Poster: Systematic Elicitation of Common Security Design Flaws

Stef Verreydt Koen Yskout
imec-DistriNet imec-DistriNet
KU Leuven KU Leuven

Heverlee, Belgium
stef.verreydt@kuleuven.be

Heverlee, Belgium
koen.yskout @kuleuven.be

Abstract—Threat modeling allows potential security threats
to be identified and mitigated at design time. Countermea-
sures in current threat modeling approaches are mostly
modeled as a boolean: either they are implemented, or they
are not. This does not allow to take into account potential
design flaws for the countermeasure itself. A considerable
number of security issues is, however, related to the wrong
or incomplete application of common security tactics. For
example, the effectiveness of audit logs drops if the data
written to the logs is not sanitized. In this paper, we
describe our novel approach which aims to systematically
and automatically identify common security design flaws.

Index Terms—Threat modeling, CWE, Security-by-design

1. Introduction

Security and privacy by design principles are becom-
ing increasingly important to develop secure software
systems. Indeed, insecure design is one of the most critical
software risks according to the OWASP Top 10 2021 [1],
and adhering to security and privacy by design principles
is even obligated by regulations such as the General Data
Protection Regulation (GDPR) [2].

Threat modeling provides a systematic approach to
analyze the security and privacy of a software design,
thereby allowing potential threats to be identified early
on in the development lifecycle. The first step of a threat
modeling exercise involves creating a model of the system
being analyzed, usually as a Data Flow Diagram (DFD).
The DFD notation comprises just five elements, namely
processes, data stores, external entities, data flows and
trust boundaries. That model can then be analyzed to
identify potential security threats. Tool support for auto-
matic threat elicitation based on machine-readable system
models is widespread, and new techniques are being de-
veloped rapidly [3]. Common threat elicitation methods
used by these tools are based on STRIDE (an acronym
for spoofing, tampering, information disclosure, denial of
service and elevation of privilege), but more specific types
of threats or attacks such as CAPEC, CWE or CVE entries
are also identified by some [4].

The next step of a threat modeling exercise is to miti-
gate the identified threats by introducing countermeasures.
This often involves standard tactics, for example using
logging to mitigate repudiation threats [5]. Applying such
tactics in a design requires careful consideration of their
precise requirements and assumptions. For example, data

Wouter Joosen
imec-DistriNet
KU Leuven
Heverlee, Belgium
wouter.joosen @kuleuven.be

Laurens Sion
imec-DistriNet
KU Leuven
Heverlee, Belgium
laurens.sion @kuleuven.be

written to audit logs should be sanitized (CWE-117"), and
should not contain sensitive information such as creden-
tials (CWE-5322). Ideally, design flaws which violate such
requirements should be flagged automatically.

One of the underlying issues which prevents this type
of analyses is that most threat modeling tools [0] only
allow to capture the effect of a countermeasure, and not
how countermeasures are included in a design or which el-
ements are involved [7]. For example, a repudiation threat
could be marked as mitigated in the Microsoft Threat
Modeling Tool [6], but there is no support to explicitly
capture the countermeasure which mitigates the threat. To
allow tracing back why and how threats are mitigated,
Sion et al. [7] extended the DFD notation with a first-class
representation for countermeasures. For example, a log-
ging countermeasure can be explicitly added to the system
model, allowing tool support to automatically mark certain
repudiation threats as mitigated. In our novel approach,
we leverage this explicit countermeasure information to
automatically identify flaws rooted in the design of the
countermeasure itself.

Tuma et al. [8] leverages this notation to automatically
identify common security design flaws. Their approach,
however, only identified five flaws automatically, and
their identification method is mostly based on missing
countermeasures rather than design flaws in the coun-
termeasures themselves. For example, one of the flaws
identified by their approach is “insufficient auditing”,
which is identified simply based on the lack of a logging
countermeasure. Still their empirical evaluation shows that
automatically identifying security design flaws is possible
with acceptable precision and recall. In this paper, we
therefore describe an approach similar to the one by Tuma
et al. [8], but with the ability to automatically identify
flaws rooted in the design of countermeasures themselves.

In summary, the goal of our proposal is the following:

Goal. Automatically eliciting potential security design
flaws related to applying standard security tactics during
threat modeling.

In what follows, we provide an overview of our pro-
posed approach, and discuss the advantages compared to
traditional threat modeling approaches.

1. https://cwe.mitre.org/data/definitions/117.html
2. https://cwe.mitre.org/data/definitions/532.html

2. Proposal Overview

A high-level overview of our proposal is shown in
Fig. 1. The proposed approach was implemented as a
extension of an existing threat modeling tool [9] to demon-
strate its feasibility. We shortly discuss the main concepts
of our proposal and describe the main advantages com-
pared to existing threat modeling approaches.

o Threats
O |=>%= i
Auditﬁ I:> Qg |:> O..

Audit

& design flaws
Design flaw queries :> Qg :> CWE-117

CWE-532

Figure 1. High-level overview of our proposal.

