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Abstract

The liberalization of the retail market of electricity increased the tar-
iff choice of end-use consumers. Retailers compete in the retail market for
customers, obtaining private portfolios of end-use consumers to manage. Re-
tailers buy electricity at wholesale markets to feed their customers’ demands.
They can use spot, derivatives, and bilateral markets to acquire the energy
they need. The increasing levels of variable renewable energy sources trad-
ing at spot markets, increase the price volatility of these markets. To hedge
against the volatility of spot prices, retailers may negotiate standard physi-
cal or financial bilateral contracts at derivatives markets. Alternatively, they
can also negotiate private bilateral contracts. This article addresses the opti-
mization of the retailers purchasing options, to increase their risk-return ra-
tio from electricity markets, and offer more competitive tariffs to consumers.
Considering the risk attitude of retailers, they use a multi-step purchasing
model composed of a multi-level risk-return optimization and a decision sup-
port system. The article presents an agent-based study considering a retailer
with a portfolio of 312 real-world consumers. Risk-seeking and risk-neutral
retailers obtained a return up to 38%, less than 7% of the optimal return.
However, risk-neutral retailers are subject to four times higher risk in their
returns than risk-seeking retailers. The results support the conclusion that
wholesale markets of electricity are more favourable to risk-seeking retailers,
considering their real returns.
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Nomenclature

Acronyms and Abbreviations

Agg aggregation
AggRes Agg of residentials
AggSCom Agg of small commercials
BMF Buy monthly futures
BQF Buy quarter futures
BRP Balance Responsible Party
CH Calinski-Harabasz
CVaR conditional VaR
DAM day-ahead market
DSS decision support system
ETOMinR Minimum return tariff
Ind industrial
itp start of the trading period
LCom large commercial
lcp last closing price
MIBEL Iberian market of electricity
MTS Multivariate Time Series
OMIE the Spanish market operator
OMIP the Portuguese market op.
POM purchasing optimization

model
SMF Sell monthly futures
SQF Sell quarter futures
VaR value-at-risk
VREs variable renewable energy

sources

Symbols
[w] option weight
[Cov] covariance
[r̂] expected return
[T∆t] consumers tariffs
α confidence level

R̂o expected profit

λ risk attitude

µ expected return average

Π optimal return

σ standard deviation

I investment

Kt period discriminator

Pt electricity price

Pforward forward price

Pfuturest futures price

Pspott spot price

qj,h consumer consumption

qmax maximum quantity of energy

r real return

r∗ cut-off return

Ro profit

Tj,h tariff

v forecast weight

Subscripts

h period of the tariff

i time step

j consumer number

l lag

o purchasing option

t current period

y previous year

∆h number of tariff periods

∆i number of time steps

∆t period duration

J number of consumers

L number of lags

O number of options

Y number of previous years

Risk attitude; Risk-return optimization; Wholesale markets.
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1. Introduction

The deregulation of the electricity supply industry has brought full com-
petition to both wholesale and retail markets (see, e.g., [1, 2]).

A wholesale market is a market where competing generators offer their
electricity output to demand-side players [3]. Market participants can trade
electricity in three key (sub-)markets [4]: spot, derivatives, and non-organized
bilateral markets. Spot markets include mainly day-ahead (DAM) and intra-
day or real-time markets, where participants can submit bids involving prices
and quantities of electricity (as well as some other complex conditions) [5].
Derivatives markets allow players to sign standardized bilateral contracts to
hedge against spot price volatility. They include forwards, futures, options,
and swaps (or contracts for differences). Non-organized bilateral markets al-
low players to privately negotiate the terms and conditions of tailored bilat-
eral contracts, typically covering the delivery of large amounts of energy over
long periods (months to years). As Balance Responsible Parties (BRPs),
the trades agreed by all players on these markets, lead to a programmed
dispatch that they have to comply with, to avoid the payment of penalties.
Unbalances between supply and demand may affect the security of the power
system because of frequency deviations (normally there is a threshold of 1%),
which are solved by the balancing reserves. These reserves are traded at the
balancing markets, and their costs are paid by the BRPs that deviate from
their dispatch schedules [6].

A retail market exists when customers can choose their suppliers from
competing power retailers [7]. Retailers buy energy from wholesale markets
and sell it to end-use consumers (end-users). They usually try to attract
as many customers as possible, signing bilateral contracts with them, and
thus defining non-optimal portfolios (in terms of risk and return). In other
words, retailers usually pursue a “business as usual strategy”, meaning that
they offer high tariffs to clients, which are equal for customers with similar
consumption patterns. Also, they often consider a high risk premium, mak-
ing the energy part of the tariff (retail price) substantially larger than the
(wholesale) spot price [8, 9]. The risk premium depends on their attitude
towards risk. Generally speaking, three attitudes towards risk are often dis-
cussed in the literature: risk-averse, risk-neutral, and risk-seeking. The risk
attitude is also known as risk preference or aversion. Risk-averse retailers
tend to define stable portfolios and consider “small” risk premiums, allowing
them to propose “reduced” tariffs to consumers. Retailers with more sta-
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ble portfolios can obtain better outputs in both favourable and unfavourable
scenarios [7]. Risk-neutral retailers mainly focus on the expected return of
portfolios, meaning that they do not care much about the uncertainty (risk)
of their decisions. Risk-seeking retailers are, to a certain extent, the op-
posite of risk-averse retailers. In this sense, they may obtain an advantage
in retail competition, since high variations in the expected return typically
lead to lower variations in risk [9]. In practice, retailers trade energy in spot
markets, which are characterized by relevant price volatilities because of the
increasing levels of variable renewable energy sources (VREs). VREs have
near-zero marginal costs, and stochastic outputs, which together with de-
mand uncertainty increase the uncertainty of the net-load, and the need to
balance the power system, increasing the penalties paid by the unbalanced
parties [6, 10]. Against this background, retailers also sign standard and
private bilateral contracts to hedge against spot price volatility. Their main
objective is to trade electricity and sign contracts so that the resulting mix
can increase their return and lead to a reduced risk. Retailers may plan
their portfolio of purchasing options to guarantee they obtain the electricity
required by their customers and a reasonable profit.

This article addresses the risk-return optimization of the wholesale pur-
chasing options of power retailers. The literature mainly focuses on the
optimization of the wholesale selling options of power producers [11] and op-
timal retail tariffs [12]. Some pieces of work focus on models to maximize
the profit of traders [13] and optimize the wholesale purchasing options of
retailers [14–16]. Algarvio and Lopes [7] presented a literature review on
their main features. But only a few pieces of work focus on both the mar-
ket price and the demand uncertainty, considering real prices and consumers
when optimizing the wholesale purchasing options of power retailers. For
instance, Kettenun et al. [17] studied optimal portfolios of forward contracts
by considering retailers with different risk attitudes, facing both price risk
(associated with the DAM) and consumption risk (related to end-users). The
authors concluded that risk-neutral retailers tend to be more concerned with
price-related uncertainty, while risk-averse retailers tend to favour forward
contracts to hedge against the DAM price volatility, thus being normally
more concerned with the associated risk premium. They assumed, however,
a strong correlation between the DAM price and the demand of retailers,
which typically depends on the quantity of energy traded. Sun et al. [18]
used the conditional value-at-risk (CVaR) in the risk assessment phase to
maximize the profit of retailers. They select the best options of wholesale
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markets to buy electricity and feed their consumers, considering tariffs with
time-of-use or real-time pricing rates. They concluded that the risk atti-
tude of retailers affects the quantity of electricity acquired through different
time horizons. While risk-averse retailers tend to trade in the long term,
risk-seeking retailers prefer trading in the short term. They also concluded
that real-time pricing rates may increase the retailer’s profit when compared
with time-of-use rates, but a set with both types of rates is the solution
that maximizes the retailer’s profit. Koltsakis and Dagoumas [19] considered
companies that own power plants and portfolios of consumers, participating
in both wholesale and retail markets. They presented an optimal clearing
model of the wholesale market, considering a power exchange with an opti-
mal dispatch of the power plants to feed the consumption needs of end-users.
They concluded that economically viable companies should have a balanced
share of energy in both wholesale and retail markets, a form of risk hedging.
Otherwise, they are exposed to the volatility of the market prices. When
they have an energy deficit, i.e. when the energy they need to feed their
consumers is higher than the energy produced by their power plants, they
benefit when marginal prices are small. On the contrary, companies with an
energy excess benefit when marginal prices are high.

