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Brachytherapy is an effective treatment in the curative
management of prostate and gynaecological cancers.
With advances in technology, brachytherapy has
increased in complexity in recent years. Human error,
equipment malfunction, patient organ motion and radi-
oactive source displacement can result in substantial
deviation of delivered dose from planned dose. To limit
adverse clinical outcomes, adequate steps to improve
the robustness of pathway processes, ensure the
implementation of appropriate treatment margins and
confirm the delivered dose must be considered. /n vivo
dosimetry is one such method of dose validation which,
if implemented appropriately within clinical practice, is

INTRODUCTION

The use of ionising radiation for radiotherapy is an effec-
tive cancer treatment strategy which induces cancer cell
death through direct and indirect DNA damage.' In
brachytherapy, radioactive sources such as strontium-90
(*°Sr), iridium-192 (*’Ir) and iodine-125 (*°I) which
emit radiation in the form of B particles (*’Sr)? or y rays
(**1r, '%1)? are directly inserted within or in close prox-
imity to the radiotherapy target. These are permanently
inserted in the case of low dose rate (LDR) brachytherapy
sources (e.g. '*°I) which emit radiation at <2 Gy per hour
or inserted for a short period of time in the case of high
dose rate (HDR) brachytherapy sources (e.g. 19211) which
emit radiation at >12 Gy per hour.*”

Brachytherapy is a common method of treatment for prostate
and gynaecological malignancies and has several advantages
over external beam radiotherapy (EBRT). These include the
ability to deliver a much higher dose of radiation directly to the
cancer.* Internal source placement with brachytherapy is asso-
ciated with rapid radiation dose fall-off as a result of the inverse
square law. This advantageous dose distribution improves the
therapeutic ratio resulting in the capability of delivering higher
radiation doses to the tumour and/or reduced dose to adjacent

an attractive technique for reducing dosimetric uncer-
tainties and identifying potential errors. This review aims
to describe the dosimetric uncertainties and potential
errors associated with brachytherapy, the potential for
in vivo dosimetry in adaptive brachytherapy as a key
method of dose validation, and the clinical considera-
tions and future directions of in vivo dosimetry.
Advances in knowledge This paper describes the poten-
tial role for in vivo dosimetry in the reduction of uncer-
tainties in pelvic brachytherapy, the pertinent factors
for consideration in clinical practice, and the future
potential for /in vivo dosimetry in the personalisation of
brachytherapy.

organs at risk (OARs) compared with EBRT, thereby increasing
the probability of cure and/or reducing the likelihood of adverse
treatment effects while maintaining high tumour control rates.®
Brachytherapy is also associated with a far shorter time commit-
ment and fewer visits required on the part of the patient.*

The high dose of radiation delivered by brachytherapy can
result in adverse clinical outcomes if any deviation from the
prescribed radiotherapy plan occurs. Deviations can occur due
to uncertainties in dose delivery following movement of OARs
or radioactive source positioning and displacement, or as a
result of human or equipment error. Inn vivo dosimetry has the
potential to identify some of these deviations and thereby allow
for their rectification.

This review aims to summarise the need for and current status
of in vivo dosimetry for clinical brachytherapy, describe consid-
erations for integration of in vivo dosimetry within routine clin-
ical practice and propose future developments.

THE NEED FOR /N VIVO DOSIMETRY IN
BRACHYTHERAPY

The brachytherapy pathway involves multiple steps, each
of which could potentially be associated with dosimetric




BJR

uncertainty and also the potential for human or equipment error.
These steps include the insertion of applicators, imaging, target
delineation, applicator reconstruction, radiotherapy planning
and delivery” As a high dose per fraction is delivered with HDR
brachytherapy compared to EBRT, and LDR brachytherapy is usually
limited to a single procedure, the potential for deviation of treatment
dose from planned dose is much greater and so errors and uncertain-
ties should be minimised where possible.”

The American Association of Physicists In Medicine (AAPM) classify
absolute dose deviations of 10-20% and positioning differences of >5
mm between planned and actual treatments as being ‘very wrong’
and highly likely to result in a serious adverse clinical outcome.®
Deviations classified as ‘wrong’ include dose deviations of 5-10%, in
addition to positional deviations of 3-5 mm.® This includes relatively
small discrepancies between the measured and delivered dose in each
step in the brachytherapy treatment pathway which can cumulatively
amount to clinically significant adverse events.’

