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ABSTRACT
From a user perspective, immersive content can elicit more intense
emotions than flat-screen presentations. From a system perspective,
efficient storage and distribution remain challenging, and must con-
sider user attention. Understanding the connection between user
attention, user emotions and immersive content is therefore key. In
this article, we present a new dataset, PEM360 of user head move-
ments and gaze recordings in 360° videos, along with self-reported
emotional ratings of valence and arousal, and continuous physio-
logical measurement of electrodermal activity and heart rate. The
stimuli are selected to enable the spatiotemporal analysis of the con-
nection between content, user motion and emotion. We describe and
provide a set of software tools to process the various data modalities,
and introduce a joint instantaneous visualization of user attention
and emotion we name Emotional maps. We exemplify new types of
analyses the PEM360 dataset can enable. The entire data and code
are made available in a reproducible framework.

CCS CONCEPTS
• Human-centered computing → Virtual reality; User studies.
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1 INTRODUCTION
Immersive media is rising as new types of multimedia experiences
are becoming more accessible over a wide spectrum of applications,
e.g., virtual reality (VR) for games, training and rehabilitation, im-
mersive 360° videos for journalism and new forms of storytelling,
and advanced interaction in the Metaverse1. Increased accessibility
is driven by affordability of VR equipment, and intense effort to de-
sign efficient distribution methods in constrained network conditions.
Both the design and the efficient distribution of immersive experi-
ences remain challenges, however, for two main reasons. First, it has
been shown that immersive content can elicit more intense emotions
than flat-screen presentation [2, 9, 19]. Second, compression and
streaming decisions must be driven by quality of experience (QoE)
models [7]. These models are dependent on user attention prediction.
For example, Xu et al. [25] considered content saliency and field of
view (FoV) preferences to extend the PSNR and SSIM metrics to
360° content. It is therefore key to understand the attentional and
emotional processes of users in an immersive environment, and how
these processes are associated with the content.

To enable the study of this connection between user attention,
user emotions and immersive visual content, this article introduces:

• PEM360, a new dataset of user head movements and gaze
recordings in 360° videos, along with self-reported emotional
ratings of valence and arousal, and continuous physiological

1https://www.cnbc.com/2021/12/27/metas-oculus-virtual-reality-headsets-were-a-
popular-holiday-gift.html

https://doi.org/10.1145/3524273.3532895
https://doi.org/10.1145/3524273.3532895
https://www.cnbc.com/2021/12/27/metas-oculus-virtual-reality-headsets-were-a-popular-holiday-gift.html
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measurement of electrodermal activity and heart rate. The
stimuli are selected based on high-level and low-level content
saliency to enable the spatiotemporal analysis of the connec-
tion between content, user motion and emotion.

• a set of software tools to pre-process the data of gaze, electro-
dermal activity and content, and to visualize jointly instanta-
neous heat maps of gaze and arousal level superimposed on
the frame, which we name Emotional maps.

• a preliminary analysis validating the data and verifying known
results, and examples of new connections that can be investi-
gated.

The entire collection of artifacts is presented as Python tools
and notebooks to enable reproducibility of the data processing. The
dataset and tools are now available in a public GitLab repository2.

2 EXISTING DATASETS
While a number of works in the domain of human-computer interac-
tion and cognitive sciences have studied emotions in immersive envi-
ronments [2, 9, 19, 24], it has been only more recently that the mul-
timedia community in particular has considered sensing and record-
ing emotions along with head and gaze motion [16, 20, 22, 26, 27].
Human emotions are commonly decomposed along two main di-
mensions: valence, representing the negative or positive nature of an
emotion (unpleasant-pleasant), and arousal, representing the inten-
sity of the perceived emotion (calm-excited) [3].

Li et al. [16] introduced the first reference database obtained from
95 users freely watching 73 videos in 360° who provided their va-
lence and arousal ratings after every clip using the self-assessment
manikin (SAM) tool [5]. Their head positions were recorded. The
material publicly available however only consists of the videos and
the average valence and arousal value pair for each video (aver-
aged over all users). Subsequently, Tang et al. [20] presented an
experiment where 19 users watched 36 images in 360° while their
self-reported emotions and eye motion were collected.