The majority of pieces of work that focus on the purchasing options of
retailers only consider an optimization model that selects the best set of
products and/or power plants used to feed a given demand. The proposed
model upgrades the literature by considering a multi-step model that contains
both a multi-level risk-return optimization of the purchasing options in the
first step, filtered by a decision support system in the second step. The
model deals with both price and consumption uncertainties. This model
uses multiple time steps, which means that on each time step, each level of
the optimization can be constrained by previously acquired options. Against
this background, the purpose of this paper is twofold:

1. To present a multi-step model for optimizing the wholesale purchasing
options of agent-based retailers to feed their portfolio of end-users, con-
cerning: i) a multi-level risk-return optimization, ii) a decision support
system, and iii) short term and long term forecast methodologies.

2. To test the new model by considering situations involving retailers with
different risk attitudes and real-world consumers.

Thus, the work presented here refines and extends previous work on port-
folio optimization [7, 9] and risk management [20–22].
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The remainder of the paper is structured as follows. Section 2 presents an
overview of wholesale competition in electricity markets. Section 3 describes
the risk-return optimization model. Section 4 describes a simulation study
to test the model in a real-world setting. Finally, concluding remarks are
presented in section 5.

2. Wholesale competition in electricity markets

Typically, electricity retailers sign long-term fixed-price contracts with
consumers in the retail market, buy energy in spot markets, and/or sign
bilateral physical contracts with producers in the wholesale market. Spot
prices are highly volatile and uncertain, which increases retailers’ risks, and
forwards contracts normally have higher prices because of the risk premium
requested by their sellers, which decreases retailers’ returns. Another form of
risk hedging in the wholesale market is the acquisition of financial contracts
(futures, options, swaps, etc.). However, the prices of financial contracts are
normally higher than spot prices [5, 23].

2.1. Spot markets

Spot markets include mainly the DAM and, an intraday or real-time
markets. The DAM clears to meet bid-in demand for an entire day, one
day in advance. The pricing mechanism is founded on the marginal pricing
theory. Considering the system/locational marginal pricing algorithm, gen-
erator companies compete to supply demand by submitting bids in the form
of price and quantity pairs [5]. These bids are ranked in increasing order
of price, leading to a supply curve. Similarly, retailers and possibly other
demand-side participants submit offers to buy certain amounts of energy at
specific prices. These purchase offers are ranked in order of decreasing price,
leading to a demand curve. The market-clearing price is defined by the in-
tersection of the supply curve with the cumulative demand curve. This price
is determined periodically and applied to all generators uniformly, regard-
less of their bids or location, or is computed locationally in the case of a
system/locational marginal pricing algorithm, respectively. Generators are
instructed to produce the amount of energy corresponding to their accepted
bids, and buyers are informed of the amount of energy that they are allowed
to draw from the system.

Closer to real-time operation exist auction-based intraday or real-time
markets, but also continuous intraday markets, where players can adjust their
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trading position. The continuous intraday market is cleared considering the
pay-as-bid scheme, i.e. in case of opposite bids the system automatically
clears them.

The spot prices volatility increases the risk of the retailers’ portfolio.
Retailers usually sign long-term contracts with consumers with a fixed price,
periodic revision, and variable volumes. So, retailers may forecast the market
prices to propose a price for the energy component of the tariff. Considering
the markets prices volatility, in the computed tariff, retailers have to consider
the expected return that they intend to have, plus a risk premium concerning
the market risks. The goal of this work is to reduce the market premium by
using risk mitigation measures, such as investment in forward contracts and
financial contracts.

2.2. Forward and derivatives markets

Bilateral contracts are often negotiated in the forward/derivatives mar-
ket. The transactions in the forward market are performed assuming their
liquidation, i.e. the seller delivers the product and the buyer pays the prod-
uct price on a future date. Whether physical or financial, a bilateral contract
is typically negotiated weeks or months before its delivery and can include the
following specifications: 1) starting date and time, 2) ending date and time,
3) price per hour (e/MWh), 4) variable megawatt (MW) quantity, and 5)
range of hours when the contract is to be delivered. In a more general form,
the quantity and price could be time-varying over the contract duration in
forward markets. In the derivatives market can only be traded standard con-
tracts, considering fixed quantities and restricted conditions [20]. Depending
on the amount of time available and the quantities to be traded, buyers and
sellers will resort to the following forms of bilateral trading [1]: customized
long-term contracts, trading ’́over the counter” and electronic trading.

Forwards contracts are contracts to purchase and sell a given amount and
quality of an asset (financial or otherwise), in a specific future date, at a price
set in the present, and negotiated bilaterally (outside the power exchange)
[21]. After the trading date, the buyer is bound to pay the agreed price
(strike price), and the seller is linked to the delivery of the asset under agreed
conditions during the delivery period (between the delivery and the maturity
date). These contracts may be subject to physical settlement (where the
seller delivers the goods sold) or financial settlement (in which there is no
physical delivery of the goods, but only a reckoning due to the market price
of the asset on the settlement date). Unlike futures contracts, which are
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contracts traded multilaterally in a power exchange, and subject to a high
degree of standardization, forward contracts are likely to be drawn freely
according to the will of the parties. In the specific case of retailers, normally
they are interested in the physical settlement of the contract. In the case
of only financial settlement, during the delivery period, financial forwards
are similar to financial futures. So, when the spot index rises above the
strike price, buyers have to be compensated, otherwise are the sellers who
are compensated. The difference is in the strike prices, while in forwards
the strike prices are defined bilaterally in the trading date, in futures, they
are defined in the power exchange at the beginning of the delivery period.
Normally, the futures prices of electricity serve as a reference to the forward
contracts. So, who sells forwards do not want to sell below the futures prices
(normally they consider higher prices because in forward contracts they have
practically all the risk) and buyers do not want to buy above the futures
price (but as they have very few risks, they normally do it).

Customized forward contracts (fixed prices but variable quantity) can be
more expensive (sellers can request a higher risk premium) than standard-
ized forward contracts (fixed prices and quantities). Retailers should consider
the futures index prices of electricity, and also their price forecasts for the
same period. If financial markets have prices significantly higher than the
expected spot prices, considering the margin retailers have in their contracts
with consumers, they can adopt a selling position and sell financial contracts.
However, this strategy may be used carefully, since it increases the risk of the
portfolio. In this case, retailers may use financial contracts as profit-seeking
measures. Otherwise, if the futures index is similar or below the forecast
prices, retailers can adopt the previously mentioned strategy of buying phys-
ical forward contracts to mitigate risk, and in some cases get a higher profit
than at spot markets.

