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Abstract: This paper presents a summation of series of binomial coefficients in combinatorial 

geometric series. The coefficient for each term in combinatorial geometric series refers to a 

binomial coefficient. This idea can enable the scientific researchers to solve the real life 

problems. 
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1. Introduction 

When the author of this article was trying to develop the multiple summations of geometric 

series, a new idea was stimulated his mind to create a combinatorial geometric series [1-10]. The 

combinatorial geometric series is a geometric series whose coefficient of each term of the 

geometric series denotes the binomial coefficient 𝑉𝑛
𝑟 . In this article, binomial identities and 

multinomial theorem is provided using the binomial coefficients for combinatorial geometric 

series.  

 

2. Combinatorial Geometric Series  
The combinatorial geometric series [1-10] is derived from the multiple summations of geometric 

series. The coefficient of each term in the combinatorial refers to the binomial coefficient 𝑉𝑛
𝑟 .    
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where  𝑛 ≥ 0, 𝑟 ≥ 1  𝑎𝑛𝑑  𝑛, 𝑟 ∈ 𝑁 = {1, 2, 3, ⋯ }.  
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𝑛
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refers to the combinatorial geometric series and   
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Let us prove that 𝑉𝑛−1
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𝑟 = 𝑉𝑛

𝑟+1.   
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(𝑛 + 𝑟)!

𝑟! 𝑛!
= (𝑛 + 𝑟)! (

𝑛

𝑛! (𝑟 + 1)!
+

𝑟 + 1

𝑛! (𝑟 + 1)!
)

=
(𝑛 + 𝑟)! (𝑛 + 𝑟 + 1)
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= 𝑉𝑛

𝑟+1. 

 

Hence, theorem is proved. 

 

3. Conclusion  
In this article, a binomial theorem was constituted on the binomial coefficients of combinatorial 

geometric series. This new idea can enable the scientific researchers for research and 

development further.  
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