More recently, it has been shown that the capability of a single
rating issued after experiencing the 360° content is limited and un-
able to fully represent the variations of user state [24]. This is why
new tools have been introduced to enable the continuous collec-
tion of self-reports inside the immersive environment [22, 27]. The
data collected by Toet et al. [22] and Xue et al. [27] also comprise
physiological measurements of heart rate and electrodermal activity
(EDA, as skin conductance), which has been shown to reliably repre-
sent user instantaneous arousal [4]. Toet et al. [22] presented a new
emotions rating tool, named EmojiGrid, tested on 40 users viewing
62 videos from the reference database of Li et al. [16]. While they
provide the per-user per-video valence and arousal ratings, only time
averages are made available for EDA, and no gaze or head motion
traces. Xue et al. [27] introduced a continuous grading tool of va-
lence and arousal. They provide a dataset of 11 immersive videos
from the same database [16] experienced by 32 users. Subjective
emotional ratings, physiological measurements (including EDA)
and head and gaze movements are continuously collected and made
available.

This latter work [27] is closer to ours and has been made partly
concurrently. Our dataset is however complementary and enables

2https://gitlab.com/PEM360/PEM360/

other types of studies. We provide EDA streams at a higher rate,
acquired at 16Hz, compared to 4Hz in [27]. In the aforementioned
objective of understanding the connection between attended regions
and instantaneous emotions, like arousal, it is important to enable
the detection of several peaks of the phasic component of EDA
per second, requiring hence a higher acquisition rate. Also, we
sample seven video stimuli from the same reference database [16]
for our experiments, so that specific criteria on saliency are met,
as detailed in Sec. 3.1. Out of the seven videos, six differ from the
videos selected by Xue et al. [27]. Our dataset therefore enriches the
existing datasets and enables extensive analysis to gain new insights
on the connection between attention, emotion and content.

3 USER EXPERIMENT AND DATASET
DESCRIPTION

We conducted a controlled, indoor laboratory experiment where
users watched 360° videos in a VR headset. We collected eye move-
ment (EM), head movement (HM), heart rate (HR) and skin con-
ductance (EDA) data as well as emotion annotations of valence and
arousal. The user experiment has been approved by the university
ethics committee.

3.1 Stimuli
The videos are selected to enable several levels of content analysis
and description, to correlate with user motion and emotion. User
attention in relation with the visual content is described with saliency
maps, obtained either from gaze locations, or estimated from the
content. Here we consider two levels of content description as two
types of saliency maps, and select the videos so that for each, the
overlap between both saliency maps is limited. Specifically, we
consider low-level (LL) and high-level (HL) saliency. Low-level
saliency maps are made up of a combination of colors, intensity
and orientations as defined by Itti et al. [11]. Since we are dealing
with videos and not images, we combine this definition with the
one of optical flow [10], because we also consider motion in the
video to be part of the low-level saliency. High-level saliency maps
are composed of high-level semantic features, such as faces, cars,
or animals. Inspiring from Chopra et al. [8], high-level saliency is
obtained from YOLOv4 object detector, with object bounding boxes
being used as binary saliency maps.

We selected 7 videos from the reference database of Li et al. [16].
The selected videos should have a range of valence and arousal as
wide as possible of level of valence and arousal, and the LL saliency
should be evenly distributed both within and outside object bounding
boxes characterizing HL saliency. To select these videos we compare
(i) the number of pixels inside and outside objects, and (ii) the per-
pixel LL saliency (ranging between 0 and 255), computed as the
total LL saliency inside and outside objects normalized with the
corresponding number of pixels. Fig. 1 demonstrates this in videos
13 and 73. The number of pixels with such minimum LL saliency
inside and outside objects is equivalent over time, as is the per-pixel
LL saliency in both areas. Fig. 2 shows a frame where regions with
high LL saliency can be seen outside of the detected objects. Table 1
lists the video details.

https://gitlab.com/PEM360/PEM360/
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ID Valence Arousal Start (s) End (s) Duration (s) YouTubeID