Futures contracts are standardized contracts, reversible, buying and sell-
ing a given quantity and quality of an asset, at a future date, with a price
fixed in the present, the trading price. The buyer is bound to pay the agreed
price and the seller to deliver the asset under the agreed conditions. These
contracts may also be subject to financial or physical settlement (the energy
is acquired in the DAM). Unlike forward contracts, which can be negotiated
outside the power exchange, and can be drawn based on the will of both par-
ties, futures contracts are fully standardized, meaning that the price is the
only variable allowed to be negotiated. During the trading period, futures
contracts allow the parties to reverse their contracts, by doing an operation
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opposite to the initial, i.e. by either selling/buying contracts of the same
quantities initially purchased/sold. Furthermore, during this period there
will exist profits and losses due to daily cash settles (differences between the
settlement prices). At the expiration date (the end of the trading period),
ends the possibility of selling or buying the contract, is defined the last closing
price (lcp), and starts the delivery period. During this period, there will be
daily cash settles with values equal to the difference between the lcp and the
spot reference price. Furthermore, in the case of physical futures, the seller
will have to deliver the product (physically) to the buyer (see Figure 1).

Figure 1: Characteristics of futures trading.

2.3. The Iberian market

The Iberian market (MIBEL [24]) involves a DAM, an intraday market
based both on auctions with six sessions and continuous trading, managed
by the Spanish electricity market operator (OMIE [25]), a derivatives market
managed by the Portuguese electricity market operator (OMIP [26]), and a
non-organized forward market. The clearing of the DAM and each intraday
auction uses EUPHEMIA [27]. EUPHEMIA considers the system marginal
pricing theory. It may consider simple and complex bids from both supply
and demand sides, such as the physical constraints of the cross-zonal capacity
[5]. By computing the price and quantity for each bidding zone, the algorithm
also defines the day-ahead flows between bidding zones [23]. The derivatives
market only considers standard forwards, futures, and options as physical
and financial instruments, and swaps as financial instruments [20, 22].
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3. Risk management and optimization of the electricity purchasing
options

Retailer agents should select the best options to trade electricity–that is,
they should select the markets (e.g., the day-ahead market in conjunction
with the derivatives market) and define the bids to submit to each market.
To this end, they should consider a risk management process, which typically
includes three key phases [28]: (i) risk assessment, (ii) risk characterization,
and (iii) risk mitigation. In the risk assessment phase, retailers recognize
the risk factors and identify the main deterministic and stochastic variables.
Next, in the risk characterization phase, they make efforts to measure the
risk using one or more methods, such as variance, correlation, regression,
VaR, and CVaR. Finally, in the risk mitigation phase, they select the best
set of products that allow them to reduce the risk.

3.1. Optimization of retailers’ wholesale purchasing options of electricity

Considering the aforementioned risk management process, in the first
phase, retailers face the following risk factors: market price volatility and
consumption uncertainty (of customers in the portfolio). In the second phase,
retailers consider the VaR to analyse how the previous risk factors affect the
portfolios, which is given by the following expression:

V aR = −I · r∗ = I(ασ
√

∆t− µ∆t) (1)

where:

(i) I is the investment made by a retailer;

(ii) r∗ is the cut-off return;

(iii) α, σ and µ are the confidence level, the standard deviation and the
average of the expected return, respectively;

(iv) ∆t is the time period under consideration (duration of the contract).

In the third phase, retailers consider their risk attitude and the tariffs
proposed to consumers, to obtain the point that optimizes their risk-return
ratio, which represents a different share of purchasing options. The purchas-
ing options optimization model (POM) plans the participation of retailers in
wholesale markets. It has the dual objective of maximizing the return and
minimizing the risk, as follows:
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[w] = argmax
wo≥0

(
[w]T [r̂]− λ [w]T [Cov] [w]

)
(2)

Subject to

O∑
o=1

wo = 1 (3)

where:

(i) [w] is the matrix containing the weight wo of each purchasing option o
in the portfolio;

(ii) [r̂] is the matrix of the expected return of each purchasing option o;

(iii) λ is the risk attitude/aversion of the retailer;

(iv) [Cov] is the covariance matrix that relates the expected return between
every purchased option o.

The quantification of the risk attitude of the retailer diverges in the lit-
erature. Generally, the literature considers that risk-neutral agents have a
risk attitude equal to 0, which is the value considered in the proposed model.
Bodie et al. [29] modelled the risk attitude as an aversion to risk that varies
from 1 (highest risk-seeking) to 5 (highest risk-averse). Von Neumann and
Morgenstern [30] modelled the risk attitude between -1 to 1, being 0 the risk-
neutral. The proposed model was calibrated to consider risk attitudes as risk
aversions higher or equal to 0. How closer to 0 higher is the risk-seeking of
the agent, and how far from 0, higher is its risk-aversion (see [7, 9] for more
details).

The expected return is computed by considering the difference between
the tariffs offered to consumers and the expected cost of each market option.
This parameter may involve some uncertainty concerning future prices of
electricity, notably when retailers trade energy in day-ahead markets. How-
ever, in the case of retailers considering mainly forward contracts to buy
electricity, the uncertainty is essentially related to the consumption of con-
sumers (the uncertainty associated with the price is reduced). The covariance
of the expected return of each market option is important to select “comple-
mentary” purchasing options to avoid a high variation (uncertainty) in the
expected return of the entire portfolio.

11



The selection of “complementary” purchasing options allows retailers to
hedge against potential unfavourable situations, i.e. when spot prices rise
above retail tariffs if retailers bought a given quantity of futures contracts
for a price below their tariffs, they guarantee a fixed profit, that consists
in the price difference between their tariffs and futures prices. Against this
background, from the point of view of retailers, buying energy at the DAM
and through futures contracts are “complementary” options, which conduct
to small values in the covariance of their returns. On the contrary, buying
energy at the DAM and selling it through futures contracts are not “comple-
mentary” options, because they have similar outputs, a financial loss in case
of a rise in spot prices, and profit in case of a fall in spot prices.

3.2. Trading strategy and forecast methods

The model depends on the tariffs proposed to each consumer. Such tariffs
involve a fixed payment for power (contracted capacity fee) and a price per
unit of electricity (variable fee). Both fees are divided into several parts,
but the most important for the return of retailers is the energy part [9].
Accordingly, retailers may set an expected return tax (r̂) for each consumer,
the markup, considering the risk-free of deposits in global markets and the
risk-premium, which depends on several factors, such as the risk associated
with the market prices and the consumption.

This paper considers a flat rate, computed using the strategy “Equal tariff
optimization strategy at a minimum return (ETOMinR)” adapted from [9].
This pricing strategy is not personalized, so it proposes the same tariff to
all consumers (only the energy part of the variable term, the other parts
are fixed and depend on rates defined by the regulator). To guarantee a
minimum target return from all consumers, the retailer will compute a tariff
to each consumer, and the maximum tariff between all computed tariffs is
selected because it guarantees that the retailer receives its target minimum
return:

Tj,∆t =
(r̂ + 1) ·

∑J
j=1

∑T
t=1 q̂j,tÎt∑∆t

t=1 q̂j,tKt

(4)

[T∆t] =

 T1,∆t

...
Tj,∆t

 (5)

T∆t = max [T∆t] (6)
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where:

(i) Tj,∆t is the prices of each consumer j tariff, that guarantees the minimum
expected return to the retailers during period ∆t;

(ii) r̂ is the retailer’s expected return;

(iii) Ît is the retailer’s expected investment (cost) with consumer j per period
t;

(iv) q̂j,t is the electricity expected consumption of consumer j in period t.

(v) Kt is the period discriminator, in case of existing several periods (i.e.,
when the retailer wants to give more value to peak periods); otherwise,
it is equal to one for all periods.