Dosimetric errors

Human and equipment error

Several aspects of the planning and delivery pathway which have
the potential for human error can be mitigated by in vivo dosim-
etry. These include errors in patient setup, applicator or needle
catheter placement, guide tube connections, applicator and seed
reconstruction, image fusion and calculation of appropriate
source time in each position, based on the residual radioactivity
of the source.” Administrative mistakes can also result in clin-
ically significant errors, e.g. in Philadelphia when an incident
occurred in 2008 in which a patient received '*I seeds of incor-
rect strength (0.38 mCi instead of 0.509 mCi) due to an error in
the ordering process.” This resulted in the insertion of radioac-
tive seeds giving 25% less than the intended radiation dose.

The potential for equipment errors exists due to the complexity
of brachytherapy. For example, a serious incident occurred in
Indiana in 1992 when the radioactive '**Ir source detached from
the guide wire and remained undetected in a patient receiving
treatment for anal carcinoma for 5 days resulting in a substan-
tial radiation overdose and subsequent death as a direct result
of radiation exposure. More than 90 other individuals were also
exposed to the radioactive source as a result of this equipment
failure.'® Other potential errors include defects in source loading
time and positions within the HDR afterloader of up to 2.0% for
multiple interstitial needle applicators due to either software or
motor malfunctions.'>'

Dosimetric uncertainties

Imaging uncertainties

The quality of imaging modalities in brachytherapy can also
contribute to uncertainties in brachytherapy planning. Kim
et al'® found that random displacements of HDR prostate
brachytherapy catheters by one CT slice thickness resulted in
average dose errors of 0.7, 1 and 1.7% for slice thickness values
of 2, 3 and 5 mm respectively. The partial volume effect, in which
more than one tissue type occurs in a voxel, can result in the
blurring of tissue boundaries.'* Uncertainties associated with
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pixel resolution can also impact fusion, contouring and dose
reconstruction.'

Internal organ motion

For HDR gynaecological brachytherapy, there is a delay between
applicator insertion, CT and/or MRI imaging, and insertion of
the radioactive source during which OAR motion may occur.'®
For LDR prostate brachytherapy, while radioactive seeds are
inserted under real-time ultrasound guidance, the position of
the target and OARs may change following insertion, and may
have already changed in position since planning in the case of
preplanning.’

Several studies have evaluated the movement of OARs during
gynaecological brachytherapy and the resulting dosimetric
impact (Table 1). Variability in findings exists, however, the
majority of studies report increases in dose to the bladder and
rectum as a result of OAR movement between planning and
treatment delivery. Anderson et al** compared planning and
pre-treatment MRIs in HDR cervical brachytherapy and found
>10% deviation in the minimum dose received by the most irra-
diated 2 cc (D2cc) of the bladder in 38.9% of fractions, rectum
D2cc in 58.3% of fractions and bowel D2cc in 52.8% of fractions.
Mazeron et al.,"”” Yan et al'” and Rey et al*® found significant
increases in rectal dose due to OAR movement between treat-
ment planning and delivery, Nomden et al*! reported significant
increases in rectal dose among outliers in their study and Lang et
al*® found non-significant changes in rectal dose with the rectum
dose constraint met in all cases.

In a study of 31 patients treated with pulsed dose rate (PDR)
prostate brachytherapy, Dinkla et al*® found the distance between
the prostate and the rectum as measured on CT decreased from
an average of 7.1 to 5.9 mm after 24 h and to 5.3 mm after 48 h.
This resulted in an increase in the rectum D2cc from planned
dose of an average of 14.8% after 24 h, and 17.3% after 48 h.
Similarly, due to OAR movement, the bladder D2cc increased
by an average of 25.4% after 24 h and 24.8% after 48 h and the
urethra D0.1cc decreased by an average of 2% after 24 h and 3.2%
after 48 h. Milickovic et al*’ evaluated urethral and rectal move-
ment in HDR brachytherapy. The greatest movement occurred
between the planning ultrasound and post-treatment ultrasound
with mean movements of 1.1+1.3 mm for the urethral base and
0.4+0.4 mm for the rectum.

