
Poster Session Proceedings

7th IEEE European Symposium 
on Security and Privacy

Following the EuroS&P 2022 conference, the abstracts of the posters are made available to the
community in these proceedings. In order to provide a citable source document, the proceedings are
published at Zenodo (https://zenodo.org), an open research repository developed under the
European OpenAIRE program and operated by CERN, which enables sharing and preserving of
research outputs.

We would like to thank all the authors for the creativity and effort that went into their submissions,
and especially the poster presenters (including the invited posters’ presenters), for their tireless
engagement with the attendees during the lively poster session. We are also grateful to Gabriele
Costa and Alessio Merlo, the general chairs; Daniele Cono D'Elia and Leonardo Querzoni, the
publication chairs; Carmela Troncoso and David Evans, the program chairs, and to everyone else
who helped facilitate the poster session. We extend a special thanks to Gabriele Costa for
supporting the post-conference process of publishing the posters.

Vera Rimmer, KU Leuven, Belgium
Guillermo Suarez-Tangil, IMDEA Networks Institute, UK
IEEE European Symposium on Security and Privacy 2022 Poster Co-Chairs

Posters

1. A boostershot for transferable physically realizable adversarial examples

Willem Verheyen, Sander Joos, Tim Van hamme, Davy Preuveneers, Wouter Joosen

2. A practical methodology for ML-Based EM Side Channel Disassemblers

Cesar Arguello, Hunter Searle, Sara Rampazzi, Kevin Butler

3. Detecting Network Anomalies from Small Traffic Samples using Graph Neural Network

Aviv Yehezkel, Eyal Elyashiv

4. Exploiting Timing Side-Channel Leaks in Web Applications that Tell on Themselves

Vik Vanderlinden, Tom Van Goethem, Wouter Joosen, Mathy Vanhoef

5. How Attackers Determine the Ransom in Ransomware Attacks

Tom Meurs, Marianne Junger, Abhishta Abhishta

6. One of a Kind: Correlating Robustness to Adversarial Examples and Face Uniqueness

Giuseppe Garofalo, Tim Van hamme, Davy Preuveneers, Wouter Joosen

7. Pillars of Sand: The current state of Datasets in the field of Network Intrusion Detection

Gints Engelen, Robert Flood, Lisa Liu-Thorrold, Vera Rimmer, Henry Clausen, David Aspinall,

Wouter Joosen

8. Systematic Elicitation of Common Security Design Flaws

Stef Verreydt, Laurens Sion, Koen Yskout, Wouter Joosen

9. TESTABLE: Testability-driven security and privacy testing for Web Applications

Luca Compagna, Giancarlo Pellegrino, Davide Balzarotti, Martin Johns, Ángel Cuevas,

Battista Biggio, Leyla Bilge, Fabian Yamaguchi, Matteo Meucci

10. The Beauty and the Beast (40 years of process algebra and cybersecurity)

Silvia De Francisci, Gabriele Costa, Rocco De Nicola

11. The impact of data sampling in the anonymization pipeline

Jenno Verdonck, Kevin De Boeck, Michiel Willocx, Jorn Lapon, Vincent Naessens

12. The impact of public data during de-anonymization: a case study

Kevin De Boeck, Jenno Verdonck, Michiel Willocx, Jorn Lapon, Vincent Naessens

13. Towards Cyber Resilience of Cyber-Physical Systems using Tiny Twins

Fereidoun Moradi, Sara Abbaspour Asadollah, Marjan Sirjani

Poster: A boostershot for transferable physically
realizable adversarial examples

Verheyen Willem, Sander Joos, Tim Van hamme, Davy Preuveneers, Wouter Joosen
imec-DistriNet, KU Leuven

Abstract—Adversarial perturbations are claimed to enlarge
the attack surface of machine learning models. However, as
the most prominent attack methodologies require unrealistically
strong adversaries, they are hardly used in attacks against real-
world systems. In this paper, we alleviate the constraints on the
threat model and attack a face recognition system with physically
realizable perturbations in a black-box scenario, provided a single
attack attempt. As such, we are forced to rely on more pragmatic,
but less effective, attack methods that leverage transferability –
adversarial perturbations successful on known models tend to
also work on unknown ones. We overcome the poor attack success
rate of transferability by using adversarially trained surrogate
models.

I. INTRODUCTION

A well-known problem of neural networks is their suscepti-
bility to adversarial examples, e.g., images perturbed in such a
way that changes are imperceptible to humans but impair the
standard operation of neural networks. Despite a large body of
work on methodologies to generate adversarial examples, the
number of attacks on real-world models that take advantage
of them is limited. This low prevalence in real-world attacks
can be explained by the restrictiveness of the threat model
that is present in practical ML-based systems. Attacking such
systems requires a strong adversary with capabilities that are
often unrealistic in practice. Moreover, the adversary’s aim
is to evade a face recognition system without knowledge
about the network architecture but does possess information
about a limited number of identities that can be recognized.
Furthermore, the adversary’s goal is to evade detection on the
first try and is therefore limited to a single query without
digital access to the target model.