(vi) [T∆t] is a matrix containing each consumer j tariff, that guarantees the
minimum expected return to retailers during period ∆t;

(vii) T∆t is the minimum price(s) that retailers need to charge to all con-
sumers to receive the expected return during period ∆t;

Using the Calinski-Harabasz (CH) criterion is possible to obtain the op-
timal number of clusters of the real data, by considering the consumption
profile of each consumer [31]. It computes the Euclidean distance between the
clusters and compares it with the internal sum of squared errors for each clus-
ter. Using the k-means clustering algorithm is possible to divide consumers
by their consumption segment, identified by the CH criterion, and compute
their segment typical load profile. This algorithm is a robust model that min-
imizes the distance between each point to the centre of its respective cluster.
The CH criterion and the k-means algorithm have been adapted from [7]. To
feed the model with a future prediction of the electricity consumption has
been used a multivariate time series (MTS) forecast method, adapted from
[7]. To compute the expected yearly futures prices and the expected hourly
spot prices one year ahead, has been used a MTS forecast method adapted
from [9]. Throughout the year, the expected hourly spot prices are used to
compute the average spot price on each month and quarter, P̄ spott, which is
used to compute the respective quarter and monthly expected spot prices of
electricity, P̂ spott, using a forecast methodology based on tendency growth
rates:
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P̂ spott = Pspott−1e
Pspott−1−P̂ spott−1

P̂ spott−1 e
P̄ spott−Pspott−1

Pspott−1 (7)

where:

(i) Pspott−1 is the spot price of electricity in the previous period t− 1;

(ii) P̂ spott−1 is the expected spot price of electricity computed for the pre-
vious period t− 1;

The forecast methodology considers both the error between the expected
and real spot prices of electricity in the same period (first term), and the
expected growth rate of the spot prices between periods (second term). A
similar approach is used to compute the expected futures prices of electricity
P̂ futurest, considering the previous observed futures prices, Pfuturest−l,y,
at lag l, and previous year(s), y, observed futures prices in the same pe-
riod, Pfuturest−l,y−1, weighting, v(t−l),y, the past data with L lags (previous
periods):

P̂ futurest = Pfuturest−1 ×
Y∑

y=0

∆t∑
t=0

L∑
l=0

e
vt−l,y

Pfutures(t−k−1),y−Pfutures(t−k),y
Pfutures(t−k),y

(8)

Y∑
y=0

∆t∑
t=0

K∑
k=0

v(t−k),y = 1 (9)

3.3. Expected return

Considering the type of market option, o, where the retailer will invest,
the expected return, ro, will vary, such as the volatility of the future expected
profit, R̂o, and the expected investment required, Îo. The expected return is
equal to:

r̂o = R̂o/Îo (10)

The financial products only consider a backup budget (deposit) in case
of financial losses, not a direct investment like spot markets and physical
contracts. Retailers have portfolios of end-users to satisfy, so financial prod-
ucts are only considered together with the day-ahead market and/or physical
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contracts. Considering the models and behaviour of the day-ahead market
and of each product of the derivatives market analysed in section 2, their
formulation follows:

1. Buy at the day-ahead market:

R̂1 =
∆t∑
t=1

J∑
j=1

∆ij∑
ij=1

∆hj,ij∑
h=hj,ij

(
Tj,i − P̂ spott,h

)
q̂j,t,h (11)

where:

(i) Tj,i is the prices of the tariff charged for consumer j at period i;

(ii) P̂ spott,h is the expected spot prices at hour h of day t;

(iii) q̂j,t,h is the expected electricity consumption of consumer j at hour
h of day t;

(iv) ∆t is the duration of the contract, in days;

(v) J is the number of consumers;

(vi) Hj is the tariff discretization (number of periods that the tariff
has) for customer j;

(vii) ij,hj
is the initial time step for the period hj of customer’s j tariff;

(viii) ∆ij,hj
is the number of time steps for the period hj of customer’s

j tariff;

Î1 =
∆t∑
t=1

J∑
j=1

I∑
i=1

P̂ spott,hq̂j,t,h (12)

2. Buy physical forwards:

R2 =
∆t∑
t=1

J∑
j=1

∆ij∑
ij=1

∆hj,ij∑
h=hj,ij

(Tj,i − Pforwardbase) qj,t,h,base (13)

where:

(i) Pforwardbase is the forward contract cost at the base period (typ-
ically, standardized contracts have three periods discretization:
base for the whole day, peak only for peak periods, and week-
ends);
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(ii) qj,h,base is the reserved quantity for customer j at hour h of day t
at base period.

In this contract, the contracted quantity for the base period, qbase,
should not surpass the sum of the reserved quantity for every customer
j, qj,t,h,base.

qbase =
J∑

j=1

∆ij∑
ij=1

∆hj,ij∑
h=hj,ij

qj,t,h,base (14)

The remuneration from the standardized forward contracts is certain
(not expected). However, in standardized forwards every contract has
to have 1 MW of quantity (tick volume), so the contracted quantity
can exceed or scarce the required quantity. In these cases, the excess
or scarcity of energy should be traded in the DAM.

I2 =
∆t∑
t=1

∆hj,ij∑
h=hj,ij

Pforwardbaseqbase (15)

3. Buy physical futures:

R̂3 = R̂3,t=0 +
∆t∑
t=1

J∑
j=1

∆ij∑
ij=1

∆hj,ij∑
h=hj,ij

(
Tj,i − P̂ futuresbase

)
qj,t,h,base (16)

where R̂3,t=0 is the cumulative financial profit/loss since the acquisition
of the contract in the beginning of the trading period (itp), titp, at
trading price Pfuturesitp,base. The strike price is the last closing price
(lcp) of the trading period (t = 0).

R̂3,t=0 =
t=0∑
t=itp

(
P̂ futurest,base − P̂ futurest−1,base

)
qbase (17)

Î3 = (1 + I3,t=itp)
∆t∑
t=1

∆hj,ij∑
h=hj,ij

P̂ futuresbaseqbase (18)

where I3,t=itp is the deposit required by the broker in the acquisition
of the futures contracts in the itp, titp, in order to avoid credit risks,
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during the trading period (so in case of a 10% deposit, the I3,t=itp can
be equal to 0.1).

4. Sell financial futures and buy at the day-ahead market:

R̂4 = R̂4,t=0 +
∆t∑
t=1

∆hj,ij∑
h=hj,ij

(
P̂ futuresbase − P̂ spott,h

)
qj,t,h,base (19)

R̂4,t=0 =
t=0∑
t=itp

(
P̂ futurest−1,base − P̂ futurest,base

)
qbase (20)

The investment Î4 is equal to Î1 plus the deposit.

3.4. Decision Support System

Considering the portfolio of consumers, and the forward and futures prices
of electricity, the retailer computes forecasts of the consumption and electric-
ity prices, to feed the POM and the decision support system (DSS). Retailers
need to satisfy the consumptions needs of their clients, so they must buy phys-
ical electricity. The POM indicates the best share of products to purchase
energy according to the risk preference of the retailer. It is a multi-level
optimization that on each optimization step, constrains the products’ share
according to the quantities of electricity already traded. So, the long-term
optimization problem has two steps: (i) define the physical markets where to
buy electricity and their share, then use (ii) risk mitigation or profit-seeking
strategies to select the best set of financial markets to invest. Finally, in the
short run and until each product’s gate closure, retailers have to decide if
they will acquire such purchasing options defined by the POM. So, they may
use a DSS that indicates if they are making a good decision.

3.4.1. Long-run risk mitigation measures

In this case, physical or financial contracts are only used to mitigate the
risks associated with the transaction of electricity, so any speculative measure
is considered in this section. Thus, a buyer (or a retailer) selling financial
contracts will not be considered, because although it can be possible to in-
crease its return, it increases the risk of the buyer (profit-seeking strategies).
The choice of a product considers a forecast of the electricity prices, P̂ spott,
for period t. That expected price is compared with the futures prices of the
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electricity for the same period, Pfuturest. Now, considering retailers in a
buyer position, they behaviour to mitigate the price risk will be:

• P̂ spott >> Pfuturest:

Favourable: Buy physical forwards, because if it is expected that spot
prices will be higher than the current futures prices, physical forward
contracts guarantee that buyers buy the requested quantity of energy
at a fixed price, lower than spot prices. Buy financial futures only close
to the lcp, to avoid a rise in the futures prices that can be higher than
the expected spot prices.

