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Abstract

In the automotive industry, the absorption coefficient of a porous material layer is usually
measured in an alpha cabin, a reverberant chamber of reduced dimensions where the opera-
tional frequency range is limited and the absorbent sample size is typically small. Those charac-
teristics are well adapted to the requirements of automotive acoustics but far from the standard
reverberant chambers used in building acoustics which ensures the conditions to perform mea-
surements under a diffusive field. Since there are no standard norms to measure the absorption
coefficient under non-diffusive fields, this work proposes a time-harmonic/time-domain hybrid
approach to compute the absorption coefficient in alpha cabins. For this purpose, pointwise
numerical predictions of the sound pressure level decay rate are used to calculate the absorp-
tion coefficient associated with a porous sample. To generate the pressure field acting inside
the alpha cabin and, subsequently, approximate its decay rate, time-harmonic numerical simu-
lations at a fixed frequency and a full time-dependent discretization of the wave problem have
been considered. The proposed methodology is validated in a manufactured scenario where
the exact solution is known in closed form. Finally, a realistic three-dimensional alpha cabin
is deemed to predict the diffuse field absorption coefficient from the computed reverberation
times using the proposed hybrid approach and the heuristic Sabine and Millington formulas.

1 Introduction

In the automotive industry, the use of sound-absorbing or soundproofing materials is highly rel-
evant not only for passengers’ comfort purposes but also to mitigate long-term structural damage
on sensible parts of the vehicles. The more widespread procedure to measure the absorption coef-
ficient associated with a material layer is the Kundt tube, following the standard ISO 10534-2 [1].
This methodology allows us to compute the absorption coefficient of a porous sample at normal
incidence. However, this coefficient does not provide a complete overview of the mechanical be-
haviour of an absorbent trimmed component in its engineered location inside a vehicle because, in
general, noise and vibrations are coming from very different directions rather than being focalized
at normal incidence. Despite being possible to compute the absorption coefficient in diffuse field by
using impedance tube data [22], the absorbent patches of porous materials used in the automotive
industry are far from having planar surfaces, and they are not suitable for being used in a Kundt
tube. Currently, the best-known experimental technique to evaluate the diffuse field absorption
coefficient of a porous material layer consists of using a reverberation room [21, 25, 32, 33]. Con-
cretely, in the automotive industry, the sound absorption coefficient of a porous material is often
computed using the measurements coming from an alpha cabin [6], which typically is small-size in-
house equipment (compared with the standard reverberation chambers used in building acoustics).
Due to its reduced size, the accuracy of the experimental measurements has a limited low-pass
frequency range, but it has the advantage of being well adapted to the requirements of porous
trimmed components used in the automotive industry. Although the use of an alpha cabin is more
affordable than other experimental facilities and requires smaller samples than a standard rever-
beration room, it involves two main challenges: the presence of diffraction effects due to the finite
size of the porous material sample [15, 12], and the lack of diffusivity of the generated acoustic field
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inside the cabin, especially relevant at the low-frequency range where the absorbent components
are less effective in the automotive vehicles [17].

Consequently, a numerical simulation approach becomes essential for evaluating the perfor-
mance of a small-size alpha cabin and predicting the acoustic performance of porous samples of
finite size at the low-frequency range. Instead of using classical methods such as ray methods [18]
or image-source methods [13], this work presents a hybrid numerical approach where a finite ele-
ment method is utilized to approximate the acoustic displacement field of a time-harmonic problem
in the first stage and subsequently, a time-domain model is solved in a second stage. In the first
stage, the (diffuse or not) acoustic field generated inside the alpha cabin is computed, whereas the
second stage is focused on the prediction of the reverberation time of the acoustic field due to the
presence of the porous sample.

Despite there are other numerical methods to compute reverberation times in room acoustics,
for instance, time-harmonic approaches entirely [4] (using inverse Fourier techniques to compute
the impulse responses of the alpha cabin) or full time-domain methods [30] (using time-domain
finite-difference discretizations), the proposed hybrid approach is the first novel attempt to combine
both methods as far as the author’s knowledge goes. This hybrid combination inherits the main
computational advantages of time-harmonic and time-domain methods. More specifically, (a)
the current hybrid approach is naively parallel to computing the frequency response of acoustic
quantities of interest, such as the absorption coefficient; (b) the acoustic field generated at each
frequency in the first stage of the hybrid approach eases the analysis of the diffusive character of
the acoustic field in the alpha cabin, and hence quantify and identify frequency bands where the
alpha cabin equipment can be used accurately; (c) the hybrid combination allows us to reduce the
computational cost of the entire reverberation time computation since the time-marching scheme
used in the second stage of the method has only to be applied to a reduced number of time
steps. Hence, the proposed hybrid approach can efficiently predict the acoustic behaviour of in-
house alpha cabin equipment even beyond the restrictive dimensions imposed by the standards on
reverberation rooms.

The main goal of this work consists in a detailed description of the proposed hybrid approach
to compute the frequency response at an arbitrary incident acoustic field associated with porous or
fibrous samples installed in an alpha cabin. Section 2 describes the combination of time-harmonic
and time-dependent problems to study the generation and decay behaviour of the acoustic field
inside the cabin. More precisely, the time-harmonic source problem is written in terms of the
displacement field, and its variational formulation and the finite element matrix formulation are
discussed in detail. In Section 3, different approaches to computing the absorption values in a
reverberation room are shown depending on ISO and ASTM standards, discussing the advantages
and disadvantages of each one. Section 4 is devoted to performing simulations in two and three-
dimensional domains. Section 4.1 considers a simple rectangular computational domain, where
some manufactured experimental data have been used to validate the methodology under normal
incident conditions. Then, a real-world fibrous material has been used to illustrate that it has
been possible to obtain numerical results qualitatively similar to those reported by experimental
data. Section 4.2 presents three-dimensional numerical simulations involving real fibrous sample
data, and the computed absorption coefficient is compared with experimental data measured in a
standard Kundt tube. Finally, Section 5 includes some remarks and conclusions about the obtained
results and the proposed hybrid methodology.

