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Abstract—Electrical machine electromagnetic-caused noise
and vibration represents an ever-increasing target for machine-
designers. A novel late design-stage NVH optimization method
using the full rotational velocity synthesized vibration-response
map is proposed. This is assisted by a target-setting method for
the most important force harmonics using a force sensitivity
analysis. The procedure is applied on a PMASynRM used
for light traction applications, where the rotor cross-section is
modified by introducing notches and saliency. The results for
different percentages of permitted decrease in average show that
both resonances and individual frequency orders can be directly
targeted and minimized.

Index Terms—PMASynRM, design optimization, NVH, elec-
tromagnetic forces, vibration-synthesis, structural-dynamics, vi-
bration, notches.

I. INTRODUCTION

The accelerating market push for automotive electrifica-
tion and advanced driver-assistance systems (ADAS) gives
electrical machine designers stricter Noise, Vibration and
Harshness (NVH) design targets. The absence of the masking
combustion-engine broadband noise amplifies the annoyance
perception caused by the electric powertrain, tire-road inter-
action and wind noise. This, together with the electromag-
netic, thermal and structural requirements, makes the design
and optimization of electrical machine a complex multi-
disciplinary, multi-physics problem [1].

We can distinguish between two noise-mitigating opti-
mization approaches for electrical machine design defined
by the design-cycle positioning: the early-stage approach
where the design space is the same for every domain target
and NVH requirements are competing with the other multi-
physics requirements [2], [3] and the late-stage approach
where all other targets except NVH are satisfied and only
minor modifications to the machine cross-section are allowed,
where usually a trade-off has to be made between electro-
magnetic and NVH requirements [4], [5]. For the early-stage
method it is easier to find a global solution with respect to
a multi-attribute cost function, but the NVH transfer path
(structure and air-born) has a higher degree of uncertainty
in comparison with the late-design stage where usually the
transfer path is better known thus making vibro-acoustic
results more reliable.

In this paper two novel procedures, based on the
vibration-synthesis introduced by Boesing [6] allowing for
fast vibro-acoustic simulations, that assist the late-design
stage optimization process are introduced:

• An air-gap force harmonics sensitivity analysis pre-
sented in Section II-B, with the purpose of establish-
ing a cause-effect relationship between a specific force
harmonic and the overall vibration response of the
electrical machine. The method allows to set-up NVH
optimization cost functions based on force harmonics
before modifying the machine cross-section. This brings
an improvement to the state of the art, where usually the
geometrical modifications are introduced first and the
effects on the forces and vibration response are analyzed
afterwards at one or a few numbers of RPM operating
points [4], [7]–[10].

• Using synthesized run-up spectrograms as metrics in the
design space exploration process in order to assist the
machine-designer when selecting the optimal design on
the full RPM-frequency range.

The machine under study is a Permanent-Magnet Assisted
Synchronous Reluctance Machine (PMASynRM) with the
parameters detailed in Table I and was designed for light
traction application with low-cost ferrite permanent magnets,
with additional construction details given in [11]. One oper-
ating point was used in the optimization process: id = −60A
and iq = 100A and the amplitude of the vibration response in
all presented results is scaled. The mechanical transfer path
is represented by the stator structure but this can be easily
extended to the full powertrain structure, including boundary
conditions.

II. PMASYNRM MAGNETO-MECHANICAL COUPLING

A. Structural dynamics analysis using vibration synthesis

The forced response of the stator structure is computed
using the vibration synthesis method. The first step in the
process is the orthogonal decomposition (cos-sin) of the air-
gap force pressure (frad,tan(t, α), where t represents time
and α is the air-gap position), in both radial and tangential
directions, followed by the superposition of the most impor-



TABLE I
3-PHASE 6-POLE PMASYNRM PARAMETERS [11]

Parameter unit value

Rated voltage V 100

Rated current amplitude A 101

Base speed rpm 2100

Maximum speed rpm 9000

Stator outer diameter mm 170

Rotor outer diameter mm 114

Stator stack length mm 110

Air gap length mm 0.5

(a) (b) (c) (d)

Fig. 1. Significant stator mode shapes: (a) Mode 0 at 8287Hz, (b) Mode
2 at 946Hzm, (c) Mode 3 at 2545Hz and (d) Mode 4 at 4589Hz.

tant space orders (m):

frad,tan[sup](t, α) = frad,tan[DC](t)+
M∑

m=1

(frad,tan[cos,m](t)cos(mα) + frad,tan[sin,m](t)sin(mα)).

(1)
The vibration is calculated numerically in Simcenter 3D as
the superposition of dynamic responses excited by each sig-
nificant force shape. This is achieved with a modal frequency
response solution, having the excitation F[I],shape a unitary
force shape where the total energy per frequency line is equal
to 1 N [12]:

v[I],shape(f) = H(f)F[I],shape(f), (2)

where v[I],shape(f) is the frequency response for each force
shape excitation and H(f) is the transfer function obtained
from modal analysis (stator mode shapes together with their
eigenfrequencies are presented in Figure 1). The unitary
frequency response for an air-born NVH significant mesh
node (in both radial and tangential direction) for the most
important force shapes (again both radial and tangential
components) for the machine under test are presented in
Figure 2.

