

Single cell RNAseq analysis in R

22-23 August 2022

Archive of questions from the workshop Slack Channel

(In the order they were asked during the workshop)

Question/comment	Answer
How I can save and export the count matrix?	This dataset would be created from a count matrix generated by cellranger.
	We're currently working with the end result from a workflow. But the count matrix already exists (you can find it in data/pbmc3k/filtered_gene_bc_ma trices/hg19/)
	so typically, you wouldn't need to export the count matrix because it is a seperate file that exists before you create the Seurat object, if that makes sense?
Do we need to annotate the data before we can call the CD14 feature?	If you mean annotate in terms of assigning a cell type label or cluster - no
	If you mean annotate in the sense of gene names - that information already exists in the count matrix
	In this Seurat object the gene Id is the gene symbol
	You'd also need to find the correct annotation for your gene of interest because Seurat can be a bit inflexible when it comes to changing feature information
	I think the Seurat object will have the gene

	name if it's generated from a cellranger output. but if you know a gene by a different annotation, you have to find the annotation that the gene is going by in your Seurat object
What was the code to get the gene names?	rownames(pbmc_processed)
	Returns a vector of all genes. It is case sensitive
	I find this website quite useful to check that your gene id is correct: <u>https://www.genecards.org/</u> For example, "c-myc" is my favourite gene but the HGNC id for this gene is "MYC"
From our breakout room, we had a question about finding gene names that match a specific pattern, here's an example solution:	<pre>## Get a vector of all genes gene_names <- rownames(pbmc_processed) # Extract specific genes starting with the phrase CD - this code only works if you have the stringr package installed cd_gene_names <- gene_names[stringr::str_starts(string = gene_names,</pre>
	<pre>pattern = "CD")]</pre>
	<pre># A more general solution for pattern searching is using grepl and doesn't require any external packages. It does require knowledge of regular expressions</pre>
	sel_gene_names <-
	<pre>gene_names[grepl(pattern = "^CD", x =</pre>
	<pre>gene_names, ignore.case =T)]</pre>
What parameters should we be assessing when examining the html report from cellranger in terms of the sequencing/library prep quality?	The major thing I usually look for is consistency amongst samples from the same run.
	This is also covered in the QC section.
Do we usually just set min.cell=3 and min.feature=200?	I think those are the default values of that function. I tend to set them both to 0 so no cells are filtered out just so I can look at the whole dataset before I start applying QC filters.
	But up to you if you feel the thresholds are

	reasonable. it's strongly encouraged to explore your dataset thoroughly to be certain that any thresholds you are applying are sensible
Why do we want to remove mitochondrial genes?	Low-quality / dying cells often exhibit extensive mitochondrial contamination
	A gene seen in only 3 cells is not going to tell us anything interesting. A cell where we only saw 200 genes is also not going to be much use. It might even be an empty droplet that didn't contain a cell in the first place.
I have added the column name using pbmc\$samplename <- 1. Once I have added a column name (i.e. name is 1) to a data set (dataset1) and added a column name (i.e. name is 2) to a second data set (dataset2), how do I combine the two data sets together?	Check this out https://satijalab.org/seurat/articles/merge_vi gnette.html That's assuming they're from one study, its more complex if its from different studies.
What about doublets? Isn't that a good way to remove them from the data?	You generally are better of using a doublet detection tool rather than QC thresholds
	Here is one of tools that works on Seurat object. <u>https://www.cell.com/cell-systems/pdf/S240</u> <u>5-4712(19)30073-0.pdf</u> <u>https://github.com/chris-mcginnis-ucsf/Doub</u> <u>letFinder</u>
For breakout room 4, re: object conversion - turns out I was wrong. So zellkonverter - for when your collaborator wants you to use scVelo and you need to venture out to the world of scanpy/python (i.e convert SingleCellExperiment object to AnnData). Specifically, how I utilise Bioconductor's scater package for adaptive QC thresholds - I load my data in as a seurat object. I also separately load in my data as a SingleCellExperiment object, identify outliers with scater, then grab the idents of	

NormalizeData uses log1p() to log transform that data after scaling, so scale.factor has some influence about how far apart small counts are. I think scale.factor should be similar to the typical total count in each cell. Not sure how important this is in practice. Also noting log1p uses log to base e.
I think she just used a violin plot: VlnPlot (pbmc, "LYZ") but she ran the same line of code before and after normalising which is why it looked different She used GetAssayData(pbmc, slot = 'counts') to get the unnormalised counts
It saves it to your working directory
If you run the cmd VariableFeatures (pbmc) this lists the 2000 genes chosen. So you could remove the cell cycle genes from that list We can also regress them out, using ScaleData(), could provide cell cycle genes to this function Seurat has a vignette on this too, it appears: https://satijalab.org/seurat/articles/cell_cycle vignette.html