2 Mathematical modelling

This section describes in detail the mathematical models and algorithmic procedure to compute
the reverberation time in an alpha cabin with a hybrid time-harmonic/time-domain approach.
For this purpose, the accurate approximation of the sound field inside the cabin is essential to
calculating the absorption coefficient of porous samples installed on the interior surface of an
alpha cabin. A displacement-based problem is used to describe the behaviour of the acoustic
displacement field in an alpha cabin whose interior air occupies an arbitrary computational domain
Ω. This domain has three disjoint boundaries, i.e., ∂Ω = ΓL ∪ ΓI ∪ ΓN, being ΓL the boundary
where the acoustic sources (loudspeakers) are placed, ΓI the surface where the porous sample is
located, and ΓN are the rigid walls of the alpha cabin (see Figure 1 for a schematic view of a
two-dimensional slice of the alpha cabin).

Both standards ISO354:2003 and ASTM C423-09 involve a two-stage methodology to compute
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Figure 1: Scheme of a two-dimensional slice of an alpha cabin with a fluid cavity Ω, an active
acoustic wall ΓL (highlighted in cyan), an absorbing sample ΓI (highlighted in green), and rigid
wall boundaries ΓN (highlighted in red).

the reverberation time inside an alpha cabin. In the first step, the acoustic source located on ΓL

is turned on until the generated acoustic field reaches a time-harmonic state. Due to this reason,
in order to simulate this step, it is necessary to solve a time-harmonic problem where a rigid wall
boundary condition is imposed on ΓN and an active acoustic source is prescribed on the surface ΓL.
Since the porous sample is modelled as a local reacting surface (see [16] for a detailed discussion
on this assumption), a surface impedance condition is assumed on ΓI, where the porous sample is
located. Then, given a fixed angular frequency ω > 0, the time-harmonic source problem of the
first step in the hybrid two-stage approach consists in finding the complex-valued displacement
field U : Ω → C3 such that

−ρFc
2
F∇(divU)− ω2ρFU = 0 in Ω,

U · n = 0 on ΓN,
−ρFc

2
F divU = G on ΓL,

−ρFc
2
F divU = (αs + iωβs)U ·m on ΓI,

(1)

where G is the acoustic pressure applied on the active surface of the loudspeakers, Zs(ω) = βs −
iαs/ω is the surface impedance associated with the sample involving the parameters αs ≥ 0 and
βs > 0, and vectors ν, n, and m are the unit normal vectors to the interfaces ΓL, ΓN, and
ΓI, respectively, pointing Ω inwards. From the time-harmonic assumption, the time-dependent
displacement field is given by

u(x, t) = Re(U(x)eiωt),

where recall that now u depends on the time variable t and the spatial position variable x.

Remark 2.1. The local reacting assumption used to model the mechanical behaviour of the porous
sample can be read as a simplification of much more sophisticated models, where both coefficients
αs and βs depend on ω (see [11] for more realistic scenarios). However, in many cases for a narrow
frequency band, the complex-valued surface impedance can be approximated by constants and hence,
the parameters αs and βs are associated with the elastic and the viscous contribution of the walls
(in analogy to the classical linear viscoelastic Kelvin-Voigt model [31]).

Once the time-harmonic state has been reached, the acoustic source is turned off, the sound
pressure level will decrease, and the reverberation time is computed by measuring the decay rate
at each angular frequency ω considered for the source problem (1). Hence, the second step in this
hybrid approach requires the solution of a time-domain problem, which governs the displacement
field inside the alpha cabin without any acoustic source. To study the time evolution of the acoustic
field once sources are turned off, it is necessary to solve the following time-dependent problem in
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the time interval [0, T ]: find u : Ω× [0, T ] → R3 such that

−ρFc
2
F∇(div u) + ρFü = 0 in Ω× (0, T ),

u · n = 0 on ΓN × (0, T ),
−ρFc

2
F div u = 0 on ΓL × (0, T ),

−ρFc
2
F div u = αsu · η + βsu̇ · η on ΓI × (0, T ),
u(x, 0) = u0 in Ω,
u̇(x, 0) = v0 in Ω,

(2)

where u̇ = ∂u/∂t, ü = ∂2u/∂t2, and u0 and v0 are the initial conditions for displacement and
velocity (computed from the time-harmonic source problem (1)). More precisely, if U is the
complex-valued displacement field solution of the time-harmonic source problem (1), then

u0(x) = Re(U(x)eiωt)|t=0 = Re(U(x)), (3)

v0(x) =
∂

∂t
Re(U(x)eiωt)|t=0 = Re(iωU(x)eiωt)|t=0 = ωIm(U(x)). (4)

In this manner, thanks to the use of these initial conditions defined from the solution of the time-
harmonic source problem (1), both stages of the proposed computational approach are coupled.
Otherwise, if null initial conditions or other transient states (different from time-harmonic states)
were used, the time-domain solution would not correspond to the decay behaviour of the generated
field computed in the first stage.

2.1 Variational formulation

Two different variational formulations must be derived for each stage of the proposed hybrid
approach corresponding to the time-harmonic source problem (1) and the time-domain decay
problem (2). Firstly, the time-harmonic source variational problem is described for a given fixed
angular frequency ω > 0 by the following statement: find U ∈ HΓN(div,Ω;C) such that∫

Ω

ρFc
2
F divU divW dV − ω2

∫
Ω

ρFU ·W dV +

∫
ΓI

αsU · ηW · η dS

+ iω

∫
ΓI

βsU · nW · η dS = −
∫
ΓL

GW · ν dS, (5)

for all W ∈ HΓN
(div,Ω;C), being

HΓN(div,Ω;K) =
{
W : Ω → K3 : W ∈

[
L2(Ω)

]3
, divW ∈ L2(Ω),

W · n ∈ L2(∂Ω), W · n = 0 on ΓN

}
, (6)

where K = R or C, and L2(Ω) is the space of measurable functions with bounded root-mean-square.
The classical Fredholm’s alternative guarantees the existence and uniqueness of a solution of

the time-harmonic source problem (1) (see, for instance, [9]) except for a countable sequence of
complex-valued eigenfrequencies solution of a quadratic eigenvalue problem with an accumulation
point at iα/β (see [8] for further details). Notice that the eigenfrequencies associated with the
alpha cabin without the porous sample (i.e. considering its entire boundary as a rigid wall) are
also eigenfrequencies of the problem with the porous sample.

Lemma 2.2. The eigenfunctions associated with the real-valued eigenvalues of the variational
problem (5) satisfy a null normal displacement condition on the entire boundary ∂Ω.