The total response v(f) is the superposition of all fre-
quency responses scaled with the cos-sin frequency domain
amplitude factors obtained from Equation 1:

v(f) = v[I],DC(f)fDC(f)+
M∑

m=1

(v[I],cosmfcos,m(f) + v[I],sinm
fsin,m(f)).

(3)
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(a) radial direction response for radial unitary force excitation
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(b) tangetial direction response for radial unitary force excitation
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(c) radial direction response for tangetial unitary force excitation

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
frequency [Hz]

-120

-100

-80

-60

-40

di
sp

. [
m

] 
in

 d
B

v[I],DC

v[I],Sin3

v[I],Sin6

v[I],Sin9

v[I],Cos3

v[I],Cos6

v[I],Cos9

(d) tangetial direction response for tangential unitary force excitation

Fig. 2. Displacement for unitary frequency responses.

2000 4000 6000 8000
Speed in rpm

0

5000

10000

15000

Fr
eq

ue
nc

y 
in

 H
z

-50

0

50

V
ib

. r
es

po
ns

e 
[2

0L
og

10
]

(a) radial direction
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(b) tangential direction

Fig. 3. Synthesized stator vibration response spectrograms using both the
radial and tangential force components.

This method allows for fast computation of full-RPM range
run-up spectrograms as presented in Figure 3.

B. Force harmonics sensitivity analysis based on the vibra-
tion synthesis

In order to determine which force harmonics have an
important impact on the final vibration response, a sensitivity
analysis is performed. This is accomplished by subtracting
the time and space force excitation (Frad,tan[time,space]) from
the computation of the total response and directly analyzing
the effects on the run-up spectrogram:

∆v−Frad,tan[time,space]
(f, ω) =

v0(f, ω) − v−Frad,tan[time,space]
(f, ω),

(4)
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(b) ∆v−Frad[,Cos3]
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(c) ∆v−Frad[,Cos6]
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(d) ∆v−Ftan[,Sin9]

Fig. 4. Synthesized stator vibration response (radial direction) force
sensitivity analysis.

where ∆v−Frad,tan[time,space]
(f, ω) is the difference between

the baseline spectrogram v0(f, ω) containing all force exci-
tation and v−Frad,tan[time,space]

(f, ω) representing the spec-
trogram without the specific time and space force excitation
factor.

Results for the spatial force factors, including all tem-
poral components, that have an important impact on the
vibration spectrogram are presented in Figure 4. We observe
that by completely removing one-by-one the force harmonic
components from the computation of the final response
there are specific components that are more influential than
others, where: Frad[6,Cos3] and Frad[6,Cos6] have a significant
impact on the first frequency order-cut while Frad[36,Cos3],
Frad[42,Cos3], Ftan[24,Sin9], Ftan[30,Sin9] and Ftan[48,Sin9]

interact with the 3rd mode at 2545 Hz causing resonance.
The resonance-causing force shapes can also be identified
from the unitary frequency responses (Figure 2), but without
having information on the specific frequency orders and
response amplitude.

III. ELECTRICAL MACHINE NVH OPTIMISATION

A. Rotor shape modification

In order to change the desired force harmonics, the fol-
lowing design variables are introduced: rotor saliency depth
∆g, a d-axis circular rotor notch defined by the radius r1
and an elliptical rotor notch defined by the major radius r2,
minor radius r3 and angle β, as presented in Figure 5.

B. Defining the optimization problem

The cost function for the optimization problem is defined
on the basis of the force harmonics determined in Section
II-B. The linear weights for each individual force harmonic
is set in the following way: 50% is attributed for the
first frequency order causing force harmonics Frad[6,Cos3]

and Frad[6,Cos6], with wt1 and wt2 and 50% is attributed
for the resonance-causing force harmonics Frad[36,Cos3],
Frad[42,Cos3], Ftan[24,Sin9], Ftan[30,Sin9] and Ftan[48,Sin9]

Fig. 5. Rotor shape modification used in the optimization process with the
original structure showed with a (red dotted line).

with wr1, wr2, wr3, wr4 and wr5. Each individual weight
is determined using the vibration response force sensitivity
analysis and represents a weight in function of the local min-
imum of vibration displacement reduced by each individual
force shape and the global minimum. The cost function has
the following form:

f0 = wt1

Frad[6,Cos3]

Frad[6,Cos3],baseline
+ wt2

Frad[6,Cos6]

Frad[6,Cos6],baseline
+

wr1

Frad[36,Cos3]

Frad[36,Cos3],baseline
+ wr2

Frad[42,Cos3]

Frad[42,Cos3],baseline
+

wr3

Ftan[24,Sin9]

Ftan[24,Sin9],baseline
+ wr4

Ftan[30,Sin9]

Ftan[30,Sin9],baseline
+

wr4

Ftan[48,Sin9]

Ftan[48,Sin9],baseline
.