Therefore, the adversary needs to rely on robust surrogate
models to find a physical adversarial perturbation in the shape
of glasses [1]. It is shown by previous studies [2]–[4] that
robust models learn more universal representations of the
training data as opposed to non-robust models. As such, the
robust model learns better generalizing features, which serves
as evidence that adversarial perturbations generated on robust
surrogate models target features which are also present in other
networks that fulfill a similar purpose.

II. RELATED WORK

In this section, we introduce related work that motivates
the use of adversarially trained surrogate models to increase
transfer-based adversarial examples.

Transferability allows an adversary to generate adversarial
examples on a known model and use these to attack unknown

models. Although transfer-based attacks have a relatively low
success rate compared to other attack methods [5]–[8], their
major benefit is the limited query amount to the target model.

One proposed method to increase the low success rate
of transfer-based adversarial examples is to generate them
on surrogate models that have been adversarially trained on
attacks of similar nature [9]. The reason behind this is that
models robust against adversarial examples learn more gener-
alizing features that are shared with other DNNs. Therefore,
adversarial examples that exploit these features transfer better
than those generated on non-robust DNNs.

Increasing the success rate of transfer-based adversarial
examples has been explored further in the scope of digital
adversarial examples [3], [4], [10]–[12]. Yet, similar to the
transferability of adversarial examples, current understanding
of this topic remains incomplete, especially for physical ad-
versarial examples.

III. ATTACK METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we first describe the attack methodology
followed by the experimental setup; among others, we specify
how the adversarial perturbations are generated, and describe
the data and models used.

A. Attack methodology

1) Obtain a collection of samples to train the surrogate
model. This contains samples of the attacker that ulti-
mately need to be misclassified, but also samples from
other identities assumed to be recognized by the model
under attack.

2) Perform adversarial training on the surrogate model with
the collected set of samples by finding optimal perturba-
tions.

3) Use the newly robust surrogate model to craft adversarial
examples and only utilize those that are successful on the
surrogate while their benign counterpart is also classified
correctly.

4) Use the attacks that successfully fooled the surrogate
model to attack the target model.

B. Experimental setup

To perform our evaluation in light of face recognition we
require: 1) a sufficiently large face dataset which can be
split into two training and one attack portion, 2) different
model architectures, 3) a methodology to generate physical

1

realizable attacks, and 4) models with a varying degree of
robustness to obtain the adversarial test sets.

In the following we describe how we obtain each of the
aforementioned requirements.

Req. 1: In contrast to prior work that investigates transfer-
ability between DNNs that classify identical classes [9], [13],
we make a distinction between the identities recognized by the
face recognition surrogate- and target model with some degree
of overlap. We therefore use a portion of the VGGFACE2-
dataset [14] and split this into three distinct subsets, each
consisting of 400 identities that represent one core dataset
shared by both surrogate- and target model and one additional
set of identities for both the surrogate and target model
respectively.

Req. 2: We consider the following architectures for both
the surrogate- and target models, for which we use pre-
trained weights: VGGFace pretrained on the VGGFace dataset
[14], Facenet pretrained on the VGGFACE2 dataset [15] and
VGG19 pretrained on the VGGFACE2 dataset. We fine-tune
these models with our data, such that they classify the adequate
set of identities.

Req. 3: Our physically realizable adversarial examples are
based on the work by Sharif et al. [1]. we consider physically
realizable adversarial examples with localized perturbations in
the shape of glass frames. The adversarial glasses are always
cropped to match the size of a person’s face and rotated
accordingly.

Req. 4: We first construct a number of increasingly robust
classifiers and then use these to construct test sets containing
adversarial examples. Robust classifiers f̂i are obtained with
adversarial training on the initial classifier f , for a number
of epochs i with adversarial examples generated from our
dataset D. For each surrogate model, we then generate a test
set D̂i containing adversarial examples that are misclassified,
and thus successful as an attack. Adversarial attacks are only
added to the adversarial test set if their benign counterpart is
still classified correctly by the surrogate model. This allows
us to partially mitigate the effect of the well-known problem
where adversarial training causes a drop in standard accuracy
[16], [17]. Subsequently, we use these test sets to evaluate the
transferability of our robustly generated adversarial examples
to other classifiers. We only consider adversarial examples on
the target model when their benign counterpart is also classi-
fied correctly. This is an important assumption, as it is very
likely whenever a benign sample is misclassified, its resulting
adversarial examples are also likely to be misclassified.

IV. EVALUATION

We use the adversarial test sets generated on the surrogate
models to attack the different target models and measure the
transfer rate across them.