12 7 4.6 5 103 98 T-aOVE22lEw
13 4.92 4.08 4 131 127 GJGfxfGEa9Y
17 5.22 5 5 69 64 g7btxyIbQQ0
23 7.2 3.2 8 143 135 CDfsFuDuHds
27 6 1.6 60 180 120 QxxXu_B–ZA
73 6.27 6.18 9 70 61 bUiP-iGN6oI
32 6.57 1.57 40 130 90 -bIrUYM-GjU

Table 1: Details of selected videos. Videos are accessible at
youtube.com/watch?v=[YouTubeID].
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Figure 1: HL and LL saliency characterization of video 13 (left)
and video 73 (right). Top: number of pixels inside and outside
objects. Bottom: average LL saliency per pixel inside and out-
side objects.

Figure 2: HL and LL saliency visualization for frame 2145 of
video 13 (top) and frame 3630 of video 73 (bottom). Left: the
frame. Center: HL saliency (detected objects, human on top,
animals at bottom). Right: LL saliency.

3.2 Equipment
Recordings of head and eye movements have been made with a
FOVE headset, equipped with an eye-tracker with a 120Hz acqui-
sition rate, and tethered to a desktop computer. A Unity3D scene

was used with a 360° sphere object to display the videos. We use the
FOVE Unity plugin to record head and gaze positions.

Recordings of EDA and optical pulse have been made with a
Shimmer3 GSR+ sensor with a frequency range of 15.9Hz and
51.2Hz, respectively. All of the measurements were resampled to
100Hz for analysis. The apparatus is depicted in Fig. 3.

Figure 3: Shimmer3 GSR+ used to record EDA and optical
pulse. Gray wires connect the EDA sensor, white wire connects
the pulse sensor.

3.3 Participants
The experiment was carried out with a total of 34 users, in which 31
had complete data (10 women, 20 men, 1 non-binary; 18-29 years
old, M=24, SD=3.26). 19 of them had a normal vision, 9 had cor-
rected to normal vision and 3 did not have a normal vision. Most of
them played games but rarely or never in VR, and the majority have
seen only one or two 360° videos before the experiment. Participants
received monetary compensation for their time. The seven videos
were experienced by all 31 users for their entire duration (60 to 135
seconds, see Table 1).

3.4 Procedure
The lab experiment started with a pre-questionnaire assessing the
user’s background with VR and checking for visual deficiencies. Eye
tracking calibration was done using the FOVE software for each user
before beginning the experiment to make sure the eye tracking data
is properly recorded. The VR experiment systematically started with
a low-arousal (relaxing) video (ID 32) to bring EDA and HR levels
to a user-relative baseline. The remaining six VR videos were then
experienced in a random order by every user. Users were in standing
position during the experience and could freely explore in 360° while
holding the back of a chair to maintain balance and orientation. The
videos were played without audio. After each viewing, the headset
was removed and the SAM scale presented for arousal and valence
rating. At least a 1-min break outside of the headset was observed
between videos.

3.5 Dataset structure
The resulting dataset PEM360 is provided with the structure shown
in Fig. 4. The raw_data folder contains 34 folders, one for each
user. User folders contain a Shimmer CSV file containing the EDA
and optical pulse data recorded over all the 360° videos experienced
by the user, and seven CSV files, one per video, containing the
gaze and head motion data recorded during the corresponding video.

https://www.youtube.com/watch?v=T-aOVE22lEw
https://www.youtube.com/watch?v=GJGfxfGEa9Y
https://www.youtube.com/watch?v=g7btxyIbQQ0
https://www.youtube.com/watch?v=CDfsFuDuHds
https://www.youtube.com/watch?v=QxxXu_B--ZA
https://www.youtube.com/watch?v=bUiP-iGN6oI
https://www.youtube.com/watch?v=-bIrUYM-GjU
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Entries in the CSV files include system timestamps to synchronize
the data modalities for analysis.

Valence and arousal ratings of each user for each video are stored
in the root folder under graded_valence_arousal.csv. Finally,
the root folder PEM360 also contains the Python Jupyter notebook
providing the software tools described in Sec. 4, and the entire data
processing workflow to reproduce the analysis presented in Sec. 5.