Avoid: Buy futures far away from the delivery period, at the spot mar-
kets or sell contracts. In this case, buy (financial or physical) futures
contracts is not a good option because with the expectation that spot
prices will be higher, the futures index will tend to increase (short-run
return). So, the lcp will be higher than the current futures price, which
will decrease or mitigate a future return during the delivery period.
Buy the electricity at the spot markets is also to avoid, since signing
forward contracts at this time could be more advantageous, to mitigate
against the rising of spot prices. Although buying electricity at spot
markets can be considered a short-run decision, it has been prepared
as a long-run issue.

• P̂ spott ≥ Pfuturest:

Favourable: Buy physical forwards, considering the uncertainty that
the spot prices are going to be higher than the forwards prices. Only
buy futures if this futures price is the lcp. In some periods, buying
electricity in spot markets can be more advantageous (short-run deci-
sion).

Avoid: Buy futures, at spot markets or sell contracts.

• P̂ spott ≤ Pfuturest:

Favourable: Buy at the spot markets and physical forwards. In this
case, is preferable to buy the majority of the electricity using spot mar-
kets, and only part of it through forwards (risk mitigation). Financial
futures (for risk-seeking agents) can be used as risk mitigation, in the
case that the spot prices go above the lcp (strike price of the con-
tracts). In this case, the agent has to be careful when buying futures
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contracts, because the tendency can be a decrease in the futures price
of electricity, which can result in a loss.

Avoid: Buy financial futures far ahead from the trading period. If the
futures prices tend to decrease, buying futures will result in a short-
run loss during the trading period, which will be worse how lower spot
prices are concerning the strike price of futures.

• P̂ spott << Pfuturest:

Favourable: Buy all the electricity using spot markets, and sell con-
tracts. However, from the point of view of buyers, selling contracts can
be seen as speculative, risk-taking, and profit-seeking measures (see
section 3.4.3).

Avoid: Buying futures and forward contracts can result in high cumu-
lative losses for buyers.

As in the opposite side is the seller, the favourable and the avoidance
situations are exactly the opposite concerning the buyer.

3.4.2. Short-run risk mitigation measures

Now, as these long-run mitigation measures are based on forecasts of the
market prices, some short-run mitigation measures must be considered in
case of happening the opposite situation:

• If P̂ spott > Pfuturest but Pspott < Pfuturest:

Favourable: If it is expected that this situation will occur before the
trading period, sell the long-term position of the forwards and futures
contracts. Otherwise, if it is temporary, sell short-term forwards and
futures to mitigate the risks associated with that position. Buy the
required electricity using spot markets, and if this situation is not tem-
porary, buy short-run forwards in some periods.

Avoid: Buying financial contracts will result in financial losses because
of the decrease in spot prices.

• If P̂ spott < Pfuturest but Pspott > Pfuturest:

Favourable: Buy medium/short-run physical forwards if this situation
is temporary/permanent, and financial forwards and futures as risk
mitigation and profit-seeking measures.
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Avoid: Buying the majority of the electricity at spot markets, since in
this case it increases the risk and reduces the return.

The strategies used in this section should consider the long-term con-
tracts of the portfolio, such as the medium/short-run bidding and contracting
strategies and results.

3.4.3. Long-run profit-seeking measures

These strategies are favourable to be used by risk-seeking agents, since
they have the main goal of increasing their return, but they also increase
their risk:

• If P̂ spott > Pfuturest:

Use the favourable measures for long-run risk mitigation with an in-
crease in the number of financial contracts to purchase.

• If P̂ spott < Pfuturest:

An agent that needs to buy electricity, can sell financial contracts. This
strategy can substantially increase the return of the agent, but it is also
risky. In the case of retailers, if spot prices start rising, the losses can
also be substantially high in two ways: (i) the difference between the
consumers’ tariffs and spot prices, and (ii) the losses in the financial
contracts.

The same strategies used for short-run risk mitigation can be used for
short-run profit-seeking, but with an increase in the number of financial
contracts.

3.4.4. DSS suggestions

The decision support system considers a sorting algorithm that orders all
options with positive expected returns from descending order for a given pe-
riod, not considering the spot market, o > 1. The DSS suggestions algorithm
is presented in Algorithm 1.

For a specific period the retailer will only acquire the best derivatives op-
tions according to the POM+DSS models. In case of disagreements between
the models, the retailer will only acquire the energy from spot markets.
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Algorithm 1 DSS suggestions

1: procedure sort(r̂o)
2: aux← 0 . Auxiliary variable
3: while and(max r̂o > 0, o > 1) do . Verifies if exists a positive return
4: opt(aux)← index(max r̂o) . Gets the index of the best option
5: r̂opt(aux) ← −1 . Removes the best option
6: aux← aux+ 1
7: end while
8: end procedure
9: procedure suggest(opt)

10: aux← 0
11: while aux < length(opt) do . Verifies if exists any suggestion
12: if wopt(aux) > 0 then . Verifies if the POM suggests that option
13: Acquire the option opt(aux)
14: end if
15: aux← aux+ 1
16: end while
17: Do not acquire all the other derivatives options
18: end procedure

Figure 2: Multi-step optimization of the purchasing options.
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3.5. Deterministic optimization

A deterministic optimization formulation can be used to validate the re-
sults of the POM+DSS models. It receives as input the observed prices and
consumptions, and for each period, computes which is the wholesale option
that maximizes the retailer’s return, considering a maximum quantity of en-
ergy, qmax, that can be acquired per tariff period, h. The optimal return,
Π, is computed considering Equations 10–20 using observed data instead of
forecasts, as follows:

Π = max
O∑

o=0

∆t∑
t=1

∆hj,ij∑
h=hj,ij

ro (21)

Subject to

qh = qmax (22)

The next subsection summarizes the entire model.

3.6. The multi-step optimization of the purchasing options model

Figure 2 illustrates the entire model. To use the model, retailers have to
define their risk preference, target return, and target period. They should
start by analysing the consumption uncertainty of their portfolios, such as
market prices volatility, forecasting these variables for the target period (see
Equations 7–9 and the used MTS methodologies in [7, 9]). Then they should
select a pricing strategy that computes tariffs that guarantee their target
return for the computed forecasts (see Equations 4–6 and pricing strategies
in [7, 9, 12]). According to each product maturity, the model considers
multiple time steps until the end of the selected target period [26]. In the
first time step of the model, retailers plan the purchasing options during the
target period using the first level of the POM formulation (see Equations 2
and 3). In this step, the model uses real prices and tariffs, such as forecast
prices and consumptions to compute the expected returns of each option and
their covariance matrices (see Equations 10–20). Considering the previous
matrices and the risk preference of retailers, the POM computes the optimal
quantities (weights) of each product and the respective expected return and
VaR (see Equation 1). In the second step, the model uses the DSS to filter
the results of the POM using Algorithm 1. If both the POM and the DSS
suggest the acquisition of the same market products, retailers purchase them
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if they are close to the delivery period. Otherwise, retailers only plan their
acquisitions. Then, during real-time is possible to compute the return of
retailers considering the consumptions of their portfolios, such as the prices
of the day-ahead market. In the second and subsequent times steps, each
level of the POM is constrained by the weights of the previously acquired
products. So, retailers have to consider those products independently of the
DSS filter.