First, we demonstrate that adversarial examples generated
on robust surrogate models have a higher probability of
success when used to attack target models. In order to do
so, we compare the transfer rates of attacks in adversarial test
sets D̂0 and D̂max, where D̂0 contains adversarial examples

generated on the non-adversarially trained surrogate and D̂max

contains adversarial examples generated on the most robust
surrogate. Fig. 1 shows the distribution of transfer rates for
both D̂0 (non-robust) and D̂max (robust) when they are used
to attack different target models. The target models considered
are both not adversarially trained, and adversarially trained
using the adversarial examples of similar nature. The transfer
rate of adversarial examples generated on robust surrogate
models increases from an average of 27% to 40% and from 4%
to 15% for non-robust and robust target models respectively.

This shows that even when the target model is robust against
the considered adversarial examples, the attack success rate
can be increased when using robust surrogate models.

Next, Fig. 2 shows that as model robustness increases as
a result of adversarial training, so does the transferability
of physical realizable adversarial examples. This is in line
with findings in previous work that claims that the classifier
becomes more robust to adversarial examples, they rely more
on robust features instead of non-robust features. As a result,
features learned by robust classifiers benefit a higher degree
of universality, whereas non-robust features are less universal
and thus transfer worse [12].

Fig. 1: KDE-plot of the transfer ratio of physical realizable
adversarial examples generated on robust and non-robust sur-
rogate models and transferred to non-robust and robust target
models.

V. DISCUSSION

This section discusses the main implications of our work,
shortcomings, and possible directions for future work.

a) Security implications: In this work, we aimed to in-
crease the transferability of physical adversarial perturbations
to better accommodate threat models that require physically
realizable perturbations against black-box models with a near
zero-query budget. Our results extend the findings of recent
works [3], [9]–[11] that already provided evidence that the
transfer rate of adversarial examples with unlocalized per-
turbations increases when generated on robust classifiers. In
this work, we leverage these findings and propose model
robustness as a prior for the generation of physical realizable
adversarial examples. Specifically, we demonstrate an impres-
sive increase in attack success rate between 1.5x and 7x against

2

Fig. 2: Average transfer rates for increasingly robust surrogate
models. The X-axis represents the accuracy on adversarial
examples of the surrogate model, the y-axis represents the
transfer rate to different black box target models.

face recognition systems when using robust surrogate models
over their non-robust counterparts. On the one hand, with an
absolute success rate which varies between 6 and 56% we are
not consistently evading detection by face recognition systems.
On the other hand, in an impersonation scenario against an
authentication system, such an increase is significant, as often
multiple authentication attempts are allowed [18], e.g., FaceID
allows five authentication attempts before switching to PIN
input.

b) Validity threats: The experimental setup inherits sev-
eral less realistic assumptions on the proposed threat model
which we attempt to solve in our current ongoing work.

We assume both target- and surrogate models use partially
overlapping datasets in their training procedure. This is an
exaggerated simplification of a real-world scenario where an
attacker has limited to no knowledge of the data used to train
the target model. However, we assume that further minimizing
this overlap will have a limited impact on our results because
the intuition behind deep neural networks is that they can
distribute feature space evenly across different classes, separat-
ing each class with similar distances to each other. Therefore,
we propose the use of feature extractors to overcome relying
on overlapping datasets which, in turn, also relates better
to face recognition/authentication as an open-world problem.
Furthermore, we plan on considering impersonation attacks as
well to bridge the transition to authentication.

VI. CONCLUSION

In this paper, we propose a method to increase the attack
success rate of adversarial examples to face recognition sys-
tems in a highly restrictive, yet realistic black-box setting. We
do so by leveraging and enhancing the transferability property
of adversarial examples that are realizable in the physical
world by generating attacks on adversarially trained surrogate
models. Specifically, we found that using a robust surrogate
model over its non-robust counterpart drastically increases
transferability with a factor of 1.5 up to 7 for single attempt
attacks compared to the state-of-the-art. Moreover, even in

the case of low absolute attack success rates such increases
are significant for attacks against applications that allow for
more than one attempt but implement rate limiting, e.g.,
face authentication systems. In conclusion, we believe that
this work provides a compelling contribution to the creation
of adversarial examples that impose a significant threat to
practical machine learning applications.

REFERENCES

[1] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to
a crime: Real and stealthy attacks on state-of-the-art face recognition,”
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[2] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry,
“Adversarial examples are not bugs, they are features,” 2019.

[3] M. Terzi, A. Achille, M. Maggipinto, and G. A. Susto, “Adver-
sarial Training Reduces Information and Improves Transferability,”
arXiv:2007.11259 [cs, stat], Dec. 2020. arXiv: 2007.11259.

[4] J. M. Springer, M. Mitchell, and G. T. Kenyon, “A little robustness goes
a long way: Leveraging robust features for targeted transfer attacks,”
2021.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” arXiv:1412.6572 [cs, stat], Mar. 2015. arXiv:
1412.6572.