The default threat modeling flow is shown in black. The extension by Sion
et al. [7], which adds first-class representations for countermeasures,
is highlighted in green. Our proposal further extends this notation by
adding queries for common security design flaws, as shown in red.

2.1. Extended system model

The following information should be included in the
system model to enable the systematic elicitation of com-
mon security design issues:

« a DFD of the system, annotated with data type infor-
mation;

o a structured and generic description of common se-
curity tactics; and

« information on how these tactics are applied in the
system being analyzed.

Each of these is shortly discussed in what follows.

2.1.1. System description. Figure 2 shows a DFD for
a simple client-server application which will be used as
a running example. To enable systematically identifying
that, for example, data written to audit logs is not sani-
tized, information on data types is required, which is not
included in the default DFD notation. The data flows are
therefore annotated with data type information, similar to
the proposal by Tuma et al. [10].

2.1.2. Security tactic description. Applying a traditional
threat modeling approach such as STRIDE to the DFD

dft:
request data

df3:

sensitive data sensitive
<«

Data

df4:
sensitive data
df2:

request data

Audit
Logs

Figure 2. A DFD showing that a Client (external entity) can request data
from the Server (process), which logs the request in one data store and
fetches sensitive from another.

shown in Fig. 2 would return several potential threats,
for example a tampering threat on the Audit Logs or a
repudiation threat on the Server. The default DFD notation,
however, does not allow to systematically capture that the
audit tactic is applied to mitigate the repudiation threat on
the Server. For that, we first need to define what the audit
tactic encompasses. For our proposed approach, common
security tactics are described generically, similarly to the
proposal by van den Berghe et al. [11]. The advantage
of generic tactic descriptions is that they can be applied
in different countermeasures and across different system
models. A tactic is defined by (i) a name, (ii) the threat(s)
which it mitigates, and (iii) the roles which make up the
tactic. A role is defined by a name and a type (proces, data
store, external entity, data flow or data type). A generic
description of the audit tactic is shown in Fig. 3.

Name: Audit
Roles:
- Logged event
- Logged data : Data Type
— Log database : Data Store
- Protected entity: Process
- Logging process : Process
Mitigates:
- Repudiation threats on protected entity

: Data Flow

Figure 3. Structured description of the audit tactic.

2.1.3. Applying tactics. The system model can then be
enriched with information on how tactics are applied using
the solution-aware DFD notation proposed by Sion et
al. [7]. For our proposal, we define a countermeasure as
the application of one or more tactics in a specific model.
Concretely, a countermeasure is defined by (i) a name,
(ii) the applied tactic(s), and (iii) a set of role bindings
which, for each of the roles mentioned in the applied
tactics’ descriptions, specify the DFD element fulfilling
that role. Figure 4 describes a countermeasure which
applies the audit tactic to the DFD shown in Fig. 2.

Name: Client request logging
Applied tactics: Audit
Role bindings:
- Logged event ¢ dfl
- Logged data : request data
- Log database : Audit Logs
- Protected entity: Server
- Logging process : Server

Figure 4. A countermeasure describing how the the audit tactic (Fig. 3)
is applied to Fig. 2.

Based on this information, tool support [9] can au-
tomatically mark Repudiation threats on the Server as
mitigated, as the Server fulfills the role of Protected entity,
which, as described in the audit tactic (Fig. 3), is protected
against Repudiation threats. Our approach build on this by
allowing tool support to also identify design flaws in the
countermeasure itself, as will be explained next.

2.2. Security design flaw queries

Based on the generic and structured tactic descriptions
(Section 2.1.2), queries can be composed for common
design flaws related to the tactics. Similar to the tactic
descriptions, queries are also described generically so that
they can be applied to any system model. A common flaw

for the audit tactic is, for example, that the data written to
the logs is not sanitized, as described by CWE-1 17.2 Thus,
if a countermeasure applies the audit tactic, and the data
written to the logs is (or contains) the exact data contained
in the logged flow, then CWE-117 should be elicited for
that countermeasure. The query for this flaw is shown in
Fig. 5.

query cwe-117{Solution S} {
S applies tactic named ‘Audit’;
S binds the ‘Logged event’ role to some data flow DF;
DF is annotated with a data type X;
S binds the ‘Logged data’ role to data type Y;
Y == X, or Y includes X;

}

Figure 5. Pseudo code for the CWE-117 elicitation pattern.

2.3. Advantages

As described earlier, applying STRIDE to the DFD
shown in Fig. 2 would result in several threats, for exam-
ple a tampering threat on the Audit Logs or a repudiation
threat on the Server. As the system model includes audit
logs, the repudiation threat can be marked as mitigated.
Traditional threat modeling approaches, however, provide
no further guidance on how to systematically evaluate
whether the logging solution is designed correctly. Suf-
ficient security knowledge and manual effort is required
to identify that (a) a tampering threat on the audit logs
reduces the effectiveness of the logging solution, and
(b) encryption is not sufficient to mitigate the tampering
threat, even though it is a standard tactic for integrity.
Indeed, the tampering threat may have been marked as
mitigated if an encryption tactic was applied, but this does
not prevent more complex issues such as CWE-117 (which
can be categorized as a tampering threat).