The next section presents a study to test the model.

4. Case study

This section presents a study involving a real price-taker retailer with a
portfolio composed of 312 consumers from Portugal, corresponding roughly
to 5% of the total demand of the country [32]. The studied period has
a duration of 24 months: from January 1, 2012, to December 31, 2013.1

Using the CH criterion and the k-means clustering algorithm is possible to
divide the data set into five classes of consumption: aggregation (Agg) of
residentials (AggRES), aggregation of small commercials (AggSCom), large
commercials (LCom), industrials (Ind) and others (aggregation of different
types of consumers). Each class contains the following consumers: Ind (10
consumers), LCom (11 consumers), AggSC (189 consumers), AggRes (71
consumers), and other (31 consumers). The retailer is modelled as a software
agent–that is, computer systems capable of autonomous action and able to
meet their design objectives.

The retailer agent is equipped with the purchasing options optimization
model (POM), with the decision support system (DSS), and with the forecast
methodologies described in section 3. It will plan its purchasing options in
the Portuguese market in 2013. So, in the first step of the planning phase, it
uses real data from MIBEL and consumers up to 2012 [25, 26]. Until 2013,
the MIBEL derivatives market only allows trades of futures contracts, being
the prices of such agreements used to simulate potential forward agreements
[26]. Furthermore, the retailer uses the MTS forecast methodologies to com-
pute the expected market prices and its portfolio’s needs during 2013. It
was expected a decrease in the day-ahead market prices of 4.83% and an
increase in the portfolio needs of 0.36%. Equipped with this information and

1This data set can be found in an online repository in https://archive.ics.uci.

edu/ml/datasets/ElectricityLoadDiagrams20112014#.
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methodologies, and using the ETOMinR pricing strategy with a target ex-
pected return of 19%, the retailer computes a single tariff of 56.66 e/MWh
to charge its consumers during 2013. The study involves three main parts.
The first part is devoted to computing the optimized share of purchasing
options of the retailer, considering only the POM, and both the POM and
the DSS.

By the end of 2012, in the first stage, the retailer receives the real yearly,
quarters, and first three months futures prices of the electricity in Portugal
[26]. It uses real data to compute the expected behaviour of the spot in-
dex and futures prices during 2013. The purchasing options considered by
the retailer are the following: day-ahead market, buy yearly physical for-
wards, buy physical quarter or monthly futures and sell financial quarter or
monthly futures. To trade forwards contracts is considered the real prices of
the yearly futures contracts since until this year there is not possible to trade
standard forward agreements in Portugal. Armed with this information, and
equipped with the optimization model, the retailer then determines the opti-
mized share of purchasing options in the first stage. Furthermore, the retailer
can use the DSS to filter the solutions obtained through the POM, following
them in case of validation, or only purchasing in the DAM, otherwise. The
second part presents the real return of the retailer considering different sim-
ulations involving its risk attitude, its participation only in the DAM, and
the optimal deterministic considering perfect information, i.e. observed data
instead of forecasts. Specifically, the retailer agent considers both the spot
and futures market prices published by MIBEL and the consumption data of
the 312 consumers. The retailer computes its “real” return considering the
aforementioned information, the optimized purchasing options, and the tariff
proposed to consumers obtained in the first part of the study. In the second
part of the study, a systematic comparison is made between the expected re-
turn and the “real” return. The third part of the study compares the results
of the proposed model with an open-access third-party model. Finally, some
conclusions are drawn from the simulations.

4.1. Optimal purchasing offers of retailers

The retailer agent starts by planning its purchasing offers considering:
i) the expected demand of its portfolio of consumers, ii) the real yearly,
quarter, and the first three months futures prices, iii) the annual, quarter,
and monthly expected spot prices, and iv) the forecast of the last nine months
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futures prices. Equipped with this information, in the first stage of the multi-
level optimization is possible to use the DSS to identify the best decisions for
the entire year, the first quarter, or the first month of 2013. Table 1 presents
the main results of the DSS in the first step of the optimization.

Table 1: Monthly real and expected prices of the purchasing options in the first step of
the optimization.

Month Expected Forward Quarter Monthly Expected Decision
spot price price futures price futures price monthly futures Support
(e/MWh) (e/MWh) (e/MWh) (e/MWh) price (e/MWh) System

January 51.95 52.87 52.90 53.77 – Sell monthly or
quarter futures

February 55.11 52.87 52.90 53.78 – Buy monthly or
sell quarter futures

March 49.49 52.87 52.90 52.26 – Sell monthly or
quarter futures

April 44.27 52.87 51.22 – 51.24 Sell monthly or
quarter futures

May 44.19 52.87 51.22 – 47.64 Sell monthly or
quarter futures

June 53.52 52.87 51.22 – 44.55 Buy monthly or
sell quarter futures

July 50.35 52.87 53.86 – 43.31 Buy monthly or
quarter futures

August 49.52 52.87 53.86 – 44.30 Buy monthly or
quarter futures

September 48.38 52.87 53.86 – 45.26 Buy monthly or
quarter futures

October 46.01 52.87 53.23 – 47.49 Sell quarter or
monthly futures

November 42.46 52.87 53.23 – 51.92 Sell quarter or
monthly futures

December 42.86 52.87 53.23 – 58.48 Sell quarter or
monthly futures

Analysing Table 1 is possible to verify that the DSS proposes two op-
tions every month, the first is the best solution, but the second can also
bring a positive return to the retailer. The DSS indicates that the best de-
cision considers the selling of January futures together with the acquisition
of energy at the DAM. A good decision considers selling the first quarter
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financial futures. The DSS indicates that the acquisition of yearly forward
contracts will result in an economic loss since it is expected that spot prices
are lower than the yearly forward price during 2013. Also, it is expected
that buying futures contracts in the first month or quarter of the year will
result in an economic loss. Then, feeding the optimization model with the
previously mentioned information is possible to compute the planned share
of each purchasing option in the first step, considering the risk attitude of
the retailer (see Table 2). In this study, the high risk-seeking attitude (8)
of the retailer is selected by considering the maximization of the expected
return minus the VaR (first factor). The high risk-averse attitude (100) is
selected by considering the maximization of the expected return/VaR ratio
(second factor). The other risk attitudes stand between the aforementioned
risk attitudes, decreasing the first factor values and increasing the second
factor values while increasing the risk aversion.

Table 2: Retailer’s planning share of purchasing options in the first step of the multi-level
optimization model considering its risk attitude.

Risk Spot Buy yearly Buy quarter Sell quarter Buy monthly Sell monthly
Preference (%) forward (%) futures (%) futures (%) futures (%) futures (%)

Neutral 0 0 0 0 0 100

High seeking 54.89 0 0 14.36 19.93 10.82

Moderate seeking 75.83 4.30 0 0 17.52 2.35

Small seeking 52.31 36.31 0 0 9.03 2.35

Small aversion 25.85 69.44 0 0 3.55 1.17

Moderate aversion 12.62 86.00 0 0 0.80 0.58

High aversion 9.97 89.31 0 0 0.25 0.46

Analysing Table 2 is possible to conclude that the optimization model is
in line with the DSS for selling January futures for all risk attitudes, but the
number of contracts differs. If the retailer uses the DSS to filter the POM
output, it will pass the planned acquisition of yearly forwards to the spot
market, otherwise, it will continue as planned with the POM (see Table 3).

Analysing Table 3 is possible to verify that during January, while a risk-
neutral retailer will sell all available quantity through monthly financial fu-
tures, retailers with different risk attitudes decrease the number of contracts
while increasing the risk-aversion. In the case of not using the DSS, the
risk-attitude from moderate seeking to high aversion retailers also acquire
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Table 3: Retailer’s results for January 2013 considering its risk attitude.