Figure 4: Folder structure of the dataset with main files.

4 PRE-PROCESSING SOFTWARE
Along with the data, we provide a Jupyter notebook to reproduce the
entire processing of head and gaze data, EDA, ratings of valence and
arousal, and the code to produce saliency maps from the content.

4.1 Processing gaze data
For both HM and EM, 3D positions are logged in Cartesian coordi-
nates (x,y, z) ∈ R3. We provide functions:
• to convert the positions from Cartesian to Eulerian (ϕ, θ ,ψ ) denot-
ing respectively yaw, pitch and roll,
• to obtain speed and acceleration over yaw and pitch,
• to obtain global speed and acceleration by computing the deriva-
tives of the orthodromic distance,
• to represent rotational motion with quaternions (hence enabling to
compute non-linear motion on the sphere as changes in quaternion
rotational axis).

4.2 Processing EDA data
The EDA signal is the raw measurement of skin electrical con-
ductance in micro-Siemens (µS). Two main components can be
distinguished in an EDA signal [4, 6]: the tonic level, also called
skin conductance level (SCL), varies slowly and represents slow
autonomic changes that may not be associated with stimulus presen-
tation; and the phasic level, which represents faster changes in EDA,
and can better reflect the impact of successive stimuli. Raw EDA,
phasic and tonic components are shown in Fig. 5-top and 5-center.
We use the Python toolbox Neurokit [17] to process EDA data,
which uses the cvxEDA method to extract the phasic component.
Finally, the physiological arousal to be analyzed in connection with
experimental stimuli can be assessed from several metrics on the
phasic level, such as peak frequency, duration and amplitude. This

is called the skin conductance response (SCR), and can be defined
in several ways. In our code, we choose to compute instantaneous
SCR as the absolute value of the first-order time derivative of the
phasic component, shown in 5-bottom. Note however that the code
can easily be modified to implement other definitions of SCR from
the phasic component. The obtained SCR is therefore a time series
for every user-video pair. This enables analysis with SCR averaged
over time for each such pair (as often done), or on a time-dependent
basis.
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Figure 5: EDA signal recorded for user 03 while watching video
73. The three graphs from the top show the raw EDA data and
the tonic component, the phasic component and the SCR (abso-
lute value of phasic first derivative).

4.3 Processing video content
As introduced in Sec. 3.1, we use LL and HL saliency models
designed for regular flat images. We therefore apply them on FoV
projections of the entire frame. We first uniformly sample 100 points
on the unit sphere and project them on the equirectangular frame
using the equirectangular-toolbox [18]. Each “patch” is made of a
projection centered on one of these points, it is a 512x512 image
corresponding to a 108°x108° FoV. These patches can overlap each
other and are separately given to the appropriate models for both LL
and HL saliency. For LL saliency, we use a Python implementation
of Itti’s saliency map [13], which also allows the combination of Itti
saliency with the optical flow between consecutive frames, which
we do by using separate extractors for each patch. For HL saliency,
we use the TensorFlow 2 implementation of YOLOv4 [21]. For each
patch given to the YOLO model, we create a binary saliency map
equal to 1 inside the bounding boxes of the detected objects. For
both LL and HL saliency, the overlapping patches are back-projected
by addition onto the equirectangular frame to obtain a single (LL or
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HL) saliency map per frame. For LL saliency, the back-projection
is normalized by dividing the value of each pixel by the number of
patches it belongs to. The final value of a given pixel is the average
over all existing projections for this pixel. For HL saliency, the
back-projection is normalized by clipping the value of each pixel
between 0 and 1. The final value of a given pixel is the maximum
over all existing projections for this pixel. Finally, the saliency maps
are downscaled by a factor of 5 both horizontally and vertically
(from 1920x1080 to 384x216) for storage space reasons. The LL
saliency is downscaled using average pooling over blocks of 5x5
pixels, whereas HL saliency is downscaled using max pooling over
blocks of the same size. The files are stored in HDF5 format and can
be accessed from a link given in the article’s repository mentioned
in Sec. 1, but can also be re-computed from the provided code.