[6] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into Transferable
Adversarial Examples and Black-box Attacks,” arXiv:1611.02770 [cs],
Feb. 2017. arXiv: 1611.02770.

[7] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” 2017.

[8] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in Ma-
chine Learning: from Phenomena to Black-Box Attacks using Adver-
sarial Samples,” arXiv:1605.07277 [cs], May 2016. arXiv: 1605.07277.

[9] J. M. Springer, M. Mitchell, and G. T. Kenyon, “Adversarial perturba-
tions are not so weird: Entanglement of robust and non-robust features
in neural network classifiers,” 2021.

[10] H. Salman, A. Ilyas, L. Engstrom, A. Kapoor, and A. Madry, “Do Adver-
sarially Robust ImageNet Models Transfer Better?,” arXiv:2007.08489
[cs, stat], Dec. 2020. arXiv: 2007.08489.

[11] S. Shan, E. Wenger, J. Zhang, H. Li, H. Zheng, and B. Y. Zhao, “Fawkes:
Protecting privacy against unauthorized deep learning models,” 2020.

[12] J. M. Springer, M. Mitchell, and G. T. Kenyon, “Adversarial Pertur-
bations Are Not So Weird: Entanglement of Robust and Non-Robust
Features in Neural Network Classifiers,” arXiv:2102.05110 [cs], Feb.
2021. arXiv: 2102.05110.

[13] F. Utrera, E. Kravitz, N. B. Erichson, R. Khanna, and M. W. Ma-
honey, “Adversarially-Trained Deep Nets Transfer Better: Illustration on
Image Classification,” arXiv:2007.05869 [cs, stat], Apr. 2021. arXiv:
2007.05869.

[14] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in British Machine Vision Conference, 2015.

[15] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2:
A dataset for recognising faces across pose and age,” 2018.

[16] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
“Robustness may be at odds with accuracy,” 2019.

[17] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan,
“Theoretically principled trade-off between robustness and accuracy,”
2019.

[18] P. Markert, D. V. Bailey, M. Golla, M. Dürmuth, and A. J. Aviv, “This
pin can be easily guessed: Analyzing the security of smartphone unlock
pins,” 2021.

3

Poster: A practical methodology for ML-Based EM Side Channel Disassemblers

Cesar Arguello
CISE

University of Florida
carguello1@ufl.edu

Hunter Searle
CISE

University of Florida
huntersearle@ufl.edu

Sara Rampazzi
CISE

University of Florida
srampazzi@ufl.edu

Kevin Butler
CISE

University of Florida
butler@ufl.edu

Abstract—Providing security guarantees for embedded de-

vices with limited interface capabilities is an increasingly

crucial task. Although these devices don’t have traditional

interfaces, they still generate unintentional electromagnetic

signals that correlate with the instructions being executed. By

collecting these traces using our methodology and leveraging

a random forest algorithm to develop a machine learning

model, we built an EM side channel based instruction level

disassembler. The disassembler was tested on an Arduino

UNO board, yielding an accuracy of 88.69% instruction

recognition for traces from twelve instructions captured

at a single location in the device; this is an improvement

compared to the 75.6% (for twenty instructions) reported in

previous similar work.

Index Terms—electromagnetism, side-channel, disassembly,

security

1. Introduction

Embedded devices form an integral part of the modern
computing ecosystem. They can be found in a myriad
of applications, ranging from household appliances to
security-critical industrial controllers. Securing this wide
range of devices is a massive and crucial design challenge,
especially with the rise in connectivity of the Internet of
Things and emerging threats [1]. Many of these devices,
such as fuel tank monitors or farming field sensors, offer
little insight into their internal workings due to proprietary
technology or limited interfaces. Additionally, devices
such as medical devices might be deployed long-term,
with little or no ability to update their software against
cyberthreats. This combination of longevity and minimal
access create a situation where devices are susceptible to
many forms of attacks, including disrupting functionality,
falsifying sensor output, and increasing power consump-
tion to drain batteries [2].

One proposed approach to the challenge of protecting
embedded devices against these attacks is to use side-
channel information. Side-channels refer to information
that is leaked by unintentional signals generated in the
normal operation of a processor. There are many forms of
side-channel, including power, noise, electromagnetism,
timing, etc [3] [4] [5]. In each case, the signal is correlated
to the operations that generated them, so that information
about those operations can be retrieved from the signal.
Of these, power side-channels offer the clearest signal,
and have consequently received more attention from re-
searchers. However, they require a direct connection to the

processor’s power rail. Electromagnetic signals, however,
can be captured with no physical connection, making them
more preferable as a side-channel security mechanism.