(5)
The inequality constraints are defined as a function

of the baseline average torque times a relaxation factor:
c1 = r · Taverage,baseline) and the baseline torque ripple
times the inverse of the relaxation factor (before continuous
stator skewing is applied): c2 = (1/r) · Tripple,baseline. The
optimization problem is stated as follows:

minimize f0

subject to c1 ≤ Taverage & Tripple ≤ c2.

The hybrid adaptive algorithm SHERPA from Simcenter
HEEDS was chosen to perform the optimization routine
because of its proven efficiency and robustness [13], where
150 evaluations are performed for 3 different values of torque
relaxation factors: r = 0.975, r = 0.95 and r = 1.

IV. OPTIMIZATION RESULTS

For the case where r = 1, where no decrease in average
torque is permitted, we can observe in Figure 6 a strong
correlation between Taverage and the first frequency order
causing force harmonics Frad[6,Cos3], Frad[6,Cos6]. We ob-
serve that an increase in average torque leads to an increase
in the amplitude of the force factors and consequently in the
vibration-response amplitude increase of the first frequency
order.

The final selected optimal designs for the 3 different r-
valued cases are presented in Figure 7. Results for the design
variables for r = 0.95 are: ∆g = 6.09, r1 = 0.49, r2 = 1.02,
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Fig. 6. Correlation between Taverage and Frad[6,Cos3] (a) and
Frad[3,Cos3] (b).

Fig. 7. Selected optimized designs for r = 1 (black), r = 0.975 (red) and
r = 0.95 (blue).

r3 = 0.79 and β = 27.9, for r = 0.975: ∆g = 4.34, r1 =
0.4, r2 = 1.11, r3 = 0.4 and β = 0.1 and for r = 1 :
∆g = 0.91, r1 = 1.54, r2 = 0.89, r3 = 0.61 and β = 21.62.
We can observe that the torque relaxation factor is inversely
correlated with the rotor saliency depth.

The results for the force harmonics used in the cost
functions are presented in Figure 8. Except for the hard-
constrained case of r = 1 where Frad[6,Cos3] and
Ftan[30,Sin9] were not reduced with respect to the baseline
values, all other force harmonics decreased in amplitude.

The torque waveform results are presented in Figure 9.
As an indirect consequence of reducing the target force
harmonics, the peak-to-peak torque is reduced by 3% for
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Fig. 8. Force harmonics for the baseline and optimized designs.
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Fig. 9. Instantaneous rotor-position dependent torque for the baseline and
optimized designs.
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Fig. 10. Absolute difference between the baseline and optimized design in
the stator vibration response spectrograms for the 3 torque relaxation factors.

r = 1, 32% for r = 0.975 and 42% for r = 0.95.
The vibration response is again assessed using the

vibration-synthesis method on the full RPM-frequency range,
the absolute difference in vibration response between the
original and optimized designs are shown in Figure 10.
We observe that gains obtained by reducing the vibration
response amplitude are decreased at a torque relaxation factor
closer to 1. Order cuts for different multiples of the base
mechanical frequency are presented in Figure 11, where a
considerable decrease in the vibration response for each order
can be observed, the exception of f = 12fmech. This does
not represent an issue, because the maximum amplitude of
this frequency order is significantly lower compared to rest
of the orders. The hard-constrained case of r = 1 also under-
performs the baseline case for order 24 and 30.

V. CONCLUSIONS

Electrical machine vibro-acoustic optimization is becom-
ing an important task for machine-designers. This paper
proposes a process that includes the full run-up vibration
spectrogram as a design metric and gives force harmon-
ics targets for the optimization cost function. This process
is applied to a low-cost PMASynRM where the rotor is
modified in order to shape the air-gap radial and tangential
forces. For the first order-cut (f = 6fmech) the following
improvements in vibration response values ([20Log10] scale)
are found: 1.2% for r = 1, 5.8% for r = 0.975 and 8.95%
for r = 0.95, while for the most significant resonant-causing
order cut (f = 48fmech) the values are: 11.3% for r = 1,
9% for r = 0.975 and 13.7% for r = 0.95 (giving-up 5% of
the average torque).

The method can be extended to multiple operation points
that may include drive-cycles and control strategies such as
Maximum Torque Per Ampere. Also, different cost functions,
such as torque ripple and iron losses can be introduced in
the multi-objective optimization procedure and stress analysis
should be performed on the new rotor geometry.
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Fig. 11. Vibration displacement ([20Log10] scale) order-cuts for different
multiples of the base mechanical rotation frequency for the baseline and
optimized designs.
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