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Abstract: This paper presents a summation of series of binomial coefficients in combinatorial
geometric series. The coefficient for each term in combinatorial geometric series refers to a
binomial coefficient. This idea can enable the scientific researchers to solve the real life
problems.
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1. Introduction

When the author of this article was trying to develop the multiple summations of geometric
series, a new idea was stimulated his mind to create a combinatorial geometric series [1-10]. The
combinatorial geometric series is a geometric series whose coefficient of each term of the
geometric series denotes the binomial coefficient ;. In this article, binomial identities and
multinomial theorem is provided using the binomial coefficients for combinatorial geometric
series.

2. Combinatorial Geometric Series
The combinatorial geometric series [1-10] is derived from the multiple summations of geometric
series The coefficient of each term in the combinatorial refers to the binomial coefficient 1],
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Here, Z Virxi refers to the combinatorial geometric series and
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V;/ is the binomial coefficient for combinatorial geometric series and V| = g
Theorem 2.1: V] + V] + VI + VI + -+ VI_ + VI =Vt
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where VI + V] + VI + -+ VI_ =Vt

Let us prove that V1 + VI = yr+1,

Page | 1


mailto:anna@iitkgp.ac.in
https://orcid.org/0000-0002-0992-2584

r+1
n-—1

, m=1+r+1D! (m+7r) n r+1
th =T Dier DT _(n+r)!<n!(r+1)!+n!(r+1)!>
_(n+r)!(n+r+1)_(n+r+1)!_w+1
B n! (r+ 1! Coalr+D M

Hence, theorem is proved.

3. Conclusion

In this article, a binomial theorem was constituted on the binomial coefficients of combinatorial
geometric series. This new idea can enable the scientific researchers for research and
development further.
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