BioCommons

	<pre>Seurat does also have a Cell cycle function too CellCycleScoring(marrow, s.features = s.genes, g2m.features = g2m.genes, set.ident = TRUE)</pre>
If you're getting no separation using the nFeatures = 2000 (i.e. because the cells are super similar), can you reduce this? If so, are there any important considerations to make?	I haven't encountered this, but I think a few extra genes shouldn't matter too much - better too many (undirected noise) than too few (missing variation). But if you look at the variable genes plot and can see that the top 2000 (red) genes are digging into 'not-variable' territory then it could make sense to adjust that number.
When do we choose to use the linear dim reduction PCA and when should we choose to use the non-linear method such as umap ?	Generally with single cell analysis you'll go for a non-linear approach, because there is often too much heterogeneity for a linear PCA approach to work on its own. This data is PBMCs and actually doesn't look too bad with a PCA, but for more complex samples (e.g. whole tissue with specialised cell types and immune cells e.t.c) you can end up with an unhelpful blob. If you were working with a more homogenous FACs sorted population you might have less diversity, and maybe a PCA would work fine. Its just a judgement on whatever looks like a sensible layout for your specific data.
In the workshop we have seen the quantitative analysis of transcript counts. Can we also have a look at the novel transcripts for a particular gene or overall? That will be more of a qualitative analysis.	It depends on the sequencing technology. Technologies like 10X only capture a small part of the gene at the 3' end to count it, so can usually only give gene-level count information (https://assets.ctfassets.net/an68im79xiti/4fl y9tr6qQuCWamIi0iEa/40658acce7a6756e3 8537584897840e3/CG000108_AssayConfi guration_SC3v2.pdf) . To look at full transcripts you'd need to use a full length sequencing approach. In any case, you can look at the .bam alignment files from your preprocessing (these are not on the vms) with a genome

	browser tool like IGV (<u>https://software.broadinstitute.org/software/</u> <u>igv/download</u>) and see how reads are aligned to whichever gene.
Cell cycle sorting	<pre># Cell cycle scoring (for human) # https://satijalab.org/seurat/articles/c ell_cycle_vignette.html # A list of cell cycle markers, from Tirosh et al, 2015, is loaded with Seurat. We can # expressed this list into markers of</pre>
	<pre># segregate this list into markers of G2/M phase and markers of S phase s.genes <- cc.genes\$s.genes g2m.genes <- cc.genes\$g2m.genes pbmc <- CellCycleScoring(pbmc,</pre>
	<pre>s.features = s.genes, g2m.features = g2m.genes)</pre>
Sneaky thing about Seurat - there is also a cc.genes.updated.2019 object which I think is a more up to date list of cell cycle genes (there's 6 different genes between the two lists)	
It is not working on mine. even if I change the width of the screen. I get this error: When using repel, set xnudge and ynudge to 0 for optimal results	Try repel = FALSE
We talked about how one can add or remove genes from Variable features, such as sex or y chromosome related genes. what is the code bit to do that?	<pre>It's a bit of a hack but this would be one option listOfGenesToRemove = c('TNF', 'MYC') # vector of genes to remove RemoveIndex = which(VariableFeatures(pbmc) %in% listOfGenesToRemove) # get position in Variable genes VariableFeatures(pbmc) = VariableFeatures(pbmc) [-(RemoveIndex)] #remove them and add back into VariableFeatures</pre>
Where are the PCA data stored in pbmc?	pbmc@reductions
So how do we conceptualise the PC loading, and its positive/negative value?	In a PC: genes have a loading cells have an score (aka embedding)

	If a gene has a positive loading, it will tend to be up in cells with a positive score and down in cells with a negative score, vice versa for negative.
Can a gene have equal loadings on both PC1 and PC2?	Yes, its possible. Some genes could be highly discriminative and some may have similar loadings.
Can anyone figure out why I am getting this error? CST# worked but MALAT no?	The gene name is MALAT1
<pre>FeaturePlot(pbmc,'MALAT') Error: None of the requested features were found: MALAT in slot data In addition: Warning message: In FetchData.Seurat(object = object, vars = c(dims, "ident", features), : The following requested variables were not found: MALAT > FeaturePlot(pbmc, "MALAT") Error: None of the requested features were found: MALAT in slot data In addition: Warning message: In FetchData.Seurat(object = object, vars = c(dims, "ident", features), : The following requested variables were not found: MALAT</pre>	
Would you ever plot other PCs or always just use PC1 and PC2 during this step of analysis?	You could but this is what the UMAP is doing.
	It also gives poor resolution
How would you write it in the FeaturePlot() function to look at other PCs?	FeaturePlot has an argument dims = c(1, 2)
	you'd change that argument
	<pre>Example: FeaturePlot(pbmc, "CST3", dims=c(3,4), reduction="pca")</pre>
	you can always use ?function_name to check the documentation e.g ?FeaturePlot

Where do we find a scree plot to see the total variance explained by our PCs? Instead of SD?	lguess plot(pbmc\$pca@stdev^2)
Does the Seurat seed for the UMAP change each time? Or always the same each time for same data?	I think it's normally the same seed for your session. If you re-run, you'll get the same umap In runPCA seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed. Generally your session persists from day to day until your RStudio crashes
Can you discard all the mitochondrial and ribosomal genes at the beginning if they are not important in your study?	You'd need to remove them from the matrix itself before you generate the seurat object if i recall correctly You generally can't discard features from a
	seurat object - or so it has been for most versions - i don't know if they've changed it with v4 (edited)
	you can use the 'features =' option in the FindMarkers function
<pre>pred.cnts <- SingleR::SingleR(test = sce, ref = ref.set, labels = ref.set\$label.main) Error in rownames(x) : object 'sce' not found</pre>	Is your converted Seurat object called sce /did you run the line of code to create sce ?
???	
Do you have recommendations for celltype packages other than celldex? I am interested in human bone marrow populations	I think, you can get various datasets from scRNAseq: https://bioconductor.org/packages/release/d ata/experiment/html/scRNAseq.html
So if we have multiple data on the same sorted cell type and want to do pseudobulk should that happen after harmony integration?	I think so. Users of harmony to confirm? Yes or some other integration method