Radlioactive source displacement

Studies of observed radioactive source displacement in a clin-
ical context in gynaecological and prostate brachytherapy are
summarised in Tables 1 and 2 respectively. The dosimetric impact
resulting from positional displacement of radioactive sources
(e.g. '¥*Ir) can be quantified in respect of deviations in the D90
of the high risk clinical target volume (HRCTYV) in gynaecolog-
ical brachytherapy. Variable impact is reported in studies, with
minimal dosimetric impact in the study by Nomden et al,*!
an intrafraction mean decrease of 2.5£10.8% in the study by
Nesvacil et al,** and a statistically significant mean decrease of
4.1% on the second day of brachytherapy and 5.7% on the third
day compared with the original plan in the study by Rey et al.>
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In vivo dosimetry in pelvic brachytherapy

The majority of catheter displacements during prostate
brachytherapy tend to occur in a caudal direction relative to the
prostate gland. In a study of 20 patients receiving HDR prostate
brachytherapy, Simnor et al*® found more than 70% of catheter
needles had moved >5 mm in the caudal direction by the second
fraction and more than 35% had moved >5 mm by the third frac-
tion, with more than 20% of catheters in total moving 212 mm.
Without correction, these displacements would have resulted in
a mean 28% decrease in the D90 to the planning target volume
(PTV) in the second fraction, and a mean 32% decrease in
D90 PTV in the third fraction. Holly et al’® found an average
displacement of 11 mm to result in >20% decrease in V100 and

38% decrease in prostate D90 with a corresponding increase in
the mean minimum dose delivered to the most irradiated 10% of
the urethra (D10%) from 118 to 125%. In a study of pre-planned
LDR prostate brachytherapy, Beaulieu et al** found only 13 of 35
studied cases had relatively constant volumes with <5% variation
with significant changes up to 30% and a resulting mean dosim-
etric impact on prostate V100 of -5.7%, up to -20.9%.

Several studies have systematically manually displaced the position of
radioactive sources in brachytherapy plans to determine the threshold
of movement for significant dosimetric impact and are summarised
in Table 3. Hoskin et al* report a 5% decrease in prostate D90 and

Table 3. Summary of identified studies of manual source displacement in pelvic brachytherapy

Number of Brachytherapy

Year Authors (citation) | patients type

Location of
displacements

Pertinent dosimetric
results

Magnitude of
displacements

2019 Poder et al.*® 20 HDR prostate

three catheters displaced:

CC: +1-6 mm
Transverse: +1-6 mm

Positioning errors most
sensitive in CC direction.

1. 3 most heavily weighted
2. 3 closest to urethra &
rectum in direction of OAR

AP: £1-6 mm

Positioning errors more
sensitive in cranial vs caudal &
lateral vs medial directions.

5% change in prostate D90 &
V100 with errors of =~ 3 mm.

% failing prostate V100 goal

by >5% increases when error >2
mm.

% plans failing prostate V100
goal with 3 mm shift per
direction:

«  Cranial: 75%; Caudal: 50%
o  Posterior: 0%; Anterior: 5%
«  Medial: 35%; Lateral: 10%
Urethra D1cc: >50% fail with 2
mm error in medial, anterior &
posterior directions.

Rectum D2cc:>50% fail with 5
mm error in posterior direction.

2011 Kolkman-Deurloo et al.*”

HDR prostate

1. All catheters displaced as a
single unit

2. Central, most ventral or
most dorsal catheter rows

displaced

1. Caudal: 3,5,7, 10 mm
2. Caudal: 5 mm

Prostate V100: 91.4% (3 mm),
87.2% (5 mm), 82.6% (7 mm),
75.3% (10 mm).

Rectum V80 exceeded
tolerance in 80% of cases for all
displacements.

Urethra V120 increased by a
factor ranging from negligible
to 26.

2010 Tiong et al.¥”

20

HDR prostate

All catheters displaced as a
single unit

Caudal: 3,6, 9, 12 mm

Median TCP: 0.998 (3 mm),
0.964 (6 mm), 0.797 (9 mm),
0.265 (12 mm).

