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ABSTRACT

Various controls over the generated data can be extracted from the latent space of a
pre-trained GAN, as it implicitly encodes the semantics of the training data. The discovered
controls allow to vary semantic attributes in the generated images but usually lead to
entangled edits that affect multiple attributes at the same time. Supervised approaches
typically sample and annotate a collection of latent codes, then train classifiers in the
latent space to identify the controls. Since the data generated by GANs reflects the
biases of the original dataset, so do the resulting semantic controls. We propose to
address disentanglement by balancing the semantics of the dataset before training the
classifiers. We demonstrate the effectiveness of this approach by extracting disentangled
linear directions for face manipulation on state-of-the-art GAN architectures (including
StyleGAN2 and StyleGAN3) and two datasets, CelebAHQ and FFHQ. We show that this
simple and general approach outperforms state-of-the-art classifier-based methods while
avoiding the need for disentanglement-enforcing post-processing.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) produce high-resolution and photorealistic images by
learning a mapping between a latent space, modelled by a ran-
dom distribution, and the real image space. New images can
then easily be obtained by randomly sampling in the latent space
and feeding the latent codes to the generator. However, their
semantic properties might not be the desired ones. In applica-
tions such as data augmentation, it could be desirable to finely
control the semantic properties of a generated image, especially
to synthesize images that are difficult to capture in practice.

Recent research aim at leveraging pre-trained unconditional
GANs and exploring their latent space to uncover the con-
trols they can provide over the generated data. In particular,
some methods find linear directions that can be interpreted as
variations of some semantic attributes across the latent space
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(Härkönen et al., 2020; Plumerault et al., 2020; Jahanian et al.,
2020; Shen et al., 2020; Zhuang et al., 2021; Yang et al., 2020;
Shen and Zhou, 2021; Voynov and Babenko, 2020). However,
the discovered directions often do not allow disentangled edits,
affecting multiple attributes instead of solely altering the desired
one. Learning-based supervised methods commonly rely on a
three-stages pipeline that consists in sampling a set of latent
codes, then labelling the latent codes from the corresponding
images using pre-trained image classifiers and finally, extracting
the directions. As GANs learn to approximate the training data
distribution that carries different kinds of biases, the sampling
stage leads to generating biased datasets that can, in turn, affect
the semantic directions. The third stage is often performed by
training a linear classifier to separate latent codes corresponding
to images with a desired attribute (positive set) from those corre-
sponding to images without the desired attribute (negative set).
The direction controlling the attribute is then taken as the vector
orthogonal to the classifier’s decision boundary (Hutchinson
et al., 2019; Shen et al., 2020; Yang et al., 2020). Existing cor-
relations among attributes in the generated data may cause the
positive and negative sets of a target attribute to be strongly im-
balanced in respect to other attributes, thus biasing the direction



2

towards those attributes.
For GAN control, we can identify three datasets that typically

carry biases: (1) the one used for training the GAN, (2) the
one employed for training the image classifiers, and (3) the
GAN-generated data used for finding the semantic directions.
As shown in Fig. 1, the biases mainly come from the GAN
training set (1). As GANs carry and amplify the bias (Zhao et al.,
2018), the GAN-generated dataset (3) is also biased. Reducing
GAN bias typically requires an access to the original dataset and
GAN retraining. Instead, we propose to reduce the bias in the
GAN-generated dataset directly. Specifically, after sampling and
labelling the latent codes, we adjust the sampling of this data to
balance the attribute joint distributions and remove correlations.