Risk λ Expected VaR Purchasing Price Quantity
Preference Return (%) (%) Options (e/MWh) (MW)

Neutral 0 51.39 53.49 Sell monthly futures 53.77 212

High seeking 8 27.81 12.34 Sell monthly futures 53.77 116

Moderate seeking 15 19.02 9.04 Buy yearly forwards 52.87 9
Sell monthly futures 53.77 42

Small seeking 20 16.15 6.92 Buy yearly forwards 52.87 77
Sell monthly futures 53.77 24

Small aversion 60 11.44 3.54 Buy yearly forwards 52.87 147
Sell monthly futures 53.77 10

Moderate aversion 80 9.09 1.93 Buy yearly forwards 52.87 182
Sell monthly futures 53.77 3

High aversion 100 8.62 1.63 Buy yearly forwards 52.87 189
Sell monthly futures 53.77 3

yearly forward contracts, being the number of contracts proportional to the
risk-aversion, i.e. how higher is the risk aversion (preference) higher will be
the quantity of energy acquired through yearly forward contracts. In this
case, the share of yearly forward contracts, and the weights of selling Jan-
uary futures and buying at the DAM are already defined, being included as
weight constraints on the next step of the multi-level optimization by the
end of January 2013. Otherwise, in the case of using the DSS, only the
weight of selling January futures and buying at the DAM are included as
weight constraints of the next step of the multi-level optimization. Table 4
presents the planning share in the last step of the multi-level optimization
model considering both the POM and the DSS.

The last step of the optimization model ends by the end of September
2013 with the acquisition of the last quarter futures (BQF). Therefore, until
the end of the year, the retailer only buys the required energy by its con-
sumer’s portfolio from the DAM. Analysing Table 4 is possible to verify that
concerning Table 2, the main differences stand in the acquisition of quar-
ter futures instead of monthly futures, and a higher share of spot markets
instead of yearly forward contracts. Using the DSS, the planned share of for-
ward contracts is passed to the spot market. Otherwise, it is considered the
forward share of the first step, and the spot share is the difference between
its share presented in this table and the forward share presented in Table 3.
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Table 4: Retailer’s planning share of purchasing options in the last step of the multi-level
optimization model considering its risk attitude.

Risk Spot Buy yearly Buy quarter Sell quarter Buy monthly Sell monthly
Preference (%) forward (%) futures (%) futures (%) futures (%) futures (%)

Neutral 0 0 25.00 0 0 75.00

High seeking 4.52 0 23.87 0 0 71.61

Moderate seeking 8.52 0 22.87 0 0 68.61

Small seeking 40.73 0 14.82 0 0 44.45

Small aversion 84.90 0 3.78 0 0 11.33

Moderate aversion 90.42 0 2.40 0 0 7.19

High aversion 93.73 0 1.57 0 0 4.70

Feeding the deterministic model with the real data from 2013 is possible to
identify the best purchasing decisions. Table 5 presents the DSS suggestions
until the last step of the optimization according to the expected spot prices
and the real futures prices, and compares them with the optimal decisions
that only consider observed data.

Table 5: Monthly real and expected prices of the purchasing options in the last step of
the optimization.

Month Expected spot Real Spot Quarter futures Monthly futures DSS Optimal
price (e/MWh) price (e/MWh) price (e/MWh) price Suggestion Decision

January 51.95 48.53 52.90 53.77 SMF SQF

February 48.30 43.74 52.90 49.83 SMF SQF

March 33.68 22.78 52.90 44.48 SMF SQF

April 13.68 16.15 43.94 35.90 SMF SMF

May 7.97 43.24 43.94 43.01 SMF BMF

June 24.92 41.71 43.94 45.70 SMF SMF

July 18.52 51.41 47.96 47.78 SMF BMF

August 46.46 48.28 47.96 49.65 SMF SMF

September 37.63 51.53 47.96 48.24 SMF SMF

October 51.34 (51.64) 47.21 49.96 BQF (BQF)

November 50.64 (46.41) 47.21 49.23 BQF (BQF)

December 54.55 (64.55) 47.21 50.68 BQF (BQF)

Analysing Table 5 is possible to conclude that the forecasts have sub-
stantial errors in May and July. These errors originate the failure of the
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DSS suggestions, resulting in a small economic loss (0.23 e/MWh) in May
and a substantial economic loss in July (3.63 e/MWh). In May and July,
spot prices are higher than futures prices, so the retailer will have a finan-
cial loss by selling monthly futures (SMF) instead of buying them (BMF).
In the first quarter of the year, the DSS indicates that will be preferable to
sell monthly futures than to sell quarter futures (SQF), conducting to lower
returns when compared with the optimal decision. The price of the energy
in the day-ahead market was highly volatile in 2012 and 2013, meaning that
the price risk is indeed a key risk faced by retailers [7]. The other key risk is
the consumption uncertainty of their customers.

4.2. Return of the retailer according to its risk attitude

It is possible to compute the expected and “real” results of the retailer,
considering scenarios with i) only the extreme risk attitudes of the retailer
using the POM with and without the DSS, ii) trading only in spot mar-
kets, and iii) a deterministic optimization considering perfect information
(see Table 6). The “real” returns of the other risk attitudes stand between
the returns of the high-seeking and high-averse risk attitudes, and therefore
are not interesting for discussion. For each scenario has been computed the
return difference between the “real” and the expected return.

Table 6: Expected return in the first stage and real return considering the POM with and
without the DSS, and the optimal deterministic result.

Simulation Expected POM “Real” POM+DSS “Real” Return difference of
Return (%) Return (%) Return (%) the POM+DSS (%)

Neutral 51.39 37.37 37.37 -14.02

High seeking 27.81 31.90 36.90 9.09

High averse 8.62 4.25 23.69 15.07

Only Spot 19.21 – 23.50 4.29

Deterministic – – 43.44 –

Analysing Table 6 is possible to conclude that the maximum return that
the retailer could obtain in 2013 was 43.44%, considering the proposed tar-
iff, the prices of the purchasing options, spot prices, and consumers’ con-
sumption. It is a substantial value since the literature considers real-world
markups around 20% [7, 33].

Considering the risk-neutral and the risk-seeking attitudes, their POM+DSS
returns are close to the optimal value, which means that this model can be
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appropriated for real-world retailers. This model can be upgraded by con-
sidering more sophisticated forecast methodologies. If the retailer only con-
siders the spot market it will obtain a return of 23.50%, which is in line with
real-world markups [33]. The spot prices decreased concerning the expected
values by 4.37%, increasing the return by 4.29%.

The use of the DSS increases the return of the retailer for all risk attitudes,
except the risk-neutral. The DSS suggestions are in line with the POM results
of a risk-neutral retailer, so they propose the same purchasing options. The
use of the DSS is very important in the case of the high risk-averse retailer,
since it avoids the acquisition of yearly forwards for high prices, increasing
the return from 4.25% to 23.69%. Even considering that the consumers’ tariff
is higher than the yearly forwards price, the consumption of the portfolio is
variable. So, on average, during the year the spot prices are lower than the
yearly forwards price, which means that the retailer may have a loss when it
has to sell its excess of energy at spot markets.

The real return of the retailer increases concerning the expected return in
the first stage of the optimization, except the risk-neutral attitude because
it decreases by -14.02%. The expected return of the risk-neutral is subject
to a VaR higher than it. It was expected that spot prices of electricity were
lower than futures prices during almost the whole year (see Table 1). So, as
during half the year the spot prices are higher than futures prices, the return
of selling financial monthly futures is lower than expected (see Table 5).