Proof. First, assume that there exists a real eigenfrequency µ. Then, any associated eigenfunction
V satisfies∫

Ω

ρFc
2
F|divV |2 dV − µ2

∫
Ω

ρF||V ||2 dV +

∫
ΓI

αs|V · η|2 dS + iµ

∫
ΓI

βs|V · n|2 dS = 0.

Taking the imaginary part of the expression above and using that βs > 0, it holds
∫
ΓI

|V · n|2 dS
and hence V · n = 0 on ΓI and therefore in ∂Ω. Conversely, if V is an eigenfunction such
that V · n = 0 on the entire boundary ∂Ω, then the spectral problem associated with (5) can
be rewritten as a linear eigenproblem without damping terms and hence its spectrum had only
real-valued eigenfrequencies.
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Analogously, the weak formulation associated with the time-domain decay problem (2) can
be written as follows: Given u0 and v0 ∈ HΓN

(div,Ω;R), find u ∈ C1([0, T ], HΓN
(div,Ω;R)) ∩

C2((0, T ),HΓN(div,Ω;R)), such that u(·, 0) = u0, u̇(·, 0) = v0, and satisfying∫
Ω

ρFc
2
F divudivw dV +

∫
Ω

ρFü · w dV +

∫
ΓI

αsu · ηw · η dS +

∫
ΓI

βsu̇ · nw · η dS = 0, (7)

for all w ∈ HΓN(div,Ω;R) in the time interval (0, T ).
The stability of the time-domain problem (7) follows directly by taking w = u. It is shown

that the energy associated with the solution u, given by

E(t) =
1

2

(∫
Ω

ρFc
2
F|divu|2 dV +

∫
Ω

ρF||u̇||2 dV +

∫
ΓI

αs|u · η|2 dS
)
,

decays as follows:
d

dt
E(t) = −

∫
ΓI

βs|u̇ · n|2 dS ≤ 0.

This energy analysis in combination with the classical Hille-Yosida theory of time-evolution prob-
lems ensures the uniqueness of the solution of the variational problem (7).

2.2 Spatial and time discretizations

The numerical approximation of the source and decay problems requires adequate spatial and
time discretizations. For the time-harmonic source problem, a finite element method based on
Raviart and Thomas elements [28] has been utilized. This selection avoids the presence of spurious
curl modes, which typically arise in this kind of displacement-based formulations (see [20, 7] for
more details). The spatial discretization of the time-dependent problem could be chosen indepen-
dently of the source time-harmonic problem. However, not only for simplicity but also to avoid
interpolation errors to evaluate the approximations from one discrete finite element space to an-
other different one, identical finite elements have been used on the same tridimensional simplicial
mesh. In what follows, Th denotes a quasi-uniform tetrahedral mesh of Ω, that is, Ω =

⋃
T∈Th

T ,
which is conformal with the boundary partition described in Section 2 (each face of the elements
of the mesh is contained uniquely either in ΓI, ΓL, or ΓN).

2.2.1 Finite element discretization

To approximate the fluid displacements, U ∈ HΓN
(div,Ω;K) with K = R or C, the lowest

order Raviart-Thomas elements are used. These elements consist in vector valued functions such
as, restricted to each tetrahedron, are incomplete linear polynomials of the form Uh(x1, x2, x3) =
(a+ dx1, b+ dx2, c+ dx3), a, b, c, d ∈ K. Then the discrete Raviart-Thomas space is defined by

Rh(Ω;K) = {Uh ∈ HΓN(div,Ω;K) : Uh|T (x1, x2, x3) = (a+ dx1, b+ dx2, c+ dx3),

a, b, c, d ∈ K, ∀T ∈ Th}. (8)

These vector fields have constant normal components on each of the four faces of a tetrahedron
(see Figure 2), which define a unique polynomial function of this type. Due to this discrete feature,
the number of degrees of freedom Ndof coincides with the number of faces of the mesh.

Figure 2: Raviart-Thomas finite element. The degrees of freedom are the normal components of
the vector unknown on the faces (normal vectors are highlighted in red).

5



By using this discrete Raviart-Thomas space, the function space HΓN
(div,Ω) can be replaced

in the discrete problem by Rh(Ω;K). In this manner, the discrete problem associated with the first
step in the hybrid approach, i.e., the discretization of the time-harmonic variational formulation (5)
is as follows: find Uh ∈ Rh(Ω;C) such that∫

Ω

ρFc
2
F divUh divW h dV − ω2

∫
Ω

ρFUh ·W h dV +

∫
ΓI

αsUh · ηW h · η dS

+ iω

∫
ΓI

βsUh · nW h · η dS = −
∫
ΓL

GW h · ν dS, (9)

for all W h ∈ Rh(Ω;C). A matrix description can be introduced as it is usual in any linear problem

discretized with a finite element method. Let U⃗h be the column vector of coefficients of Uh in the
basis {wj}Ndof

j=1 associated to each degree of freedom in the discrete space Rh(Ω;C),

Uh(x) =

Ndof∑
j=1

[U⃗h]jwj(x).

Then, the matrix formulation of the discrete problem (9) consists in finding U⃗h ∈ CNdof such that

−ω2MU⃗h + iωβsCU⃗h + (K+ αsC)U⃗h = G⃗h,

where the coefficients of the mass, damping and stiffness matrices are, respectively,

[M]ij =

∫
Ω

ρFwj ·wi dV,

[C]ij =

∫
ΓI

wj · nwi · n dS,

[K]ij =

∫
Ω

ρFc
2
F divwj divwi dV,

for 1 ≤ i, j ≤ Ndof . The coefficients of the vector G⃗h are the contributions of the source term to
each degree of freedom [G⃗h]i = −

∫
ΓL

gwi · n dS.
From a numerical algebra point of view, one of the most interesting numerical consequences of

using displacement-based formulations in combination with finite element discretizations based on
Raviart-Thomas elements is that matrix C is diagonal, and the bandwidth (number of non-null
sub- and super-diagonals bandwidth) of matrices M and K is constant, independent of how the
mesh Th is refined. In particular, for the lowest order Raviart-Thomas elements, their bandwidth
is seven (equal to the number of faces of two adjacent tetrahedra).