In this work we propose an efficient approach for
building an electromagnetic side-channel based disas-
sembler, which can identify specific instructions being
executed on an embedded processor. We then use our
approach to build a proof-of-concept EM-based disassem-
bler to be used for implementing anomaly detection and
control flow mechanisms on low-cost embedded systems
without the need for firmware or hardware redesign. In
comparison with previous work [6], [7] that uses wiring or
multiple measurement points, our approach leverages the
presence in the device’s board of electronic components
that generate EM emanations (e.g., amplifiers) correlated
to the internal processor operations. Using a simple ran-
dom forest algorithm for classification, we achieve single
instruction granularity with 88.69% accuracy over twelve
different instructions on an ATMega328P 16MHz pro-
cessor. This is an improvement over previous work [6]
which required multiple measurement points and was only
tested on a 4MHz processor to achieve 75.6% accuracy
on 20 instructions. These encouraging results open the
possibility of utilizing our approach to build more efficient
and high-accuracy disassemblers to be used for anomaly
detection.

2. Background

Side-channel signals have been a known source of in-
formation leakage for decades [8] [9] [10]. They have been
exploited for recovering different types of data, including
screen images [10], secret keys [3], and audio [11]. Only
recently have side-channel analysis techniques been turned
to program disassembly, starting when Eisenbarth et al.
built a disassembler using power analysis [12]. Since
then, much progress has been made in this research area.
SCANDALee was the first successful em-based disas-
sembler [6]. Their method required multiple measurement
locations, and could only recover a portion of the instruc-
tion set on a slower (4MHz) processor. New techniques
were introduced for disassembly by Park et al., who were
able to recover nearly the entire instruction set, along
with registers, of a faster processor (ATMega 238P) [7],
although they only consider power side-channels, which
require a wired connection. Neural networks have also
been leveraged for disassembly, achieving similar levels of
accuracy only on power side channel [13]. Other works
have sought to ensure security without instruction-level

disassembly, such as Khan et al.’s EM-based intrusion de-
tection system [14]. Our methodology builds on these pre-
vious works to overcome the limitations of multiple-point
measurement and signal extraction to achieve instruction-
level disassembly using EM emissions.

3. Methodology Overview

Our process is composed of three steps: 1) Leakage
detection, 2) Signal extraction, and 3) Classification. Leak-
age detection is only done once, whereas signal extraction
and classification are performed every time.

Leakage Identification. Following the template-based
method used by previous work [7], we sample individual
instructions to build a template model before classifying
them in real code. Our approach begins by identifying
the component from which EM emanations are most
strongly correlated to executing instructions. This is done
empirically with a grid search across the device PCB
using a EMI probe located a few centimeters from the
board. At each point in the grid, we perform a simple
classification using a Random Forest algorithm that has
been adapted for use with time series implemented by
sktime [15]. To use this method we generate a template
built from samples of individual instructions with a no-
operation (NOP) immediately preceding and following it
to better identify the signal correlation with the executed
instructions. Before and after the target instruction, we
also implement a trigger operation for inducing a voltage
change (e.g., an instruction to flip a GPIO bit). This trigger
is used to separate the individual instructions for classi-
fication. This procedure gives a lower single-instructions
accuracy than our final classification, however, it shows
the relative information leakage that is used to identify one
or more optimal measurement locations corresponding to
the “leaky” electronic components (see Figure 2). After
this procedure the optimal measuring point is selected
and used for the rest of the process. Finally, because our
process uses the Fast Fourier Transform of the signal,
rather than the time series data, we identify the target
frequency bands using a spectrum analyzer.

Signal Extraction and Classification. The process to
build our template and to classify unknown signals follow
the same steps of signal extraction and classification.
This step consists in measuring the magnetic field around
the optimal point identified in the first step. Then we
automatically separate the instructions using the triggers,
and compute the FFT for each instruction. The magnitudes
of the transform at the frequencies identified in step one
are then used as features to train our model. While our
methodology can be adapted to any machine learning
algorithm, in our case study we found that the Random
Forest algorithm (not to be confused with the Time Series
Random Forest algorithm that we used for the grid search)
gave the highest single-instruction accuracy.

4. Proof-of-concept Disassembler

To test our methodology, we built a proof-of-concept
disassembler. We selected a subset of the AVR instruction
set by examining real-world code for a stack overflow
attack, then tested our disassembler on an ATMega328P.

Experimental setup. Our acquisition setup is shown
in Figure 1. We used a Tektronix H10 H-Field Probe con-
nected to a Tektronix MDO4024C oscilloscope to collect
traces from an Arduino UNO.

Figure 1. Acquisition setup made of a Tektronix H10 H-Field Probe
connected to a Tektronix MDO4024C oscilloscope.

Leakage Identification Phase. We began with a 80-
point grid search over the Arduino board and ran the Time
Series Random Forest classifier. We found that the highest
accuracy was near an operational amplifier connected to
the crystal oscillator, shown in Figure 2. This was the
point at which all other measurements were taken.

Figure 2. (Left) Recognition accuracy for the 80 subsection in which the
device under test was divided. The area near to the operational amplifier
connected to the crystal oscillator shows the highest accuracy (yellow).
(Right) Example of spectral profiling on a group of MULs and NOPs.