Only 75% of 6 mm
displacement plans had

TCP >95%.

2008 Tanderup et al.*8

20:

« 10 ring &
tandem
intracavitary

o 10 interstitial &
intracavitary

HDR cervix

Entire applicator displaced

Intracavitary:

« CC:+3 mm,*5 mm

o Transverse:+3 mm

e AP:+3mm

«  Rotation:+15° (4 mm)
Interstitial & intracavitary:
¢ CC:+3 mm,+5mm

Intracavitary:

«  HRCTV D90: mean change
of = 2% / mm for lateral &
CC directions, ~ 1.5% / mm
in AP direction.

«  Bladder & rectum D2cc:
mean change of 5% / mm
in AP direction.

o Bladder & rectum DO0.1cc:
mean change of 6% / mm
in AP direction.

» Rotation  had
impact.

Interstitial & intracavitary:

o Sigmoid  DO0.lcc  CC
displacement 2.9% / mm (
vs 1.9% / mm intracavitary).

limited

AP, anteroposterior; CC, craniocaudal; Dlcc, the minimum dose received by the most irradiated 1 cc of the volume; DO.1cc, the minimum dose received by the most irradiated
0.1 cc of the volume; D2cc, the minimum dose received by the most irradiated 2 cc of the volume; D90, dose delivered to a minimum of 90% of the volume; HDR, high dose
rate; HRCTYV, high risk clinical target volume; TCP, tumour control probability; V80, volume receiving 80% of prescription dose; V100, volume receiving 100% of prescription

dose; V120, volume receiving 120% of prescription dose

9 of 15  birpublications.org/bjr

Br J Radiol;95:20220046




BJR

V100 to be associated with a 10% increase in biochemical failure in
prostate brachytherapy. Poder et al*® found the proportion of plans
which demonstrated at least a 5% reduction in target coverage param-
eters increased with displacements >2 mm. The study found that the
target minimum V100 was not met in 75% of plans following a 3 mm
shift in the cranial direction, in 50% of plans following a 3 mm shift
in the caudal direction, and in 35% of plans following a 3 mm shift in
the medial direction. In a study of HDR cervical brachytherapy plans,
Tanderup et al®® found the HRCTV dose-volume histogram (DVH)
shifted by a mean of approximately 2% per mm shift in the lateral and
longitudinal directions, and by approximately 1.5% per mm shift in
the anterior and posterior directions. The D2cc of the bladder and
rectum changed by approximately 5% per mm shift in the anterior
and posterior directions and the DO0.1cc of the same OARs changed
by approximately 6% per mm shift in the same directions.

It is clearly important that the potential movement of all radioac-
tive sources and OARs during brachytherapy is considered given
the potential clinical impact geometric and dosimetric uncertain-
ties can have.” Displacements as small as 3 mm have been shown to
have significant outcomes on brachytherapy dosimetry and target
coverage in studies.

CURRENT STATUS OF /N VIVO DOSIMETRY IN
BRACHYTHERAPY

In vivo dosimetry consists of real-time monitoring of radioactive
source placement and dose during the delivery of radiotherapy.
This involves the placement of radiation detectors in the vicinity of
radioactive sources within the body, which relay the measured dose
to the clinical staff and hence allows for comparison of calculated
radiotherapy dose with actual dose delivered.'’ In vivo doseme-
ters, therefore, allow for independent verification of brachytherapy
delivery, comparison of institutional practice and quality assurance
of radiotherapy treatment provision resulting in safer, more accu-
rate clinical practice.®® This is of particular importance with the
delivery of high brachytherapy doses, e.g. the delivery of a boost to
the dominant intraprostatic lesion seen on MRI, which has been
explored in recent studies.’"*? With increasing dose, the potential
for adverse effects also increases and so precise accurate dose assess-
ment s vital.>*

The inclusion of in vivo dosimetry in clinical practice has been hesi-
tant, due to a lack of affordable, efficient, commercially available
dosemeters. The requirements for precision, stability and dose-
meter positioning certainty are additional challenges that limit the
routine adoption of in vivo dosimetry in clinical practice.”> Most
studies to date focus on pre-clinical models demonstrating proof of
concept,”* ™ although some clinical studies have been performed
in pelvic brachytherapy. Dosemeters in the form of metal-oxide-
semiconductor field-effect transistors (MOSFET), optical fibres
and semiconductors have been tested clinically, all within HDR
brachytherapy settings, with dosemeters inserted in the rectum,
urinary catheter or within the brachytherapy target. While several
are commercially available,”” > they are not routinely used in
brachytherapy clinical practice.!*® Limitations include angular and
energy dependence of semiconductor diodes, energy dependence
and limited lifespan of MOSFETs and Cerenkov light production in
optical fibre dosemeters.”