Similarly, the discretization of the time-dependent problem (7) can be defined as follows: given
u0h and v0h ∈ Rh(Ω;R), find uh ∈ C1([0, T ],Rh(Ω;R)) ∩ C2((0, T ),Rh(Ω;R)), uh(·, 0) = u0h,
u̇h(·, 0) = v0h, and satisfying∫

Ω

ρFc
2
F divuh divwh dV +

∫
Ω

ρFüh ·wh dV +

∫
ΓI

αsuh ·ηwh ·η dS+

∫
ΓI

βsu̇h ·nwh ·η dS = 0, (10)

for all wh ∈ Rh(Ω), and the initial data is given by u0h = Re(Uh) and v0h = ωIm(Uh) due
to the use of (3)-(4) in this discrete context. Consequently, the matrix description of the spatial
discretization consists in an initial-value problem associated with a system of linear differential
equations (involving first and second-order time derivatives) given by

M
d2u⃗h

dt2
+C

du⃗h

dt
+Ku⃗h = 0 in (0, T ),

u⃗h(0) = u⃗0h,

du⃗h

dt
(0) = v⃗0h,

where the components of u⃗h are the time-dependent coefficients used to represent uh(x, t) as a lin-

ear combination of the Raviart-Thomas finite element basis, this is, uh(x, t) =
∑Ndof

j=1 [u⃗h(t)]jwj(x).
If relations (3)-(4) between the time-harmonic discrete solution and the initial conditions of the
time-dependent discrete problem are taken into account, thanks to the linearity of both problems,
the initial data are given by u⃗0h = Re(U⃗h) and v⃗0h = ωIm(U⃗h).
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2.2.2 Time-marching scheme

Once a suitable finite element discretization has been introduced for the variational formu-
lations stated above, a time-marching scheme must be chosen to discretize the time-dependent
problem. A classical implicit Newmark scheme is used since this problem is second-order in time
(acceleration u arises in the inertial term) [5]. This second-order scheme is unconditionally stable.
Obviously, other implicit or explicit time-marching techniques could be used (see [26] for a detailed
comparison). Taking into account this time-marching scheme, the displacement and velocity field
are approximated by the following expressions:

⃗̇un+1
h = ⃗̇un

h + [(1− δ)⃗̈un
h + δ⃗̈un+1

h ]∆t,

u⃗n+1
h = u⃗n

h + ⃗̇un
h∆t+ [(1/2− α)⃗̈un

h + α⃗̈un+1
h ]∆t2,

where ∆t = T/NT is the time step, being NT the number of time steps used in the entire numerical
simulation, and α and δ are parameters that can be determined to obtain second-order accuracy and
unconditional stability. Throughout the present work, α = 1/4 and δ = 1/2. Solving (2) by using
the Newmark’s scheme at each time tn = n∆t, a sequence of approximated displacement fields u⃗n

h

are obtained for n = 0, . . . , NT . Associated with these displacement fields, it is straightforward to
compute their respective approximations of the pressure field p(x, t) at different time steps, given
by

p(x, tn) ≈ pnh(x) = −ρFc
2
F divuh(x, tn) = −ρFc

2
F

Ndof∑
j=1

[u⃗n
h]j divwj(x) for n = 0, . . . , NT .

Again, due to the numerical properties of the Raviart-Thomas discretization, the post-processing
computation of the pressure can be performed locally at each element of the mesh. In fact, for the
lowest-order Raviart-Thomas finite element method, the discrete approximation of the pressure
field is constant in each tetrahedron of the mesh.

Notice that other time-marching schemes could also be utilized to discretize the time-dependent
problem. More precisely, the explicit Noh-Bathe second-order scheme (see [26] for further details)
has also been used. Since the numerical results are similar to those obtained with the Newmark
scheme, and the computational cost is slightly larger than the implicit scheme (since the Noh-
Bathe requires a mild CFL stability condition), the numerical results obtained with that explicit
time-marching scheme have not been included in this work.

3 Computation of the absorption values in an alpha cabin

Once the different mathematical models that govern the acoustic fields and the two-stage hy-
brid methodology have been explained in detail, and the time-harmonic and the time-dependent
problems have been discretized, the absorption coefficient of a porous sample in an alpha cabin
must be quantified. With this goal, the reverberation time associated with the porous sample in
an alpha cabin is computed numerically. The international standards ASTM C423-09 [10] and ISO
354 (see [2] for more details) provide two different strategies to calculate the reverberation time.
Additionally, different heuristic approximations can be used to compute the absorption coefficient
from the reverberation time in the alpha cabin. This work follows the American standard ASTM
to calculate the decay rates and the reverberation times associated with the alpha cabin. The
main difference between ISO and ASTM standards relies on the fact that a strict application of
the ISO norm requires the computation of the sound pressure level for a more extended time (un-
til the sound pressure level has decreased by 60 dB). However, the use of the American standard
involves the computation of the sound pressure level only over a reduced number of local time
intervals. Hence, the ASTM procedure behaves locally while the ISO norm is based on an overall
time methodology. For the sake of completeness, both standards are described in what follows.

3.1 Computation of the reverberation time using the ISO standard

Let {xm}Mm=1 be a set of fixed spatial points used to measure the pressure field. The sound
pressure level (SPL measured in decibels [dB]) at these points is given by

SPL(tn) = 20 log10

(
1

M

M∑
m=1

|pnh(xm)|
pref

)
,

7



where pref = 2 × 10−5 Pa. Following the international norm ISO 354:2003 [2], the reverberation
time of a closed room (in this case, an alpha cabin) is the time trev which satisfies

SPL(trev) = SPL(0)− 60 dB, (11)

i.e., the time (measured in seconds) required for the sound pressure level to decrease by 60 dB after
turning off the acoustic source.

Typically, a different number of acoustic sources (loudspeakers) are included in the alpha cabin,
and hence the procedure described above can be replicated independently for each acoustic source.
Consequently, the reverberation time in the alpha cabin is obtained following the steps below,
where it is assumed that each measurement can be performed independently for a fixed set of
frequency values {ωl}Nω

l=1:

(A) Repeat for each loudspeaker from k = 1, . . . , NL: the k-th loudspeaker is turned on (exciting
the alpha cabin at a fixed frequency value ωl with 1 ≤ l ≤ Nω), and SPLl,k is obtained from

the pressure values pl,k at the microphone locations {xm}Mm=1 at discrete time steps {tn}NT
n=0.

Then, this loudspeaker is turned off.