We used the Signal Hound SA44B spectrum analyzer
to study the frequency spectrum. Because the leakage
component was closer to the Arduino 16 MHz clock, we
examined frequencies within 1 MHz of the clock sub-
harmonics. Our analysis found that frequencies between
31.3-31.6 MHz showed the largest voltage difference for
our test instructions. The bands are shown in Figure 2.
Finally, we performed the hyperparameter optimization
for the tested classification algorithms as shown in Table
1. The random forest algorithm presented the highest
accuracy and was hence chosen as the optimal one for
the development of the disassembler.

TABLE 1. RANDOM SEARCH HYPERPARAMETER OPTIMIZATION

Algorithm Accuracy Optimum Hyperparameters
Random Forest 85% Num. Estimators = 1000

Min. Interval = 2
Random Interval Spectra 56% Num. Estimators = 829

ACF lang = 400
K Nearest Neighbors 76% Num. Neighbors = 100

Support Vector Machines 82% Kernel = linear
Gamma = 0.1

4.1. Evaluation

4.1.1. Single Instructions Recognition. The results of
accuracy recognition for twelve selected instructions after
performing four fold cross validation in the developed
disassembler are summarized in Figure 3. The proposed
implementation yielded an 88.69% recognition accuracy.

Figure 3. Confusion matrix of our EM side-channel based disassembler
four cross validated

4.1.2. Code Recognition. To test the capability of our
approach to recognize instructions on a potential real-
world case study, we consider the scenario of a real-world
medical device, SyringePump [16]. The pump is designed
to deliver medications to a patient at periodic intervals.
The system typically consists of a syringe, an actuator
(a stepper motor), and a control unit (Arduino UNO)
that takes commands from the serial port. We focus on

Figure 4. Confusion matrix for identification of instructions in three cycle
instructions of the partially implemented Arduino SerialRead function

a specific section of the Arduino SerialRead function as
test case. This function is crucial for anomaly detectors to
infer the presence of ongoing buffer overflow attacks on
the internal buffer of the serial port.

A small driving program was made such that a com-
puter sends three arbitrary characters to the Arduino board
serial port and the SerialRead function stores those char-
acters in a buffer. Our acquisition setup was used to
collect traces for the relevant five instructions used by the
function. The driving program was run 500 times and 75%
of these traces were used to improve the single-instruction
model while the rest was used for testing. The recognition
accuracy obtained was 77.4% as shown in Figure 4.

5. Observations and Future Work

The proposed methodology allows single-instruction
classification with high accuracy. Moreover, by observing
the number of certain operations execution as well as the
timing deviation from the regular behavior, an anomaly
detector can leverage this findings to automatically deter-
mined if an attack was causing such deviation. Although,
the results of this test case scenario are preliminary and
more testing is required to evaluate the robustness of
our approach on different scenarios, they also show the
potential of our methodology to be used not only identify
anomalies but also provide forensic evidence for their cat-
egorization. Planned future work will address a more in-
depth evaluation on multiple case scenarios and different
processors to fully validate our methodology.

Acknowledgment

This work was funded in part by The Center for
Enabling Cyber Defense in Analog and Mixed Signal
Domain (CYAN - AFRL FA8650-19-1-1741) and a gift
from Facebook.

References

[1] I. Ahmad, R. Ziar, and M. Niazy, “Survey on iot: Security threats
and applications,” vol. 2, pp. 42–46, 2020.

[2] M. Baezner and P. Robin, “Stuxnet,” 2018.
[3] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” 1999.
[4] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic Analysis:

Concrete Results,” 2001.
[5] C. Rechberger and E. Oswald, “Practical Template Attacks,” 2004.
[6] D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar,

“Scandalee: a side-channel-based disassembler using local elec-
tromagnetic emanations,” in 2015 Design, Automation & Test in
Europe Conference & Exhibition, 2015.

[7] J. Park, X. Xu, Y. Jin, D. Forte, and M. Tehranipoor, “Power-based
side-channel instruction-level disassembler,” in Proceedings of the
55th Annual Design Automation Conference. ACM, 2018.

[8] R. J. Anderson, “Emission Security,” in Security Engineering,
2001.

[9] “AFSSM 7011 - Emission Security Countermeasures Review.”
[Online]. Available: https://cryptome.org/afssm-7011.htm

[10] W. van Eck, “Electromagnetic radiation from video display units:
An eavesdropping risk?” Computers & Security, 1985.

[11] J. Choi, H.-Y. Yang, and D.-H. Cho, “TEMPEST Comeback: A
Realistic Audio Eavesdropping Threat on Mixed-signal SoCs,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020.

[12] T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a Side Chan-
nel Based Disassembler,” Transactions on Computational Science
X, 2010.

[13] P. Narimani, M. A. Akhaee, and S. A. Habibi, “Side-channel
based disassembler for avr micro-controllers using convolutional
neural networks,” in International ISC Conference on Information
Security and Cryptology (ISCISC), 2021.