4.4 Instantaneous visualization of gaze and
emotions: Emotional maps

Figure 6: Emotional map visualizing instantaneous gaze loca-
tions (luminance) and user arousal (from blue to red for low to
high SCR). Example with high arousal in a roller-coaster video.

As previously discussed, the stimuli choice and experimental
procedure are designed to collect data enabling a time-dependent
analysis of the connection between attention, emotion and content.
That is why we provide a tool for the experimenter to play the 360°
video and visualize the instantaneous gaze locations and arousal
(SCR) of a given user from the recorded data. This tool implements
a new way of visualizing arousal in connection with gaze, which we
name emotional maps. An emotional map is a 4D-array represented
as a frame where:

• pixel luminance reflects the time the user spent attending the
area over a past window of T seconds. A Gaussian kernel of
parameter σ is convolved with every gaze location, and accu-
mulated over the sliding window ofT seconds. A bright (resp.
dark) area can therefore reflect a fixation (resp. a saccade).

• pixel color represents the user’s SCR, from blue (low arousal)
to red (high arousal).

Emotional maps generated from a record with our tool are accu-
mulated into videos. Each point persists on the video for P sec-
onds, creating a trail to easily visualize the gaze path and arousal
changes. An example of such a video frame is shown in Fig. 63. The
script compute_emotional_map.py creates the emotional maps
and blends them with the frames to produce the resulting video
visualization from records of gaze and EDA data. We believe this
3Demonstration of a resulting video is accessible at https://tinyurl.com/25vjwk2s.

tool can lead to important qualitative insights for diverse disciplines
(including neuroscience) on the connection between visual attention
and emotion.

5 PRELIMINARY ANALYSIS OF THE DATA
In this section we first verify the validity of our data and correspon-
dence with the original dataset and between arousal and EDA. We
then exemplify possible analyses of correlation between motion and
emotion, and between attention, content saliency and emotion.

5.1 Data validation
Reliability of the collected ratings. We verify the reliability of

the collected arousal and valence by assessing the similarity of the
user ratings for each video. This is achieved with the intra-class
correlation coefficient (ICC), with classes corresponding to the 360°
videos. ICC estimates based on mean ratings with a two-way mixed
effects model are 0.96 (95% CI 0.87-0.99) for arousal and 0.88 (95%
CI 0.72-0.98) for valence. According to Koo and Li’s guidelines
[14], this is excellent and good inter-rater agreement, respectively.

Agreement between collected ratings and original dataset. Fig.
7 shows the valence and arousal ratings of our users as a boxplot
for each video, along with a red dot representing the corresponding
average values available in the original dataset [16]. We observe the
good agreement between both sets, as the latter are all the times but
one in the inter-quartile value range of our data. We also compute
the median of the root square difference of averages of our valence
and arousal ratings with the corresponding averages from [16]. This
median is 1.17 (within a range of 1 to 9), showing the agreement
between both.

12 13 17 23 27 32 73

2

4

6

8

Video

V
al

en
ce

Dataset value

12 13 17 23 27 32 73

2

4

6

8

Video

A
ro

us
al

Dataset value

Figure 7: Arousal and valence ratings by users for each videos.
The green dotted line corresponds to the mean and the orange
solid line to the median.

5.2 Connecting EDA with graded arousal
We investigate the correspondence between SCR and arousal ratings.
We gather the average SCR values SCRu ,v for every pair (u,v) of
user u and video v, and corresponding graded arousal GAu ,v . First,
we average both variables over all users for every video, and obtain
seven sample pairs (GAv , SCRv ), shown in Fig. 8-left. We verify as
did Toet et al. [22] that the video ranking according to mean graded
arousal is similar to the video ranking according to mean SCR. We
also compute the Spearman correlation coefficient (CC) between
GAv and SCRv for all seven videos. The Spearman CC between

https://tinyurl.com/25vjwk2s
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mean graded arousal and mean SCR is (0.92,p = 0.003). According
to [12, appx. 6C, p. 79], such level of correlation is significant
(α = 0.05, β = 0.2) from 7 samples (see [23]).