We apply our method in the latent space of GANs trained for
face synthesis to identify semantic directions corresponding to
facial attributes. We conduct experiments on different state-of-
the-art GAN models: PGGAN (Karras et al., 2018) pre-trained
on CelebAHQ (Liu et al., 2015), StyleGAN, StyleGAN2 and
StyleGAN3 pre-trained on FFHQ (Karras et al., 2019, 2020,
2021). We provide a quantitative and qualitative comparison
with the popular framework InterFaceGAN (Shen et al., 2020).
We show that our approach leads to directions that are naturally
disentangled whereas InterFaceGAN requires a post-processing
step to reduce entanglement. Instead of relying on linear clas-
sifiers, we also propose to directly use the direction connecting
class centroids, and show that it gives meaningful attribute con-
trols for well-balanced data. The code is available online.1

2. Related work

Early works on GANs uncovered some level of semantic struc-
ture in the latent space e.g. by applying vector arithmetic on the
latent codes (Radford et al., 2016). Subsequent works focused
on finding global directions in latent space corresponding to spe-
cific factors of variation ranging from geometric transformations
(e.g. position, scale) (Jahanian et al., 2020; Plumerault et al.,
2020; Spingarn et al., 2021), memorability (Goetschalckx et al.,
2019) to facial attributes (Shen et al., 2020; Shen et al., 2020;
Härkönen et al., 2020; Voynov and Babenko, 2020; Spingarn
et al., 2021; Zhuang et al., 2021; Shen and Zhou, 2021). By
varying the latent codes towards those directions, the correspond-
ing semantic properties of a generated image can be modified.
Recent proposals argue that semantics distribute non-linearly
and locally (Abdal et al., 2021; Hou et al., 2020; Wang et al.,
2021) but such methods are more expensive as they require to
compute a specific manipulation for each input.

Unsupervised methods. Some works attempt to find se-
mantic directions with self-supervised learning (Voynov and
Babenko, 2020), unsupervised approaches in latent space such
as PCA (Härkönen et al., 2020), or by leveraging the internal
representation of GANs to derive closed-form solutions (Shen
and Zhou, 2021; Spingarn et al., 2021). However, since the
semantics associated with each direction have to be manually
identified afterwards, the discovery of the directions of interest

1Code : https://github.com/perladoubinsky/balanced_

sampling_gan_controls.

is not guaranteed. In contrast, supervised methods aim to find
directions corresponding to specific transformations a priori.

Supervised methods. These methods typically sample a
large number of latent codes, then annotate the corresponding
synthesized images with semantic labels using pre-trained image
classifiers (Shen et al., 2020; Hutchinson et al., 2019; Yang et al.,
2020; Wang et al., 2021; Hou et al., 2020; Abdal et al., 2021)
to obtain a set of pairs (latent code, semantic labels). This set
can be employed to train linear classifiers and each semantic
direction is defined as the normal vector to the classifier decision
boundary (Hutchinson et al., 2019; Shen et al., 2020; Yang et al.,
2020). The latent codes are sampled according to the latent
space prior (usually a multivariate Gaussian), which transfers
to the semantic directions the bias of the dataset used to train
the generator. In contrast, we propose a subsampling method to
obtain a collection of latent codes that is balanced w.r.t. multiple
attributes and doesn’t carry strong correlations, thus mitigating
the propagation of bias.

Disentanglement of semantics. Ideally, each of the discov-
ered directions should control a single semantic property of the
images. But very often the relation between directions and se-
mantic properties is not one-to-one, i.e. one direction has an
impact on several properties; one speaks of entanglement. To
reduce entanglement, some propose to refine the semantic direc-
tions afterwards, by enforcing an orthogonality constraint for
the new directions. This post-processing step is referred to as
’conditional manipulation’ in (Shen et al., 2020; Wang et al.,
2021). Spingarn et al. (Spingarn et al., 2021) introduce more
constrained nonlinear paths that are defined as small circles on
a sphere. Other works argue that entanglement is reduced if
the transformations are learned together (Zhuang et al., 2021;
Abdal et al., 2021). For style-based GAN architectures, Hou et
al. (Hou et al., 2020) propose to learn an attention mechanism to
manipulate the latent code for a particular layer. Differently from
previous work, our method addresses entanglement a priori by
debiasing the data employed to discover the directions. Hence,
we argue that it can be complementary to previous proposals.