[14] H. A. Khan, N. Sehatbakhsh, L. N. Nguyen, R. L. Callan, A. Yere-
dor, M. Prvulovic, and A. Zajić, “IDEA: Intrusion Detection
through Electromagnetic-Signal Analysis for Critical Embedded
and Cyber-Physical Systems,” IEEE Transactions on Dependable
and Secure Computing, 2021.

[15] “Timeseriesforestclassifier.” [Online]. Available:
https://www.sktime.org/en/latest/api reference/auto generated/ sk-
time.classification.interval based.TimeSeriesForestClassifier.html

[16] “Open syringe-pump source code and project.” [Online]. Available:
https://github.com/naroom/OpenSyringePump

Poster: Detecting Network Anomalies from Small Traffic Samples using Graph
Neural Network

Aviv Yehezkel
Cynamics

Israel
aviv@cynamics.ai

Eyal Elyashiv
Cynamics

Boston, US
eyal@cynamics.ai

Abstract—Detecting anomalies in computer networks is a
classic, long-term research problem. While almost every kind
of model architecture has been proposed, previous works
usually analyzed the entire network traffic. However, such
analysis implies high memory and processing overhead, and
is becoming less applicable for large networks. In this poster
we present a work in progress which studies a previously
under-researched setting where only a small fraction of the
network traffic is given. Our approach pre-processes the
samples and transforms the computer network into a graph
neural network (GNN). It distills node features, edge features
and graph representations to learn a vector embedding for
each endpoint which characterizes its normal behaviors.
Then, a link predictor model is used to estimate the likeli-
hood of network communications and detect anomalies.

Index Terms—Deep-Learning; Graph Neural Network; Net-
work Anomaly Detection; Network Security

1. Introduction

Detecting anomalies in computer networks is a classic,
long-term research problem. Almost every kind of model
architecture has been studied: statistical, clustering, clas-
sification, information-theory, deep-learning, and others
(see [1] for a recent comprehensive survey on network
anomaly detection). Specifically, various learning-based
approaches were used [2]–[6]. However, previous works
were based on analyzing the entire network traffic, which
is less applicable for large networks.

A much less-studied approach is the sampling ap-
proach, which is especially suitable for high-speed (gigabit
or more) or high throughput networks, where only a small
fraction of the packets (for example 1%) is being sampled
and summarized [7].

In a recent work, we showed how a small percent of
uniform sampling can be used to efficiently and accurately
detect network anomalies and attacks using the concept of
”auto-encoder losses transfer learning” [8]. Our approach
collected 1% network samples for each client, trained an
auto-encoder neural network for each client’s network and
then normalized all auto-encoder losses of the different
clients, providing the ability to transform loss vectors
of different client networks with potentially significant
varying characteristics, properties, and behaviors into a
similar statistical distribution. The normalized losses can
then be forwarded to a global detection model that detects
and classifies threats in a generalized way that is agnostic

to the specific client. We used extensive simulation study
to compare the ”sampled” approach to the existing “un-
sampled” state-of-the-art approach and showed its superior
detection accuracy.

In this poster, we present a work in progress which
intends to take our previous research one step deeper in
the network - from the gateways to the endpoints. The
proposed approach will transform the computer network
into a graph neural network (GNN). It will distill node
features, edge features and graph representations to learn
a vector embedding for each endpoint which characterizes
its normal behaviors. Then, a link predictor model will be
used to estimate the likelihood of network communica-
tions and detect anomalies in the endpoint level. As this
work is still in progress, the poster abstract will mainly
present our research idea and approach, without providing
evaluations and preliminary results.

In addition to the lower processing cost, a sampling-
based network anomaly detection approach has many ad-
vantages, such as: (a) Data privacy: the packet’s payload
is not analyzed at any moment; (b) built-in robustness
against sophisticated attacker utilizing ML techniques, due
to the randomized nature.

The key contributions of the work being presented in
the poster are:

• A novel approach for transforming a computer
network to graph neural network.

• Learning a vector, characterizing the normal be-
haviours of each endpoint, using multiple aspects
of the sampled traffic data (of the node, edge and
graph) and detecting anomalies in the endpoint
level in a manner that is agnostic to the traffic
volume and network size.

• A new method for network anomaly detection
using a small fraction of network samples based
on a combination of graph neural network and link
predictor model.

2. The Approach

The approach consists of three main stages (see in
Figure 1):

1) Computer networks are transformed to graph neu-
ral networks based on key aspects of the network
traffic, endpoints (nodes) and communications
(edges).

Figure 1. An high-level overview of the proposed approach.

2) A vector embedding is learned for each graph
node, characterizing its normal behaviors by fus-
ing together different node perspectives (node
features, edge features and graph representa-
tions).

3) A link-predictor model is trained to estimate a
likelihood of network communications and detect
anomalous links.