Houlihan et a/

Belley et al® evaluated the feasibility and effectiveness of a
nanoscintillator-based fibre-optic dosemeter (nanoFOD) compared
to thermoluminescent dosemeters (TLD) in vaginal cylinder HDR
brachytherapy. The dosemeter was adhered to the cylinder at a fixed
distance, to which two TLDs were also attached to provide reference
measurements. Real-time data were available for 27 fractions among
9 participants. The fibre-optic dosemeter readings were comparable
to TLD measurements and 63% of measurements with the fibre-
optic dosemeter were within 5% of the treatment planning system
(TPS) (compared with 70% of TLD measurements), 26% were within
5-10% (22% of TLD measurements) and 11% were within 10-20%
(7% of TLD measurements), with a median ratio of nanoFOD/TPS
dose of 1.00 (IQR 0.94-1.02). The use of TLD as a reference standard
demonstrated feasibility of the nanoFOD within a clinical setting.

In a study of a radioluminescent crystal dosemeter placed within
a dedicated brachytherapy catheter during HDR brachytherapy
Johansen et al®® found measured compared with planned doses to
differ by a mean of -4.7% (range -17 to +12%) with mean shifts of
brachytherapy needles of 0.2£1.1 mm (radial) and 0.3+2.0 mm
(longitudinal). Limitations of the study included the measurement of
displacements relative to the radioluminescent crystal rather than to
patient anatomy and the use of only one dosemeter. Integration of
in vivo dosemeters with imaging systems and the use of an array of
dosemeters would reduce positional uncertainty.*> Additional studies
of the clinical use of in vivo dosimetry in pelvic brachytherapy are
summarised in Table 4.

While the magnitude of what constitutes a clinically acceptable devi-
ation is variable and specific to each patient site, it is essential for
clinically useful in vivo dosemeters to detect deviations classified as
‘wrong by the AAPM (dose distribution and delivery deviations of
5% and positioning deviations of 3 mm) and the ideal is for detection
sensitivity to be as high as possible.® Currently, the accuracy of in vivo
dosimetry systems varies significantly with mean differences between
calculated and measured radiation dose for MOSFET, optically stim-
ulated dosemeters and semiconductors of up to 6.7, 4.7 and 15.5%
respectively (Table 4).

CLINICAL CONSIDERATIONS
Several clinical considerations are necessary in order to overcome the
current limitations associated with the integration of in vivo dosim-
etry into routine clinical brachytherapy.

Workflow

Service and resource pressures as well as the existing complexities
of brachytherapy procedures are potential barriers to the practical
implementation of in vivo dosimetry.”* In addition, the greater the
time between imaging and treatment delivery, the greater the risk
of internal organ motion and increased positional uncertainties.””
Integration with the existing patient workflow, e.g. affixing the in
vivo dosemeters to the afterloading device in HDR gynaecolog-
ical brachytherapy, is preferable, to avoid the need for additional
procedures.”

Dosemeter placement
Important considerations during in vivo dosimetry are the accuracy,
reproducibility and stability of dosemeter placement. Appropriate
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In vivo dosimetry in pelvic brachytherapy

Table 4. Summary of identified clinical studies using in vivo dosimetry in pelvic brachytherapy