3. Balanced sampling and direction estimation

Let us consider a pre-trained generator G(.) that maps a latent
code z sampled from a d-dimensional latent space Z ⊆ Rd to
an image I = G(z) in image space I ⊆ RH×W×C . Suppose the
images are described by a set of binary attributesA = {a j, 1 ≤
j ≤ m}. For each attribute a j we aim to find a global linear
direction in the latent space, defined by unit vector u j ∈ Rd,
that allows to modify attribute a j, and only attribute a j, in a
generated image by translating the corresponding latent code z
in that direction, z′ = z + αu j, α ∈ R being the moving step.

To find the directions, the procedure put forward in (Shen
et al., 2020; Yang et al., 2020) is: (i) train a multi-attribute image
classifier FI on the ground truth provided with the database (e.g.
CelebA (Liu et al., 2015)); (ii) generate N latent codes and corre-
sponding images {(zi,G(zi))N

i=1}; (iii) label every image with the
classifier and associate the labels to the latent codes to produce
S = {(zi, FI(G(zi)))N

i=1}; (iv) for each attribute j, train a linear
classifier Ψ j in latent space on the S+j and S−j sets obtained from

https://github.com/perladoubinsky/balanced_sampling_gan_controls
https://github.com/perladoubinsky/balanced_sampling_gan_controls
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(a) CelebAHQ vs. generated data with PGGAN Cele-
bAHQ.

(b) Positives vs. negatives w.r.t. Glasses for random sam-
pling.

(c) Positives vs. negatives w.r.t. Glasses for our sampling.

Fig. 1: Joint distributions for three binary facial attributes Age (‘O’: Old, ‘Y’: Young), Gender (‘M’: Male, ‘F’: Female) and Smile (‘S’: Smile, ‘NS’: No Smile). In
(b), the positive set contains a majority of old males while the negative set contains a majority of young females, leading to bias the direction ’glasses’ toward the
attributes ’age’ and ’gender’.

S by only considering the positive and respectively negative
labels for attribute j. The direction in latent space allowing to
control attribute j is then defined by u j the unit vector that is
orthogonal to the decision boundary of the linear classifier Ψ j.

3.1. Multi-attribute balanced sampling
The distribution of the binary attributes for a set of data can

be represented in an m-dimensional contingency table (one di-
mension per attribute) where each of the 2m cells contains the
number of samples that have the corresponding combination
of values for the m attributes. If there are strong correlations
between attributes in the GAN training data then the contin-
gency table for that data is strongly imbalanced. The data in S,
generated by the trained GAN, is expected to show similar cor-
relations. The example in Fig. 1 (a) reveals that three attributes
in the CelebA (Liu et al., 2015) dataset are strongly correlated
(some combinations are much more frequent than others) and
this reflects well in the random sample generated by the GAN2.
For an attribute a j, the sets S+j and S−j employed for training a
classifier in the latent space mirror the imbalance in S. If we
consider the attribute ’Glasses’ in CelebA, Fig. 1 (b) shows how
imbalanced the associated S+j and S−j sets are with respect to
the three attributes in Fig. 1 (a). It is natural to expect that the
classifier Ψ j trained on such imbalanced data is influenced by
the strong correlations. And, consequently, the unit vector u j

that is orthogonal to its decision boundary entangles the control
of the target attribute with the most correlated attributes.

The idea of the method we propose is simple: subsample the
data in S so as to obtain approximately the same number of
samples in each cell of the contingency table. By removing the
correlations,we expect to strongly reduce the entanglement.

More precisely, we build a multi-attribute balanced sample
B ⊂ S by iteratively selecting data from S until we reach the
total number of samples N0 ≤ N we aim to obtain. At each
iteration, we first uniformly sample one combination of attribute
values (one cell of the contingency table), then we uniformly
sample without replacement one data point (z, FI(G(z))) with

2Other attributes in CelebA are also strongly correlated.

that combination. In this way, at the end of the sampling pro-
cedure, we expect to have a balanced contingency table for B
where each of the 2m cells contains approximately N0

2m data points,
as shown in Fig. 1 (c). The procedure is outlined in Algorithm 1.