We then consider the 217 sample pairs (GAu ,v , SCRu ,v ). It is
interesting to observe that the Pearson or Spearman CCs do not
show any correlation between these pairs. Looking more closely at
the data, we identify that the mean level of SCR per user, SCRu =

Ev [SCRu ,v ] (averaged over all videos), varies significantly over
the users (M = 6.0e − 4, S = 6.2e − 4). With the rationale that the
excitability of a user is person-dependent and impacts the absolute
SCR values, we verify whether the SCR variations relative to this
individual’s mean are better associated with graded arousal. To do
so, we define centered SCR as cSCRu ,v = SCRu ,v − SCRu , and
do the same with graded arousal cGAu ,v = GAu ,v − GAu . Fig.
8-right represents the scatter plot of cSCRu ,v against cGAu ,v . The
Spearman CC between both is (0.25,p < 0.001).
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Figure 8: Dots colors code for video ID (legend on the right).
Left: Scatter plot of SCRv against GAv . The shaded area repre-
sents the 95% CI of the linear regressor (solid blue line). Right:
Scatter plot of cSCRu ,v against cGAu ,v .

5.3 Analysis of correlations between attention,
emotion and content

This section exemplifies exploratory analysis of correlations between
attention (with head or gaze movements), emotion (with valence,
arousal or SCR) and content (described with HL or LL saliency).

We first show examples of correlation between head motion and
arousal, as already partly observed in other works [16, 26]. With
the same centering process as above, we center the absolute pitch
value. A mean absolute pitch at 0 means the user constantly keeps
their head in the equatorial position. The centered absolute pitch
value for pair (u,v) therefore indicates how much user u deviates in
video v from their average slant. We can show that the Pearson CC
between centered absolute head pitch and centered graded arousal is
(0.42,p < 0.001). Also, the Pearson CC between centered head speed
(in rad/s) and centered graded arousal is (0.26,p < 0.001). These
results are examples of associations that can then be investigated
more ahead (looking at the confounding, mediating or interacting
factors for example).

Second, we exemplify how content description with HL and LL
saliency can be leveraged to investigate the association between
visual attention, content and emotion. We compare how well both
types of saliency maps match the users’ fixations over every frame

of the 360° video. To do so, we compute the normalized scanpath
saliency (NSS), that measures the amount of saliency around fixa-
tions [15]. We consider segments of 5 sec. to average the saliency
maps of all frames in this interval, and aggregate the user’s fixations
in this interval, hence obtaining an NSS value for both saliency types
NSSHL

u ,v ,i and NSSLLu ,v ,i for every user u, video v, interval i. The
averages over intervals are denoted NSSu ,v .

To study the relationship between both types of saliency and the
user’s arousal, we consider in Fig. 9 the difference NSSDif fu ,v =

NSSHL
u ,v − NSSLLu ,v plotted against mean-centered skin conductance

response cSCRu ,v (left) and graded arousal GAu ,v (right) for all
u,v, the points being colored per video. The major finding is the
increasing trend of NSSDif f with EDA and graded arousal. Specifi-
cally, the Pearson CC between NSSDif f and EDA cSCR is (0.25,p <
0.001), and the Pearson CC between NSSDif f and graded arousal
GAu ,v is (0.41,p < 0.001). There is therefore a moderate significant
correlation between NSSDif fu ,v and cSCRu ,v [1], meaning that HL
saliency is more predictive of the attention in higher arousal states.
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Figure 9: NSSDif fu ,v against cSCRu ,v and GAu ,v for all users u
and videos ,v. The black line shows a linear regression model
fitted on the data.

6 CONCLUSION
In this article, we have presented the new PEM360 dataset of 360°
videos with continuous physiological measurements, subjective emo-
tional ratings and user motion traces. The stimuli are selected to
enable investigating the spatiotemporal connection between user
attention, user emotions and visual content. We have described the
data collection process, the pre-processing workflow of the differ-
ent data modalities, and exemplified some possible novel types of
analyses to demonstrate the potential insights that can be drawn
from PEM360. The artifacts are made available in a reproducible
framework based on notebooks.
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