(B) By using all the SPLn,k for k = 1, . . . , L obtained in the previous step, the averaged SPLn

can be computed as follows:

SPLl(tn) =
1

L

NL∑
k=1

SPLl,k(tn) =
1

L

L∑
k=1

(
20 log10

(
1

M

M∑
m=1

|pl,k(xm, tn)|
pref

))
, (12)

where pl,k is the pressure field generated when the k-th loudspeaker is turned on (acting at
a fixed frequency ωl) and the rest is turned off.

(C) Finally, the reverberation time trev(ωl) is computed by solving (11), where SPL(trev(ωl)) has
been calculated using the averaged SPLl values (12).

Remark 3.1. The numerical results computed with this ISO methodology are far from accurate. In
fact, very low absorption values are obtained, which are not comparable with the actual values of the
porous sample. The origin of this lack of accuracy in the numerical results has been identified, and
it is related to the pointwise computation of SPLl,k values associated with the numerical evaluation
of the pressure field at a particular time value. Those values computed at specified time steps are
prone to contain spurious oscillations due to numerical pollution or dispersion errors, which leads
to unrealistic reverberation time values.

3.2 Computation of decay rates using the ASTM standard

A different local average-based and more robust strategy can be designed to avoid all the
abovementioned drawbacks in the ISO standard. More precisely, the ASTM standard uses decay
rates on time windows of a reduced length instead of pressure values at concrete times. Once the
time-dependent problem (10) is solved at each discretization time step tn = n∆t for n = 0, . . . , NT

from an initial data generated with all the loudspeakers turned on acting at a given frequency
ωl with l = 1, . . . , Nω, the ASTM standard [10] proposes to compute local averages of the sound
pressure level in time windows of length δt. The (j, l)-th local average of the sound pressure level
Leq,j,l is computed as follows:

Leq,j,l =
1

M

M∑
m=1

10 log10

∫ jδt

(j−1)δt

|p(xm, t)|2

p2ref
dt, (13)

for j = 1, . . . , D and l = 1, . . . , Nω, being D the number of computed local averages. From a
numerical point of view, the integral in (13) has been approximated by a composite Simpson’s rule
using the discrete pressure values pnh(xm) with tn ∈ [(j − 1)δt, jδt], prescribing that δt/∆t is an
integer.

As the ASTM standard recommends, the decay rate is the absolute value of the slope of the
linear regression response on the average sound pressure level values, which is computed by using
the following expression:

drev,l =
6

D(D2 − 1)δt

(D + 1)

D∑
j=1

Leq,j,l − 2

D∑
j=1

jLeq,j,l

 .
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Once the decay rate associated with each frequency is computed, the reverberation time can be
computed as trev(ωl) = 60/drev,l for l = 1, . . . , Nω.

Obviously, other possible numerical procedures based on time averages can be applied to esti-
mate the decay rate associated with the time evolution of the pressure field in an alpha cabin. In
particular, the two additional time-average algorithms are also analyzed, which use

SPL regression: the slope of the linear regression response of the sound pressure level
computed from the pressure values at all time steps tn = n∆t with n = 0 . . . , NT (without
using the local averages described above),

L2-norm regression: the slope of the linear regression response of the root-mean-square of
the pressure values in the entire alpha cabin at all time steps tn = n∆t with n = 0 . . . , NT

(without taking into account the pointwise pressure values at the microphone locations).

Throughout the rest of this work, these two strategies together with the ISO and ASTM procedures
described above, have been analyzed in terms of the numerical results.

3.3 Heuristic computation of the absorption coefficient

Once the computation of the reverberation time in an alpha cabin has been described in detail,
the absorption coefficient of a porous sample installed in the alpha cabin should be estimated.
Following the American standard ASTM C423-09 [10] or the international norm ISO 354:2003 [2],
the heuristic Sabine and Millington formulas can be utilized.

From Sabine formula [29], the absorption coefficient α(ω) of the sample is given by

α(ω) =
6 ln(10)L

cF

(
1

trev(ω)
− 1

tempty

)
, (14)

where cF is the air sound speed, L is the typical length of the cabin (distance travelled by a ray
between two consecutive wall reflections), and trev(ω) and tempty are the reverberation time with
and without the porous sample in the alpha cabin. The typical length of the cabin is given by

L =

{
V/S at normal incidence,
4V/S at diffuse field,

(15)

where V is the total volume of the alpha cabin and S is the surface occupied by the absorbing test
specimen. Notice that the floor of the alpha cabin is assumed to be rigid.

Alternatively, instead of computing the absorption coefficient using the simpler Sabine for-
mula, α(ω) can be computed with the classical Millington formula [24], which is more robust for
absorption values close to zero (see [14] for more details)

ln(1− α(ω)) =
6 ln(10)L

cF

(
1

trev(ω)
− 1

tempty

)
. (16)

In both cases, since the boundary of the alpha cabin is considered to be rigid, the reverberation
time associated with the alpha cabin will be infinite, and hence it can be neglected.

4 Numerical results

In this section, some numerical results illustrate the time-harmonic/time-domain hybrid method-
ology to compute the reverberation times and, subsequently, to estimate the absorption coefficient
of a porous sample in an alpha cabin. Some two-dimensional simulations are performed to validate
the proposed approach. Additionally, a realistic three-dimensional geometry of an alpha cabin is
considered to compare the numerical results to experimental measurements in a Kundt’s tube.

4.1 Two-dimensional numerical simulations

First of all, some two-dimensional simulations are performed. This section includes the descrip-
tion of the used geometry and the numerical results with two different datasets: manufactured data
to validate the proposed approach and experimental data of an engineered fibrous material. In
both cases, Ω = (0, 1)× (0, 0.75) and its boundary is split into an absorbing wall ΓI, a piston-like
wall ΓL where the acoustic source is located, and rigid walls ΓN. There are six microphones located
within Ω at the positions xm = (0.1(1+m), 0.1) with m = 1, . . . ,M = 6. A schematic view of this
computational domain is shown in Figure 3.
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Ω

ΓI

ΓN

ΓL

x1 x2 x3 x6x4 x5

Figure 3: Two-dimensional computational domain Ω = (0, 1) × (0, 0.75), whose boundary is split
into an absorbing wall ΓI (highlighted in green), one piston-like wall ΓL (highlighted in cyan), and
two rigid walls ΓN (highlighted in red). The six microphones are located at points x1, . . . ,x6.