The subsampling procedure works well if there is enough
data in S for each combination of attribute values. For strongly
imbalanced data, we may have to address the case where there is
no more data in S for one or more combinations before reaching
the desired total number of samples N0. Note that, as we show in
Section 4, good results can be obtained with moderate values for
N0. The ideal solution for having a balanced B is to expand S by
generating more images with G. But this can be very expensive
since, as we found, the imbalance of S reflects the imbalance of
the training dataset. Hence, we may require the generation of a
very large number of images to obtain one more image with a
rare combination of attribute values.

Instead, the solution we adopt consists in simply skipping
the current iteration if no more data is available for that combi-
nation. For high values of N0, the resulting B is no longer so
well-balanced, as we show in Section 4.2, this causes a slight
decay in performance. An alternative is to oversample the al-
ready generated data corresponding to the rarest combinations
of attribute values, i.e. random sample with replacement for a
combination if its cell in the contingency table of S has much
less than N0

2m data points. As shown in Section 4.2, this allows to
maintain good performances for high values of N0.

3.2. Direction estimation
The sampling procedure we described leads to a sample B of

size N0 that is balanced w.r.t. all attributes. For each attribute
j, two sets B+j of size N+j ≈

N0
2 and B−j of size N−j ≈

N0
2 can

be readily obtained by considering the data having positive and
respectively negative labels for attribute j. To find the direction
u j in latent space that allows to control attribute j, a good solu-
tion is to train a linear classifier on B+j ∪ B

−
j , then take as u j the

vector orthogonal to the decision boundary. Preference is usually
given (e.g. (Shen et al., 2020)) to linear Support Vector Machines
(SVMs) that are fast to train and effective in high dimensions.
To improve generalization, the value of the regularization hy-
perparameter could be selected by cross-validation. But as we
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Data: S a list of N labeled latent codes,A the
corresponding multi-attribute labels, N0 target
number of samples

Result: N0 latent codes balanced overA
for every attribute combination (a1, a2, . . . , am) ∈ A do
C[a1, a2, . . . , am]← latent codes of S labeled with

this set of attributes;
end
B ← [ ];
for i← 1...N0 do

a1, a2, . . . , am ← a random non-empty cell of C;
s← a random latent code from C[a1, a2, . . . , am];
remove s from C;
B← B ∪ s;

end
return B

Algorithm 1: Multi-attribute balanced sampling.

find later in Section 4.3, when the dataset is balanced, a stronger
regularization (larger SVM margin) tends to produce directions
that allow more disentangled edits. If the linear SVM has a very
large margin, the decision boundary becomes orthogonal to the
line connecting the centroids of the two classes. For attribute a j,
this direction is defined by:

u j =
1

N+j

N+j∑
i=1

z+i −
1

N−j

N−j∑
i=1

z−i , z+ ∈ B+j and z− ∈ B−j . (1)

Experiments in Section 4.3 show that entanglement is further
reduced when using this easy-to-compute direction.

4. Experiments

We compare our proposal with the state-of-the-art method In-
terFaceGAN (Shen et al., 2020). The main attributes we consider
are ’glasses’, ’gender’, ’smile’ and ’age’. The corresponding
attribute control directions respectively produce the following
effects: wearing glasses, presenting as male, smiling and getting
younger. Section 4.1 provides a detailed quantitative analysis
regarding entanglement. The impact of using a larger sample
size is evaluated in Section 4.2, while in Section 4.3 we study
the influence of the SVM regularization parameter.

Models. We conduct experiments with state-of-the-art GAN
models trained on two face datasets, PGGAN trained on Cele-
bAHQ (Karras et al., 2018) and StyleGAN, StyleGAN2 and
StyleGAN3 trained on FFHQ (Karras et al., 2019, 2020, 2021).
All models generate 1024×1024 images. Following (Shen et al.,
2020), we train an auxiliary classifier on CelebA (Liu et al.,
2015) with a ResNet-50 (He et al.) using multi-task learning to
predict the attributes simultaneously. For each attribute, the task
is a bi-classification problem with a softmax cross-entropy loss.
We ensure that the accuracy of the classifier is above 80%.

