment) 
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Figure 30. Topic model comparison in terms of u_mass coherence for a variety of training 
parameters for Mallet, ProdLDA, and CTM implementations 

 

 

It is not clear which solution offers better performance given the incompatibilities of the results 

of the two coherence measures. However, this is not a surprising finding in the context of topic 

modeling, as it is known that different coherence metrics can lead to contradictory results, and 

that in some cases coherence values can even show a bad correlation with human 

interpretability [23], [27]. For these reasons, human evaluation in the context of IntelComp will 

be a very valuable resource to assess the quality of topic models.  
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Figure 31. Topic model comparison in terms of u_mass coherence for a variety of training 
parameters for Mallet, ProdLDA, and CTM implementations. A selection of the most relevant 
models for comparison is included, with a legend showing the settings for each experiment 
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6. CONCLUSIONS AND FUTURE WORK 

Topic modeling is a core technique of the IntelComp project to enrich the information from the 

different sources of information to be analyzed, and to be able to automatically identify the 

predominant themes in each data set and/or comparing them between different data sets. To 

do this, the objective of Task 3.5 consisted of generating a series of tools that allow the 

construction of topic models and their adjustment following a user-in-the-loop approach. 

This document describes the functionality of the toolbox developed within Task 3.5 of 

IntelComp: the Topic Modeling Toolbox (TMT): 

- Description of the document preprocessing processes for the generation of training 

datasets. For greater efficiency, preprocessing can be parallelized using a Spark cluster 

or a powerful multicore machine using the Python Dask library. Both implementations 

have been compared in terms of efficiency, arriving at the conclusion that Spark 

implementation can lead to shorter processing times, if running on a large cluster. For 

moderate-sized datasets, Dask implementation running on a Multicore server with 20-

40 CPUs presents also acceptable running times. 

- Description of the topic modeling techniques included in the TMT: Mallet, SparkLDA, 

prodLDA, CTM, and two-level hierarchical models based on any of the above. The 

working principles of these implementations have been presented and compared in 

terms of training times and coherence. However, these results are somewhat limited 

and need to be further validated in the project with respect to 1) actual running times 

in the IntelComp production environment, and 2) quality of the topic models (calculated 

average coherences are not conclusive in this respect). 

- Description of a battery of tools for the visualization, evaluation and curation of models 

by experts: e.g., selection of new stopwords, fusion or fission of topics, elimination of 

noisy topics, etc. For this, an abstraction of topic models has been defined that allows 

working in a unified way with the models obtained with any of the available training 

techniques. The usability of these tools needs to be assessed by the final users in the 

context of the living labs. Further developments to adjust them, or to create new ones, 

are expected to take place during the next 3-6 months and will be addressed using an 

agile approach as indicated in the IntelComp methodology guidelines. 

In addition to this, the TMT software has been documented providing the necessary information 

for integration with other IntelComp components: 

- All services have been encapsulated in dockers to facilitate their use by other IntelComp 

components. Instructions for the use of these dockers have been included with some 

examples to facilitate the use of TMT as part of the IMT backend service. 

- Two front-ends have been developed for the use of the tool in a 100% python 

environment. One of these UIs is based on interaction with the user through the 

command line, while the second consists of a graphical interface based on PyQt6. These 

UIs serve as demonstration tools to define the workflows that need to be integrated in 
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the IMT, and illustrate the API commands that need to be executed to obtain specific 

services. 

Although there are still some aspects of efficiency improvement in the development of the TMT 

itself (current open issues in the Github project), the implementation of the TMT can be 

considered essentially complete. In the future, the main activity will be its deployment within 

the BSC infrastructure and integration with other IntelComp tools. In this sense, the integration 

with the IMT is already advanced, having benefited from the design of the TMT that decouples 

the services from the user UI. 

On the other hand, it is to be expected that the use of the tools developed by the end users will 

allow the identification of needs for change and improvement that imply changes in the 

developed SW and/or the inclusion of new functionalities. As already mentioned, an agile 

methodology will be used for this, according to the methodology defined by IntelComp, carrying 

out sprints of 2-3 week duration aligned with the work of the Living Labs (IntelComp's WP6). 

Changes in the TMT will be continuously published in the corresponding open Github project. 

From the point of view of the IMT, improvement of services will be transparent to the tool; 

however, if new functionalities and/or workflows are requested, these will in general affect both 

the back-end services and front-end visualization; consequently, there will be a need to address 

these requests by both the TMT and IMT development teams. 
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