In comparison, our proposal allows such issues to be
identified systematically and automatically. Furthermore,
tactic descriptions and flaw queries can be reused across
models, thus limiting the security expertise required to
apply our approach. Finally, the issues identified by our
approach are tailored to the context, which is not the
case for traditional approaches. For example, whereas
a STRIDE analysis would simply flag an unmitigated
tampering threat on the audit logs, our proposal enables
automatically generating more detailed issue descriptions
such as “Request data provided by the client is directly
written to the audit logs, which may allow attackers to
forge log entries. As a result, the client request logging
solution may not suffice to prevent repudiation threats.
See cwe-117 for more information.” This allows to clearly
trace the specific cause of the flaw, as well as its impact.

3. Discussion and Future Work

In summary, by extending a system model with in-
formation on how tactics are applied in a design, our
approach allows common security design flaws to be iden-
tified systematically and automatically. Compared to tradi-
tional threat modeling approaches, where countermeasures
are mostly modeled as booleans (present/absent), this re-
duces the time and effort needed to find common security

3. https://cwe.mitre.org/data/definitions/117.html

flaws. Furthermore, the required security expertise is also
reduced, as tactic descriptions and flaw queries are generic
and reusable across system models.

To demonstrate the feasibility of our approach, a tool
prototype was developed, as well as a number of tactic
descriptions and flaw queries for common security de-
sign issues. Applying these queries to example models
such as the running example did not reveal any issues.
In future work, we aim to compose a more extensive
catalog of tactics and common flaw queries based on
existing knowledge. The Architectural Concepts view of
the CWE* can serve as a starting point, as it contains
a detailed collection of potential design flaws, organized
by architectural security tactics to which they apply [12].
Furthermore, an evaluation is needed based on a concrete
and realistic case.

References

[1] The OWASP Foundation, “OWASP Top 10 - 2021,” https://owasp.
org/Top10/, 2021.

[2] European Union, “Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016,” Official Journal
of the European Union, vol. 59, no. L 119, pp. 1-88, May 2016.

[3] Z. Shi, K. Graffi, D. Starobinski, and N. Matyunin, “Threat mod-
eling tools: A taxonomy,” IEEE Security & Privacy, no. 01, pp.
2-13, dec 2021.

[4] B.J. Berger, K. Sohr, and R. Koschke, “Automatically Extracting
Threats from Extended Data Flow Diagrams,” in Engineering
Secure Software and Systems, ser. Lecture Notes in Computer
Science, J. Caballero, E. Bodden, and E. Athanasopoulos, Eds.
Springer International Publishing, 2016, pp. 56-71.

[51 A. Shostack, Threat Modeling: Designing for Security, 1st ed.,
2014.

[6] Microsoft Corporation. (2020) Microsoft threat modeling tool
7. [Online]. Available: https://docs.microsoft.com/en-us/azure/
security/develop/threat-modeling-tool

[71 L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen, “Solution-
aware data flow diagrams for security threat modeling,” in
Proceedings of the 33rd Annual ACM Symposium on Applied
Computing, ser. SAC *18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 1425-1432. [Online]. Available:
https://doi-org.kuleuven.e-bronnen.be/10.1145/3167132.3167285

[8] K. Tuma, L. Sion, R. Scandariato, and K. Yskout, “Automating the
early detection of security design flaws,” in Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, ser. MODELS °20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 332-342.
[Online]. Available: https://doi.org/10.1145/3365438.3410954

[91 L. Sion, D. Van Landuyt, K. Yskout, and W. Joosen,
“Sparta: Security & privacy architecture through risk-driven
threat assessment,” in International Conference on Software
Architecture. 1EEE, 8 2018, pp. 89-92. [Online]. Available:
https://lirias.kuleuven.be/1656829

[10] K. Tuma, R. Scandariato, M. Widman, and C. Sandberg, “Towards
security threats that matter,” in Computer Security. Springer
International Publishing, 2018, pp. 47-62.

[11] A. van den Berghe, K. Yskout, and W. Joosen, “A reimagined
catalogue of software security patterns,” in The 3rd International
Workshop on Engineering and Cybersecurity of Critical Systems
(EnCyCriS’22). ACM, 2022.

[12] J. C.S. Santos, K. Tarrit, and M. Mirakhorli, “A catalog of security
architecture weaknesses,” in 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), 2017, pp. 220-223.

4. https://cwe.mitre.org/data/definitions/1008.html

https://cwe.mitre.org/data/definitions/117.html
https://owasp.org/Top10/
https://owasp.org/Top10/
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://doi-org.kuleuven.e-bronnen.be/10.1145/3167132.3167285
https://doi.org/10.1145/3365438.3410954
https://lirias.kuleuven.be/1656829

	Introduction
	Proposal Overview
	Extended system model
	System description
	Security tactic description
	Applying tactics

	Security design flaw queries
	Advantages

	Discussion and Future Work
	References