Implementations details. We synthesize N = 1M images
with PGGAN and N = 500K images with StyleGAN models.
We prepare a larger dataset for PGGAN as some combinations
of attributes are rarer in CelebAHQ than in FFHQ. We apply the
attribute predictors to all the generated images and discard the

Table 1: Re-scoring results for PGGAN. For each method, ∆e: overall entan-
glement, ∆r: effect. We highlight the best results among the disentangling
approaches (IfGAN⊥, Ours).

Glasses Gender Smile Age

IfGAN ∆e ↓ 0.205 0.118 0.034 0.125
∆r ↑ 0.386 0.519 0.386 0.142

IfGAN⊥ ∆e ↓ 0.055 0.018 0.015 0.055
∆r ↑ 0.231 0.420 0.381 0.115

Ours ∆e ↓ 0.038 0.041 0.013 0.072
∆r ↑ 0.286 0.448 0.370 0.129

samples having a confidence below 0.9. For each attribute, we
collect N0 = 1000 samples using our multi-attribute balanced
sampling. We choose this value depending on the number of
samples in the cell with fewest samples. The semantic directions
are then obtained by taking the direction defined by the cen-
troids of each class (see Section 3.2). For a fair comparison, we
reproduce InterFaceGAN results instead of using the provided
directions as they were not computed using the same attribute
prediction model3 nor the same number of samples. For Inter-
FaceGAN, we uniformly subsample the generated dataset then
train linear SVMs with C = 1.0 4 to obtain the semantic direc-
tions given by unit vectors. These vectors are 512d (dimension
of the latent spaces of PGGAN and StyleGAN).

Metric. As in Shen et al. (2020), we use the re-scoring metric
to quantify the desired effect and entanglement associated with
a direction. This metric measures how the attribute scores vary
after manipulating the latent codes. Intuitively, a good direction
should induce an increase in the score corresponding to the target
attribute while not affecting other scores. Given a direction u j

for attribute a j, the re-scoring for attribute ak is computed as:

∆sk =
1
n

n∑
i=1

[
FI,k(G(zi)) − FI,k(G(zi + αu j))

]
(2)

The desired effect ∆r of direction u j is given by the re-scoring
result for the target attribute a j. The entanglement of direction
u j with another attribute ak is given by the re-scoring for that
attribute. We derive a metric based on re-scoring to obtain the
overall entanglement ∆e associated with a direction. Similarly
to StyleSpace Wu et al. (2021), we average the re-scoring results
over the non-target attributes: ∆e = 1

|A|−1
∑

i∈A\a j
|∆si|.

Re-scoring is evaluated on n = 2000 latent codes with α = 2.0
for the editing and averaged over 3 experiments.

4.1. Disentanglement analysis

PGGAN is a traditional GAN architecture where a code is
sampled from a Gaussian latent space Z and fed to the first
convolutional layer. In addition toZ, StyleGAN introduces an
intermediate latent spaceW whose distribution is modelled by

3The model was not made available by the authors.
4As in the code provided by the authors: https://github.com/

genforce/interfacegan.

https://github.com/genforce/interfacegan
https://github.com/genforce/interfacegan
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Table 2: Re-scoring results for StyleGAN models inZ (top) andW (bottom). For each method, ∆e: overall entanglement, ∆r: effect. InZ, we highlight the best
results among the disentangling approaches (IfGAN⊥, Ours).