BJR

. Differences between
Year Authors Clinical .
o Type of dosemeter s Location of detector calculated and measured
(citation) application
doses
2021 Hayashi et al.*® Optically stimulated HDR cervix Rectal probe Mean +3.9 (+12.7% SD)
luminescence
2020 Mason et al.%® MOSFET HDR prostate Brachytherapy needle in Mean +5.2% (range -17.3% to
prostate +7.4%)
2020 Poder et al.®* MOSkin (MOSFET) HDR prostate Rectal probe Mean 0.3% (£11.6% SD)
2020 Jamalludin et al.% MOSkin (MOSFET) and HDR cervix Rectal probe MOSkin: Mean —3.2% (+10.1%
PTW 9112 semiconductor SD); PTW 9112: Mean —15.5%
(£9.7% SD)
2018 Johansen et al.* Optical fibre HDR prostate Brachytherapy needle in Mean -4.7% (range -17 to +12%)
prostate
2018 Belley et al.? Optical fibre / HDR vagina Lateral surface of vaginal 63% of measurements were within
thermoluminescence cylinder 5% of TPS; 26% within 5-10%;
11% within 10-20%
2017 Carrara et al.®® MOSkin (MOSFET) HDR vagina Rectal probe Mean +2.2% (+6.9% SD)
2017 Wagner et al.® Alanine/electron spin HDR prostate Urinary catheter Mean -2.4 Gy (range -7.9 to +0.2
resonance Gy)
2017 Van Gellekom et al.’ MOSFET HDR vagina Vaginal applicator needle Mean +3% (£14% SD)
2016 Carrara et al.%® MOSkin (MOSFET) HDR prostate Rectal probe Mean +6.7% (range +5.1% SD)
2016 Mason et al.% MOSFET HDR prostate Brachytherapy needle in Mean -6.4% (range +5.1 to 15.2%)
prostate
2014 Zaman et al.” Semiconductor diode HDR cervix Rectal probe Range -8.5% to +41.2%
2013 Sharma et al.®? Optically stimulated HDR cervix Rectal retractor Range -14.9% to +13.7%
luminescence
2012 Allahverdi et al.”* Semiconductor diode HDR cervix Rectal probe Mean 6.5% (range -22 to +39%)
2011 Suchowerska et al.*%) Optical fibre HDR prostate Urinary catheter <9%

HDR, high dose rate; MOSFET, metal-oxide-semiconductor field-effect transistor

fixation must take place to ensure no movement occurs between
dosemeter insertion and delivery of radiotherapy. Waldhéusl et al
report dosemeter probe shifts as small as 2.5 mm result in measured
dose differences of >10%.”> Due to the steep dose fall off associated
with brachytherapy, dosemeter movement of only a few millimetres
can result in erroneous dose measurements, the triggering of false
alarms and the failure to detect radiotherapy dose deviations. This
requirement for accurate placement of in vivo dosemeters can limit
their practical use.* Therefore, dosemeters must be used in conjunc-
tion with imaging techniques to ensure adequate localisation. In addi-
tion, the insertion process of in vivo dosemeters should be integrated
with existing equipment such as urinary catheters and applicators to
minimise risks of bleeding and infection.”

Sensitivity and specificity

The sensitivity and specificity of dosemeters are other important
considerations. In the context of in vivo dosimetry, sensitivity is the
likelihood that a dosemeter will detect errors in dose or positioning
if these errors exist.”" Use of a dosemeter with high sensitivity, there-
fore, should detect any dosimetric errors that occur and confirm the
absence of such errors if no alarm sounds. Specificity is the likelihood
that when a dosemeter signals an error in dose or positioning, that
this is a true error and not a ‘false alarm.”" A balance must be struck
to ensure that the vast majority of errors are detected without the

expense of triggering excessive false alarms. Dosemeter susceptibility
to external factors and environmental influences including humidity,
temperature, direction, angular dependence and energy dependence
are important to consider and these influences should be minimised
where possible, or at least correction factors clearly documented.™
The atomic number of the chosen dosemeter should be similar to
water to reduce energy dependence.”