Figure 3 presents the main results of the study.
The worst-case return is the minimum expected return and reflects the

subtraction of the VaR to the expected return. Analysing the figure is possi-
ble to verify that the VaR of the risk-neutral retailer is very high, even higher
than the expected return, which means that its minimum expected return is
negative. The real return of the high risk-seeking retailer is slightly below the
one of the risk-neutral, but its VaR is more than four times lower than the
one of the risk-neutral. The high risk-averse retailer has a small VaR, which
means that its return is practically guaranteed. This conservative attitude
towards risk leads to more stable returns but potentially lower than consider-
ing other risk attitudes. Potentially, risk-neutral retailers may obtain higher
outputs but at very high risk. However, the final results are very dependent
on the forecast accuracy, because, in the case of practically any forecast er-
rors, risk-neutral retailers may obtain higher returns, i.e. returns close to the
expected returns. Otherwise, in case of substantial forecast errors, risk-averse
retailers may obtain returns closer to their expected returns when compared
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Figure 3: Main results of the study.

with the other risk attitudes. Furthermore, in case of unfavourable scenarios,
i.e. higher prices than expected, they may have higher returns than retailers
with other risk attitudes. These results reflect the benefits of using opti-
mization models that consider the dual objective of maximizing return and
minimizing risk. Models that neglect the trading risk may bring high losses
to retailers. Concluding, wholesale markets of electricity seem favourable to
risk-seeking retailers because they are the ones that maximize their minimum
expected return.

The next section compares the results of the presented model with ojAlgo,
a third-party open-access library [34].

4.3. Comparing the results with ojAlgo outputs

This section presents and uses ojAlgo to benchmark the results of the pro-
posed model [34]. It is one of the fastest Java libraries to solve linear algebra
problems with large matrices [35]. It has a portfolio optimization model for
the stock exchange that can be adapted to optimize the purchasing options
of power retailers. Adapting its portfolio model makes it the closest open-
access optimization model with the proposed POM. Considering the same
optimization time scale of the proposed POM, the first time step considers
the optimization of the purchasing options from January 2013 onwards for
risk-neutral, high risk-seeking, and high risk-averse attitudes. The last time
step considers the optimization of the purchasing options of December 2013.
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Table 7 presents the initial and final purchasing options of the retailer with
the aforementioned risk-attitudes.

Table 7: Retailer’s planning share of purchasing options using ojAlgo, considering its risk
attitude.

Risk Time Spot Buy yearly Buy quarter Buy monthly Sell monthly
Preference step (%) forwards (%) futures (%) futures (%) futures (%)

Neutral initial 0 0 0 0 100
final 0 25.00 0 0 75.00

High seeking initial 69.95 14.22 0 3.14 12.69
final 65.86 14.22 0 2.48 17.45

High aversion initial 4.21 95.31 0 0.48 0
final 4.35 95.31 0 0.34 0

Analysing Tables 2, 4, and 7 is possible to conclude that a retailer with
a risk-neutral attitude has the same results using both models. This occurs
because the risk-neutral retailer maximizes its return, and as the input data
is the same, both models suggest the same purchasing options. Concerning
the other risk preferences, ojAlgo is more conservative by proposing higher
weights to purchase forward contracts. Table 8 presents the expected and real
results using the initial and final portfolios allocation proposed by ojAlgo,
respectively.

Table 8: Expected return in the first stage and real return considering the final portfolio
suggested by ojAlgo.

Risk Expected VaR OjAlgo “Real” Return
Preference Return (%) (%) Return (%) difference (%)

Neutral 51.39 53.49 37.37 -14.02

High seeking 19.30 9.20 22.05 2.75

High averse 7.89 1.24 3.80 -4.09

By proposing the acquisition of higher quantities of forward contracts
ojAlgo obtains lower returns when compared with the POM. The majority
of the proposed models only consider an optimization model. Against this
background, the obtained results validate the benefit of using a decision sup-
port system to filter the results of the optimization, increasing the retailer’s
return.
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Concluding, wholesale markets seem favourable to risk-seeking retailers.
Furthermore, they can also be favourable to risk-neutral retailers if equipped
with forecast methodologies that provide expected prices and consumptions
with small errors. Otherwise, the VaR that risk-neutral retailers face does
not compensate their potential benefit concerning retailers with higher risk
aversions. On the contrary, the retail market of electricity is favourable to
risk-averse retailers, which means that having a stable portfolio in terms of
consumption is an important step to plan the purchasing options in wholesale
markets [7].

5. Conclusion and final remarks

The liberalization of the electricity sector led to retail competition for
customers in retail markets. Retailers face the volatility of spot prices and
the consumption uncertainty of their portfolios composed of end-users. Spot
prices are highly volatile, mainly because of the stochastic nature of variable
renewable energy sources (VREs), but also because of demand uncertainty.
Increasing levels of VREs increase the market price risk of all market par-
ticipants. Against this background, this paper proposed a risk management
model, that may help retailers lead with both the volatility of spot prices
and the consumption uncertainty.

This article presented a multi-step risk-return optimization of the pur-
chasing options of retailers with different risk attitudes, considering: i) a
multi-level optimization model of the purchasing options (POM), and ii) a
decision support system (DSS). The POM considers the dual objective of
maximizing return and minimizing risk. It indicates the optimal purchasing
options of retailers according to their risk preference, considering historical
and forecast data, while the DSS sorts the best options based on forecast
results, indicating if retailers are making a good decision.

The model was tested in a real-world setting, involving a price-taker re-
tailer with different risk attitudes, real data from the Iberian electricity mar-
ket, and 312 consumers from Portugal. The scenario is positive from the point
of view of the retailer since the real spot prices were lower than the predic-
tions obtained with the forecast method. Specifically, the study involved an
expected decrease of 4.83% in spot prices, when the real decrease was 9.2%.
The forecast results analysed by the DSS only failed in two months, reduc-
ing the return of the retailer. Even so, results from the study prove that in
the case of small forecast errors, the participation of retailers in wholesale
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markets is favourable to risk-neutral retailers. The use of the DSS together
with the POM increases the retailer’s return, considering all risk preferences
except the risk-neutral. The real return of the retailer with risk-neutral and
risk-seeking attitudes stands below the optimal deterministic return by less
than 7%, which validates the proposed model. However, even considering
this positive scenario, the real return of the risk-neutral retailer decreased
by 14.02% concerning the expected return. The risk-neutral retailer is the
only one that has a lower return than expected, proving the influence of the
risk of its portfolio with a value-at-risk (VaR) of 53.29%, which is higher
than its expected return, and more than four times higher than the VaR of
the other risk preferences. The risk-seeking retailer obtains a slightly lower
return with substantially less risk than the risk-neutral retailer, which means
that risk-seeking retailers may have better results in both favourable and not
favourable scenarios, and in case of high forecast errors. These results con-
firm the benefit of using a dual objective (risk-return) optimization model,
instead of only maximizing the return. Indeed, price and quantity risks are
key factors of retailers when planning their purchasing options.

In conclusion, while wholesale markets are favourable to risk-seeking re-
tailers, the retail market of electricity is favourable to risk-averse retailers.
Having stable portfolios in terms of consumption is important to plan the
purchasing options of retailers. In case of unstable portfolios of end-users,
retailers may acquire call or put options by paying a premium, hedging
against consumption uncertainty. Wholesale markets can also be favourable
to risk-neutral retailers, in scenarios where their forecast methodologies pro-
vide small errors. However, the risk of the purchasing options of risk-neutral
retailers is very high, which means that generally, their potential benefit is
not enough to cover their potential losses.

The presented study only considers price-taker retailers. Considering re-
tailers with substantial market shares, there is a need to upgrade the model.
For future work is going to be considered the strategic bidding process of re-
tailers in wholesale markets, enabling to simulate the wholesale competition
of price-maker retailers.
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