(a) StyleGANZ

Glasses Gender Smile Age

IfGAN ∆e ↓ 0.140 0.161 0.050 0.108
∆r ↑ 0.339 0.335 0.154 0.156

IfGAN⊥ ∆e ↓ 0.064 0.061 0.033 0.060
∆r ↑ 0.278 0.266 0.145 0.131

Ours ∆e ↓ 0.042 0.060 0.024 0.054
∆r ↑ 0.345 0.307 0.173 0.142

(b) StyleGAN2Z

Glasses Gender Smile Age

0.135 0.106 0.041 0.111
0.335 0.406 0.100 0.113

0.049 0.047 0.026 0.068
0.232 0.346 0.099 0.091

0.038 0.059 0.024 0.062
0.290 0.386 0.111 0.097

(c) StyleGAN3Z

Glasses Gender Smile Age

0.121 0.122 0.041 0.153
0.444 0.395 0.301 0.182

0.030 0.037 0.018 0.069
0.382 0.346 0.295 0.163

0.044 0.027 0.014 0.076
0.398 0.377 0.305 0.172

(d) StyleGANW

IfGAN ∆e ↓ 0.046 0.140 0.073 0.076
∆r ↑ 0.480 0.370 0.237 0.167

Ours ∆e ↓ 0.033 0.073 0.052 0.046
∆r ↑ 0.603 0.435 0.238 0.169

(e) StyleGAN2W

0.040 0.030 0.025 0.021
0.207 0.245 0.132 0.092

0.031 0.031 0.026 0.055
0.278 0.294 0.129 0.102

(f) StyleGAN3W

0.065 0.062 0.024 0.077
0.417 0.229 0.248 0.145

0.036 0.037 0.009 0.051
0.383 0.303 0.287 0.146

G
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Input IfGAN IfGAN⊥ Ours

Fig. 2: Editing results for PGGAN for attributes Glasses, Gender and Age.

fully-connected layers and learned during training, leading to
a less entangled space (Karras et al., 2019). We compare our
method to InterFaceGAN before (IfGAN) and after conditional
manipulation (IfGAN⊥), the latter having been introduced as
an ad hoc disentanglement post-processing (Shen et al., 2020).
For attribute j, it replaces u j by its projection on the subspace
orthogonal to the directions found for the other attributes.

PGGAN. The results in Table 1 show a strong entanglement
for IfGAN especially for the attributes ’glasses’, ’gender’ and
’age’, which are the most correlated attributes. These results
reflect what can be observed in Fig. 2 for instance: the direction
’gender’ tends to age the face and the direction ’age’ tends to
feminize the face. The conditional manipulation allows to reduce
the entanglement while maintaining the desired effect. Our
approach succeeds to extract directions allowing disentangled
edits without requiring conditional manipulation. It significantly
outperforms IfGAN and performs on par with IfGAN⊥.

We experimented with applying the conditional manipulation

Table 3: Re-scoring results for StyleGAN3 inZ andW for rare attributes. For
each method, ∆e: overall entanglement, ∆r: effect. InZ, we highlight the best
results among the disentangling approaches (IfGAN⊥, Ours).

(a) StyleGAN3Z

Pale Skin a Wavy Hair a Narrow Eyes a

IfGAN ∆e ↓ 0.106 0.180 0.165
∆r ↑ 0.277 0.302 0.234

IfGAN⊥ ∆e ↓ 0.036 0.068 0.096
∆r ↑ 0.251 0.273 0.208

Ours ∆e ↓ 0.027 0.083 0.059
∆r ↑ 0.308 0.341 0.239

aPale skin is balanced w.r.t. Gender and Age, Wavy Hair w.r.t. to Gender and
Narrow Eyes w.r.t. Smile.

(b) StyleGAN3W

Pale Skin Wavy Hair Narrow Eyes

IfGAN ∆e ↓ 0.038 0.059 0.120
∆r ↑ 0.256 0.153 0.196

Ours ∆e ↓ 0.035 0.032 0.055
∆r ↑ 0.252 0.260 0.245

to post-process our directions. However, we found that they are
initially sufficiently orthogonal and that enforcing this geometri-
cal constraint actually slightly increases the entanglement.

StyleGAN models. Tables 2a to 2c show there is less en-
tanglement in Z space of the StyleGAN models compared to
PGGAN, probably because FFHQ is a larger dataset and the
attributes are less correlated than in CelebAHQ. Otherwise, we
find similar tendencies. TheW space being less entangled than
Z, the results for IfGAN shown in Tables 2d to 2f are good
(conditional manipulation is not necessary). Fig. 3 also shows
better editing results in W space as evident for the attribute
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Fig. 3: Editing results for StyleGAN2 for attributes Glasses, Gender, Smile and Age.
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Fig. 4: Editing results for StyleGAN3 inW for attributes Pale Skin, Wavy Hair
and Narrow Eyes.