Cost

Significant costs are associated with the implementation and use of
in vivo dosimetry in radiotherapy.”* Many hospitals and healthcare
systems have limited budgets and it is imperative that the dosemeters
are cost-effective.”>”®

FUTURE OF /N VIVO DOSIMETRY

Time-resolved, or real-time dosimetry, has the potential to signifi-
cantly reduce brachytherapy errors. Triggering an alarm during the
delivery of radiation in brachytherapy signifies to the clinical team
that an error has occurred and prompts immediate investigation
and resolution of this error. This may result in treatment interrup-
tions, prolonging of treatment times and may cause discomfort for
the patient in addition to increasing the complexity of the procedure
for clinical staff who must compensate for the detected dose error.””
Integration of in vivo dosemeters with treatment planning software to
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allow for real-time monitoring of radiation dose delivery and distri-
bution could allow for the brachytherapy plan to be adapted in such
a manner as to compensate for any significant dose deviations. Such
advances are dependent on high precision and accuracy of in vivo
dosimetry and advanced software development but would minimise
any additional treatment time and clinical staff workload as a result of
errors in radiation dose and distribution.

In the future, in vivo dosemeters could also facilitate uptake in
radiobiology-guided brachytherapy. Hypoxia is associated with radio-
therapy resistance and inferior clinical outcomes.”® It is commonly
associated with solid tumours due to their immature, disorganised
vascular supply which develops as a result of overexpression of pro-
angiogenic factors.”” Movsas et al** measured pO2 in human prostate
carcinomas using Eppendorf microelectrodes and found these to be
significantly lower than the pO2 present in normal muscle controls,
with increasing hypoxia associated with increasing clinical stage. The
ratio of prostate to normal muscle pO2 was the strongest predictor for
biochemical control. Similar results were found in studies by Turaka
et al®! of prostate cancer, and by Rofstad et al®* of cervical cancer,
demonstrating the need for adaptive strategies to target hypoxia
within tumours.

Dose escalation within identified areas of tumour hypoxia is a poten-
tial method by which the negative effect of hypoxia on tumour
control can be overcome.** Hypoxic sensors have been described in
the literature including the aforementioned Eppendorf oxygen elec-
trode,* a fibre-optic sensor using ruthenium luminophore incorpo-
rated into a silicone rubber polymer tip,** fluorescent peptide probes
based on the oxygen-dependent degradation domain of HIF-1a,*®
imaging such as blood-oxygen-level dependent (BOLD) functional
MRI which evaluates changes in signal intensity between diamag-
netic oxyhaemoglobin and paramagnetic deoxyhaemoglobin,* and
PET/CT using hypoxia-specific tracers such as "*F-fluoromisoni-
dazole (**F-FMISO).*’ Integration of a hypoxic sensor within an in
vivo dosemeter would allow for tumour hypoxia to be mapped and
measured in real-time with dose escalation to these areas.

A similar approach could be taken with dosemeters which detect
the presence of DNA double-strand breaks (DSBs). DSBs are a
critical from of DNA damage and, if not correctly repaired, are an

Houlihan et a/

important mechanism by which radiation induces cell death.% A pre-
clinical model consisting of magnetic streptavidin beads attached to
four kilobase pair DNA strands has shown promising results in the
detection of DNA DSBs.* Detecting these DSBs in real-time during
brachytherapy would provide the opportunity to adapt the dose
depending on their quantity and location. For example, increased
dose could be delivered in areas with minimal DSBs with reduced
dose in areas with many DSBs.

Brachytherapy plans adapted to tumour hypoxia and DSBs would
enable dose escalation in areas of radioresistance and reduction in
areas of radiosensitivity. By detecting these, in vivo dosemeters have
the potential to provide for a personalised radiotherapy approach in
real-time adaptive brachytherapy which should result in improved
outcomes in terms of tumour control and toxicities for patients.

CONCLUSION

Prostate and gynaecological brachytherapy have increased in
complexity in recent years, due to advances in imaging, techniques
and software. Adaptive brachytherapy has the potential to optimise
target dose distribution, reduce side-effects from treatment and
introduces the potential for dose escalation. It is important that the
radiation doses delivered to the brachytherapy target and OARs
are accurately measured and documented, and in vivo dosimetry
provides an opportunity for adaptive brachytherapy in real-time.
There are several important considerations regarding the practi-
calities of in vivo dosimetry, which must be addressed prior to its
incorporation into routine clinical practice, and the benefits of the
procedure must outweigh any potential risks to the patient. The EU
Horizon 2020 Origin project™ is working to address the current
barriers to the clinical implementation of in vivo dosimetry and to
develop a real-time system based on optical fibre-based sensing tech-
nology for use in prostate and gynaecological brachytherapy.
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