4.1.1 Validation test with manufactured data

First, the implementation of the proposed hybrid approach has been validated using manu-
factured data for the porous sample, which consists in the frequency response of the absorption
coefficient at diffuse field. The time-harmonic problem (1) and the time-dependent problem (2)
have been solved to compute the absorbing coefficient using the time-harmonic/time-domain hybrid
methodology. Thanks to the approximation of the pressure field inside the alpha cabin, the rever-
beration time can be computed and finally, the absorption coefficient of the material is obtained.
In this case, it has been assumed that the porous sample has a surface impedance smaller than the
characteristic impedance of the surrounding air. More precisely, it is chosen Z(ω) = βs − iαs/ω
with αs = 0Ns/m3 and βs = 206.21Ns/m3. The absorbing coefficient is computed in a frequency
range from 400 to 1000Hz in third-octave bands (400, 500, 630, 800, and 1000Hz).

Once the pressure field is evaluated at the microphone locations, the sound pressure level can be
computed at each angular frequency. The four strategies described in Section 3 have been utilized
to calculate the reverberation time: (i) the SPL criterion of the ISO standard, (ii) the local Leq-
averages of the ASTM standard, (iii) the overall SPL regression using the time response of the
SPL at the microphone locations, and (iv) the L2-norm regression using the root-mean-square of
the pressure field in the entire alpha cabin.

The right plot in Figure 4 shows that only four values of the local Leq-averages have been
computed in the ASTM standard, since the time window length has been settled to δt = 0.00439 s,
and the final time is T = 0.014 s. Obviously, in the left plot in Figure 4, a more extended
time interval would be necessary to reach a time step where the initial SPL value decreases by
60 dB, which would lead to an unnecessary increase in the computational cost of solving the time-
dependent problem (2). As discussed above, the frequency response of the absorption coefficient has
been computed from the decay rates (and consequently, from the reverberation times) associated
with the SPL values, the local Leq-averages, or the root-mean-square values. Figure 5 shows the
frequency response of the absorption coefficient computed at diffuse field and at normal incidence
using Sabine’s and Millington’s formula (see (14) and (16), respectively).

The absorption values are obtained from the SPL time evolution in the left plot, whereas in the
right plot, the absorption values are computed from the local Leq-averages. The numerical results
are compared with the manufactured data. As observed in both plots of Figure 5, Sabine’s formula
overestimates the absorption coefficient, while Millington’s formula obtains values closer to the
experimental ones. In fact, under normal assumptions, absorption values are predicted accurately
by using Millington’s formula, with relative errors εSPL = 10.77% and εLeq

= 1.55%. The lowest
error obtained with the local Leq-averages confirms the ASTM standard is more robust and less
prone to be affected than the algorithms based on the SPL values at concrete time steps. Notice
that the absorption coefficient computed assuming a diffuse field is completely erroneous since the
current configuration of the piston-like wall generated a normal incident field on the plane where
the microphones are located.
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Figure 4: Time evolution of the sound pressure level generated at 1000 Hz in an alpha cabin with
an installed porous sample, whose surface impedance is Z(ω) = βs − iαs/ω, with αs = 0Ns/m3

and βs = 206.21Ns/m3. Left: values of the SPL computed using (12) (blue line), and those
obtained by using the L2-norm of the pressure field (red line), regression line calculated globally
by using the SPL data at every time step (cyan line), and regression line computed globally by
utilizing the L2-norm of the pressure field (yellow line). Right: values of the SPL calculated by
using (12)(blue line) and regression lines obtained from the local Leq-averages obtained from (13),
where the time-window length is δt = 0.00439 s (magenta line). The dashed black line in both
plots represents the SPL value where the initial sound pressure level has decreased by 60 dB.

Figure 5: Frequency response of the absorption coefficient associated with a porous sample with
surface impedance Z(ω) = βs − iαs/ω, where αs = 0Ns/m3 and βs = 206.21Ns/m3, computed by
using the Sabine formula (14) and the Millington formula (16), at normal incidence (solid lines)
and diffuse field (dashed lines). The absorption coefficients have been obtained using SPL values
(left plot) and local Leq-averages (right plot).

4.1.2 Validation test with experimental data

This second two-dimensional simulation considers a material made from polypropylene fibers
with thickness h = 20mm. As in the previous manufactured case, where the surface impedance
is constant (independent of the frequency), the surface impedance associated with this sample is
modelled by Z(ω) = βs − αs/ω, for each angular frequency ω. The surface impedance parameters
α and β will be obtained by a least-square fitting problem assuming that the wavenumber and
the characteristic impedance of the fibrous material is governed by the classical Miki’s model [23],
whose physical parameters are the porosity ϕ, the tortuosity α∞, and the pore shape factor ratio
M ′′. The complex wave number k(ω), and the characteristic impedance Z(ω) in the Miki’s model
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are, respectively, given by

k(ω) =
ω

cF

√
α∞

(
1 + 0.109

(
α∞ω

2pσϕM ′′2

)−0.618

− i0.16

(
α∞ω

2pσϕM ′′2

)−0.618
)
, (17)

Z(ω) =
ρFcF
ϕ

√
α∞

(
1 + 0.07

(
α∞ω

2pσϕM ′′2

)−0.632

− i0.107

(
α∞ω

2pσϕM ′′2

)−0.632
)
, (18)

where ρF, and cF are the fluid mass density and sound speed, respectively.
For the present fibrous material, some experimental data measured in a Kundt’s tube at normal

incidence has been used to set the model parameters, namely, ϕ = 0.83, σ = 2.29 × 104 Nm−4s,
α∞ = 1.02, and M ′′ = 0.95. Consequently, the surface impedance of a fibrous sample with
thickness h at angular frequency ω is given by Zs(ω) = Z(ω) coth(ik(ω)h), where Z(ω) and k(ω)
are the characteristic impedance and the wave number defined in (17) and (18), respectively.