’glasses’. Our method reaches similar to slightly better results
than IfGAN, except for the attribute ’age’ in StyleGAN2.

Table 3 presents results for different attributes: ’pale skin’,
’wavy hair’ and ’narrow eyes’ for the StyleGAN3 model. De-
spite being quite rare, we can find effective directions for these
attributes. In particular, we notice that the attribute ’narrow eyes’
is not naturally disentangled from ’smile’ in W space. Our
method allows to significantly reduce the entanglement with this
attribute as shown in Fig. 4. Fig. 5 shows additional qualitative
results with intermediate α values for StyleGAN3 inW space.

Similarly to IfGAN, we also investigate the preservation of
identity (cosine similarity between VGG-Face Cao et al. (2018)
features before and after manipulation). However, this metric is

not relevant for all attributes (e.g.’gender’) and is dependent on
the effect of a given direction. For suitable attributes (e.g.’smile’)
and in relation to the effect, we obtain similar results to IfGAN.

4.2. Impact of the sample size
We study the influence of using a larger sample size to esti-

mate the directions. The directions are calculated with a sample
of size N0 = 10000 (instead of N0 = 1000). For a larger sample
size, the distributions are no longer well-balanced as potentially
many cells of the contingency tables have been emptied. As
shown in Table 4, the entanglement for the attribute ’glasses’
remains quite low but the entanglement for the attribute ’gender’
and ’age’ is quite high, almost similar to IfGAN. To mitigate
this effect, we propose to oversample the rarest samples as men-
tioned in Section 3.1. The results (ours* in Table 4) show that it
allows to decrease the entanglement and to finally reach a simi-
lar entanglement as for the directions estimated with a sample
of size N0 = 1000. We also find that the directions seem to
have more effect when using a larger sample size. Following
these observations, we argue that a large sample size (as in Shen
et al. (2020)) is not necessary to obtain meaningful directions.
Nevertheless, oversampling allows to increase sample size for a
stronger effect, while keeping a low entanglement.

4.3. SVM vs. centroids difference
The calculation of the directions is usually performed using

SVMs trained in latent space. We study the influence of the
regularization parameter on the extracted directions. Table 5
shows that a stronger regularization (lower C) leads to smaller
entanglement, while the effect on the target attribute remains al-
most unchanged. This observation led us to consider the case of
a very large SVM margin, when the decision boundary becomes
orthogonal to the direction connecting the centroids of the two
classes (see Section 3.2). This direction performs best.
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Table 4: Re-scoring results for a higher sample size N0 = 10K for different models: PGGAN, StyleGAN3 inZ and inW, ∆e: overall entanglement, ∆r: effect.

(a) PGGAN

Glasses Gender Smile Age

IfGAN
N0 = 10K

∆e ↓ 0.238 0.141 0.034 0.137
∆r ↑ 0.488 0.560 0.411 0.149

Ours
N0 = 10K

∆e ↓ 0.099 0.099 0.017 0.108
∆r ↑ 0.415 0.543 0.407 0.140

Ours*
N0 = 10K

∆e ↓ 0.055 0.035 0.003 0.078
∆r ↑ 0.367 0.505 0.400 0.136

Ours
N0 = 1K

∆e ↓ 0.038 0.041 0.013 0.072
∆r ↑ 0.286 0.448 0.370 0.129

(b) StyleGAN3Z

Glasses Gender Smile Age

0.167 0.196 0.043 0.183
0.570 0.464 0.346 0.192

0.040 0.114 0.042 0.123
0.523 0.444 0.341 0.184

0.044 0.048 0.018 0.087
0.515 0.419 0.335 0.182

0.044 0.027 0.014 0.076
0.398 0.377 0.305 0.172

(c) StyleGAN3W

Glasses Gender Smile Age

0.078 0.087 0.030 0.075
0.527 0.305 0.292 0.152

0.037 0.066 0.033 0.072
0.414 0.321 0.299 0.152

0.036 0.031 0.009 0.051
0.413 0.309 0.296 0.150

0.036 0.037 0.009 0.051
0.383 0.303 0.287 0.146

Table 5: Re-scoring results for different boundary calculation methods (given a balanced sample) for different models: PGGAN, StyleGAN3 inZ andW, ∆e: overall
entanglement, ∆r: effect.