However, the main problem with using the surface impedance with the Miki’s model relies on
the fact that it cannot be efficiently implemented in a time marching scheme since it involves time
convolutional expressions (due to the non-polynomial dependency of Zs with respect to ω). Hence,
the surface impedance associated with Miki’s model is considered as ground-truth data, and they
are approximated by the simplest model introduced in the time-domain problem (2) to avoid this
drawback. With this purpose, the following fitting problem is solved: finding α∗

s > 0 and β∗
s > 0,

such as

(α∗
s , β

∗
s ) = argmin

αs>0, βs>0


n∑

j=1

|Zs(ωj)− Zanl(ωj , αs, βs)|2

n∑
j=1

|Zs(ωj)|2

, (19)

where Zanl(ωj , αs, βs) = αs + iωjβs is the computed surface impedance. The fitting problem (19)
has been solved by using a least-square method with initial guess (α0

s , β
0
s ) = (100, 10). The obtained

optimal values are αs = 6622970.608Ns/m3 and βs = 293.047Ns/m3, and the relative error in the
fitting is ε = 1.74%. Figure 6 shows the fitting results. The ground-truth data of the absorption
coefficient (solid line) and the computed ones with the fitting values αs and βs (dashed line) are
shown in the left plot. The real and the imaginary parts of the ground-truth values of the surface
impedance of the fibrous sample (solid lines) and the computed ones with the fitting values of αs

and βs are shown in the right plot. In this manner, the values of αs and βs obtained with the
fitting problem (19) have been used in problems (1) and (2) of the time-harmonic/time-domain
hybrid approach.

Figure 6: Frequency response of the fibrous sample’s absorption coefficient (left) and the surface
impedance (right). The solid lines represent the ground-truth values, and the dashed line the fitted
values. Real and imaginary parts of both quantities are shown in red and blue lines, respectively.

Once the pressure field is computed at the microphones’ locations, the ISO and the ASTM
standards can be utilized to estimate the reverberation time at each angular frequency. For this
purpose, pointwise SPL values, local Leq-averages, and root-mean-square averages on the entire
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alpha cabin have been considered. As in the validation test described in Section 4.1.1, the frequency
ranges from 400 to 1000Hz in third-octave bands (400, 500, 630, 800, and 1000Hz).

Figure 7: Time evolution of the sound pressure level generated at 1000Hz for a polypropylene
fibrous sample with thickness h = 20mm in a two-dimensional geometry. Left: values of the SPL
computed using (12) (blue line), and those obtained by using the L2-norm of the pressure field
(red line), regression line calculated globally by using the SPL data at every time step (cyan line),
and regression line computed globally by utilizing the L2-norm of the pressure field (yellow line).
Right: values of the SPL calculated by using (12) (blue line) and regression lines obtained from the
local Leq-averages obtained from (13), where the time-window length is δt = 0.00439 s (magenta
line). The dashed black line in both plots represents the SPL value where the initial sound pressure
level has decreased by 60 dB.

The decay rates have been computed using a time-domain simulation (2) with a final time T =
0.030 s. The ASTM standard has been applied with a time window of length δt = 0.00439 s. The
left plot in Figure 7 shows that the duration of the simulated time interval is not enough to compute
the reverberation time from the SPL values. Hence, a strict application of the ISO standard would
increase the required computational time and thereby increase the overall computational cost of
the numerical simulation. Figure 8 shows the absorption coefficient obtained from Sabine’s and
Millington’s formulas (14) and (16), respectively. The absorption values are computed in both plots
at normal incidence, i.e., using the typical length L = V/S (see (48)). The numerical results are
compared with the experimental data measured in Kundt’s tube. In the left plot, the absorption
values are computed using SPL values, and in the right plot, the absorption values are obtained
by using the local Leq-averages.

Figure 8: Frequency response of the absorption coefficient associated with a fibrous sample, whose
impedance surface is Z(ω) = βs − iαs/ω, where αs = 6622970.608Ns/m3 and βs = 293.047Ns/m3.
The absorption values have been computed utilizing the SPL values (left plot) and the local Leq-
averages (right plot) with normal and diffuse Sabine and Millington’s formulas.

As observed in both plots of Figure 8, at normal incidence, the Sabine formula overestimates
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the absorption coefficient while the Millington formula predicts the absorption values accurately
with relative errors εSPL = 11.57% and εLeq

= 4.39%. This behaviour of the Sabine formula is well-
known (in fact, [19] shows that Millington formula gives much more accurate results than Sabine
one). Moreover, considering that in a well-designed alpha cabin, the sound field approximates a
diffuse field, the absorption coefficients measured in the alpha cabin should be consistent with the
values computed in the Kundt’s tube [27]. Figure 8 also shows that both Sabine and Millington
formulas underestimate the absorption coefficient at diffuse field, although both have the same
trend as those computed at normal incidence.

4.2 Three-dimensional simulation

Finally, this section is devoted to the numerical simulation of the absorption coefficient in a
realistic three-dimensional alpha cabin. The description of its geometry and the discussion of the
numerical results are made using the same fibrous sample utilized in the section above. Figure 9
shows the geometry of the alpha cabin used in this three-dimensional case. This alpha cabin has
two non-parallel walls, a volume of 4.5m3, and its surface area is approximately 17m2.

4.2.1 Geometry

Figure 9 shows the geometry of the alpha cabin used to measure the experimental data.

Figure 9: Geometry of the three-dimensional alpha cabin (the edges of the walls are highlighted
in red). Plane diffusers and loudspeakers are depicted in grey. The six microphones are located in
a circular array marked with red points.

This alpha cabin is smaller than the standard one recommended in [3], which can not guarantee
an adequate generation of a diffusive acoustic field in the time-harmonic problem (1). Even in
this case, the proposed time-harmonic/time-domain hybrid methodology can be applied, and it
is possible to check if the approximated solution of the time-dependent problem (2) fulfils the
diffusivity requirements inside the cabin. There are three loudspeakers, two on the bottom and
one on the top of the alpha cabin, six microphones located at the red points shown in Figure 10,
and three rectangular planar diffusers used to achieve a satisfactory diffusion of the field inside the
cabin. All the numerical simulations have been performed, taking into account that the fibrous
sample has been placed on the floor, neglecting its thickness, and the action of the loudspeakers
has been modelled as rigid parallelepipeds where only a planar active face is acting as a piston (see
Figure 10).

The fibrous sample under consideration is identical to that used previously (see Section 4.1.2).
Following the same fitting procedure, its associated surface impedance is given by Zs(ω) = βs −
iαs/ω, with αs = 6622970.608Ns/m3 and βs = 293.047Ns/m3. Again, the reverberation time
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Figure 10: Three-dimensional geometry of the alpha cabin, which includes the rectangular planar
diffusers, the rectangular floor location of the porous sample (highlighted in green) and the active
faces of the loudspeakers (highlighted in blue).

at each angular frequency has been estimated post-processing different numerical results: the
pointwise SPL values, the local Leq-averages, or the root-mean-square averages on the entire alpha
cabin. As in the two-dimensional scenarios described in Section 4.1, the frequency ranges from 400
to 1000Hz in third-octave bands (400, 500, 630, 800, and 1000Hz), as shown in Figure 11. The
decay rates have been computed using the time-domain simulation (2) with a final time T = 0.20 s.
The ASTM standard has been applied with a time window of length δt = 0.04 s.

Figure 11: Time evolution of the sound pressure level generated at 1000Hz for a polypropylene
fibrous sample with thickness h = 20mm in a three-dimensional alpha cabin. Left: values of the
SPL computed using (12) (blue line), and those obtained by using the L2-norm of the pressure
field (red line), regression line calculated globally by using the SPL data at every time step (cyan
line), and regression line computed globally by utilizing the L2-norm of the pressure field (yellow
line). Right: values of the SPL calculated by using (12) (blue line) and regression lines obtained
from the local Leq-averages obtained from (13), where the time-window length is δt = 0.0004 s
(magenta line). The dashed black line in both plots represents the SPL value where the initial
sound pressure level has decreased by 60 dB.

Once the decay rate (or the reverberation time) associated with the SPL values has been
calculated, the frequency response of the absorption coefficient can be computed. The left plot
in Figure 12 shows the absorption values calculated using the SPL values while, in the right plot,
those obtained with the local Leq-averages can be observed. In both cases, Sabine and Millington’s
formulas have been applied by using the typical length L = 4V/S (see (15)) of a diffusive acoustic
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field. The numerical results have been compared with the experimental data measured in Kundt’s
tube. Even though the experimental data has been measured at normal incidence (as discussed in
the two-dimensional numerical simulations), the frequency response of the absorption coefficient
obtained in the three-dimensional case presents a qualitatively similar trend to the experimental
absorption data (see [27] for a detailed discussion). Once again, the Millington formula provides
more accurate results than the Sabine one, agreeing with the behaviour of the two-dimensional
numerical results.

Figure 12: Frequency response of the absorption coefficient associated with a fibrous sample, whose
impedance surface is Z(ω) = βs−iαs/ω, where αs = 6622970.608Ns/m3 and βs = 293.047Ns/m3 in
a three-dimensional alpha cabin The absorption values have been computed utilizing the SPL values
(left plot) and the local Leq-averages (right plot) with diffuse Sabine and Millington’s formulas.

5 Conclusions

This work proposes a time-harmonic/time-domain hybrid procedure to compute the absorption
coefficient of a porous sample at diffuse field in an alpha cabin. This methodology is based on
the standard ASTM C423-09 [10] to calculate the sound pressure level decay within the alpha
cabin. First, a discussion about the models that govern the acoustic alpha cabin behaviour has
been shown. Once the mathematical model for the time-harmonic and the time-domain problems
have been described in terms of displacement-based variational formulations, they are spatially
discretized using first-order Raviart-Thomas finite elements. The time evolution of the pressure
field in the time-domain problem is also discretized in time using a classical implicit Newmark
method.

Since the ISO and ASTM standards enforce the use of the time evolution of the SPL values to
compute the absorption coefficient in the alpha cabin, different algorithms have been designed to
estimate the decay rates and, subsequently, the reverberation time associated with the installation
of the porous sample in the cabin. Finally, the absorption coefficient is computed by applying
the Sabine or Millington formulas under normal incidence or diffuse assumptions on the generated
pressure field.

Some numerical results in two-dimensional and three-dimensional domains have been performed
to illustrate the time-harmonic/time-domain hybrid methodology. A two-dimensional test with
manufactured data has been used to validate the hybrid procedure. A similar test has also been
used to compute the absorption coefficient of a fibrous sample at normal incidence, showing a
good agreement between the computed results and the experimental ones obtained in a Kundt’s
tube. Finally, a realistic three-dimensional alpha cabin has been used to calculate the absorption
coefficient, obtaining coherent results with respect to the trend reported in experimental data.
Thanks to these numerical experiments, it can be concluded that the proposed hybrid approach
represents a numerical tool capable of characterizing porous sample materials at normal incidence
or assuming (partial) diffuse fields within the interior of an alpha cabin. In any case, it has been
illustrated that the use of local Leq-average (as proposed by the ASTM standard) in combination
with Millington’s formula is the most robust algorithm among the variety of combinations tested
throughout this work.

16



Acknowledgements

The first author has been supported by MICINN & ERDF project research project MTM2017-
86459-R, and also by GI-1563 ED431C 2021/15 (Xunta de Galicia & ERDF). The second author
has been supported by MICINN & ERDF project PID2019-108584RB-I00, and also by ED431C
2018/33 - M2NICA (Xunta de Galicia & ERDF). The third author acknowledges funding from the
Spanish Ministry of Universities and the European Union-Next GenerationEU under the project
RSU.UDC.MS15.

References

[1] ISO 10534-2:1998. Determination of sound absorption coefficient and impedance in impedance
tubes. Part 2: Transfer-function method. International. Technical report, International Stan-
dard Organization, Geneva, Switzerland, 1998.

[2] ISO 354:2003(E). Acoustics - Measurement of sound absorption in a reverberation room.
Technical report, International Standard Organization, Geneva, Switzerland, 2003.

[3] T. Ahlersmeyer. 9-Advanced experimental techniques in vehicle noise and vibration refine-
ment. In X. Wang, editor, Vehicle Noise and Vibration Refinement, pages 189–216. Woodhead
Publishing, 2010.

[4] J. António, L. Godinho, and A. Tadeu. Reverberation times obtained using a numerical
model versus those given by simplified formulas and measurements. Acta Acustica United
with Acustica, 88(2):252–261, 2002.

[5] K. J. Bathe. Finite Element Procedures. Prentice Hall, 2008.

[6] F.X. Bécot, C. Locqueteau, and J. Ródenas. Predicting alpha cabin sound absorption in an
industrial context. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings,
volume 253, pages 4648–4658. Institute of Noise Control Engineering, 2016.
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