(a) PGGAN

Glasses Gender Smile Age

SVM
C = 1.0

∆e ↓ 0.118 0.080 0.011 0.113
∆r ↑ 0.326 0.500 0.382 0.136

SVM
C = 0.001

∆e ↓ 0.069 0.045 0.010 0.091
∆r ↑ 0.323 0.471 0.379 0.133

centroids ∆e ↓ 0.038 0.041 0.013 0.072
∆r ↑ 0.286 0.448 0.370 0.129

(b) StyleGAN3Z

Glasses Gender Smile Age

0.069 0.108 0.060 0.114
0.423 0.3901 0.296 0.177

0.054 0.067 0.029 0.087
0.431 0.391 0.310 0.176

0.044 0.027 0.014 0.076
0.398 0.377 0.305 0.172

(c) StyleGAN3W

Glasses Gender Smile Age

0.051 0.054 0.021 0.054
0.404 0.232 0.261 0.144

0.042 0.044 0.019 0.055
0.409 0.296 0.291 0.155

0.036 0.037 0.009 0.051
0.383 0.303 0.287 0.146

5. Discussion

While our method balances the sample to decorrelate the at-
tributes, we observed that the resulting directions in latent space
are quasi-orthogonal, which was not a priori expected. This may
explain the success of previous works that look for orthogonal di-
rections in the latent space. For example, GANSpace (Härkönen
et al., 2020) applies PCA in theW space and the authors are
able to assign semantic interpretations to the resulting direc-
tions (orthogonal by definition). The conditional manipulation
in InterFaceGAN (Shen et al., 2020) also enforces an orthogonal-
ity constraint among control directions to reduce entanglement.
This requirement of orthogonality did not have an a priori justi-
fication but our results indicate that orthogonality in latent space
could be a necessary condition for independent controls and,
even for unconditional GANs, the latent space does encode a sig-
nificant part of the semantics. We believe that our subsampling
approach can prove beneficial to other works on GAN control
that rely on sampling in the latent space. Three issues could be
raised. First, as in most works on finding supervised controls,
we use pseudo-labels provided by image classifiers that are as-
sumed reliable. But they can also be affected by bias, with an
impact on both the labelling of the training set and the evaluation
since re-scoring depends on the classifiers. However, results on
FFHQ show that even classifiers trained on smaller datasets like
CelebAHQ transfer quite well. Second, using classifiers to find
directions assumes that samples can be grouped in classes. This
nevertheless works surprisingly well for binarized continuous
attributes (e.g.’age’) and might not be a problem in practice.

Finally, our method only balances known attributes. Entan-
glements due to representation biases of unlabeled attributes
can remain, and in rare occasions, be worsened by the over-
sampling of rare combinations. This underlines that the set of
attributes should be chosen and labeled carefully to achieve fair
and unbiased editing.

6. Conclusion

We focused on the identification of directions in the latent
space of a GAN to control semantic attributes of the generated
images. Our assumption was that the entanglement typically ob-
served in such situations results from strong correlations among
attributes in the training data, that are transferred to the gen-
erated data. To address this issue, we proposed a simple and
general method that balances the data among the different com-
binations of values for the attributes. The evaluation on two
popular GAN architectures and two face datasets shows that this
approach outperforms state-of-the-art classifier-based methods
while avoiding the need for post-processing. We believe it can
prove useful to other sampling-based GAN control methods.
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Fig. 5: Editing results for StyleGAN3 inW for attributes Glasses, Gender and Age.
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