First, sampled IP flows1 data is collected from main
network gateways (e.g., firewalls and switches). Each
record represents a meta-data summarization of commu-
nication between two endpoints (IP addresses) in the
network with their flow details: source IP address, destina-
tion IP address, source port, destination port, IP protocol,
creation time, number of packets in flow, flow length in
bytes.

Then, the network traffic is transformed to a graph
neural network with two types of nodes:

• IP entities – the flow’s source and destination IPs.
• ”PPP” triplets entities – an ”artificial” node rep-

resenting the communication between IP entities,
composed of a combination between the flow’s
source port, destination port and IP protocol, i.e.,
(source port, IP protocol, destination port) triplet.

2.1. Building the Network Graph

In this stage, the raw sample data is used to build a
network graph with different node extraction methods for
the IP entities set and PPP triplets set.

The IP entities set consists of different network IP
entities. Every IP is first enriched with its network cate-
gory, either internal (local endpoint in the client network),
external (a public IP owned by the client network) or
public (public internet IP outside the client network). Both
internal and external IP entities are assigned with their
own node IDs.

Public IPs are processed differently: each public IP is
further enriched with its hosting country and organization
details, by querying an IP enrichment repository. Then,
each unique tuple of (country, organization) is assigned a
node ID. Thus, different public IPs that share the same
hosting country and organization will be assigned the
same ID and treated by the network graph as the same
entity. This is done to reduce the graph dimension and
improve the model generalization in inference-time for

1. A flow is defined as a set of IP packets sharing a set of common
properties, such as source/destination IP addresses and TCP/UDP ports.

new ”unseen” IPs, by ensuring that the same logical
communication will not be treated differently because of
different raw IP values.

The PPP set consists of triplets in the form of (source
port, IP protocol, destination port). It is also pre-processed
in order to reduce the network size and improve general-
ization. First, too-rare IP protocols with a total flow packet
count lower than a certain threshold (e.g., 0.1% of the
total count) are assigned a general IP protocol identifier,
so as not to negatively affect the model learning by their
significant imbalanced proportion. Then, an additional
pre-processing is done on the port values. Each port value
(source/destination) is assigned a category, according to
the Internet Assigned Numbers Authority (IANA [9]) port
range convention: common service ports have high signif-
icance and thus each will be assigned a unique identifier,
but client ports have low significance for their specific
value and thus will all be assigned a shared identifier.

After both protocols and ports are categorized, every
unique triplet of (categorized source port, categorized
IP protocol, categorized destination port) is assigned its
own node ID. The IP and PPP nodes together represent
our vocabulary. An additional dedicated graph node is
being created for out-of-vocabulary IP entities and/or PPP
triplets, mapping to a general unknown identifier.

Finally, the graph edges are created to transform each
flow of (source IP, PPP, destination IP) to two unidi-
rectional edges: the first is between source IP node to
PPP node, and the second is between the PPP node to
destination IP node. The main building blocks of this stage
are summarized in Figure 2.

2.2. Training Vector Embeddings

In this stage we employ a graph embedding technique
to distill node features, edge (link) features (between
graph nodes) and graph structure information to learn
a vector embedding representation to each node. These
embeddings provide a “network context” for each of the
network entities that will be used in the last stage for
learning a link predictor and detecting anomalies.

We will use several edges types:
• By average packet volume to account for different

traffic volumes sent over the flow. We will create
10 different edge types by splitting the flow packet
count to 10 equal sized bins.

• By time of day. We will create 24 different edge
types by splitting the flow by its hour.

We will use several node features, creating a vector
for each node consisting of: IP address subnet B ID

Figure 2. Overview of the main building blocks used for creating the network graph.

(255.255.X.X) , IP address subnet C ID (255.255.255.X),
IP address country ID , IP address organization ID and
network location category (internal, external or public).

Then, the embeddings will be learned based on the
metapath2vec algorithm of graph walks [10]. Each node
is sampled for random graph “walks” or paths, starting
from the selected node. This process results in a 200-
length vector embedding learned for each node for each
one of the 36 extracted graphs (10 packet volume average
graphs and 24 hourly graphs). Thus, each graph node
is represented by a (36, 200) matrix. To reach a one-
dimensional node representation, the 36 node vectors are
averaged to a single 200-length vector. The main building
blocks of this stage are summarized in Figure 3.

Figure 3. Overview of the main building blocks used for learning graph
node embeddings.

2.3. Link Predictor Model

In the final stage, a link predictor model is being
trained to detect anomalies. Traditionally, a link predictor
model is given a pair of graph nodes and is trained to
estimate the likelihood for an edge between them [11].

In our case, the link predictor model will learn to
estimate a likelihood for network communications: given a
triplet combination (IP node, PPP node, IP node) as input,
instead of the traditional 2-node single graph connection.
Positive labeled inputs are sampled from the given data,
and negative labeled inputs are generated by pairing ran-
dom triplets that were not part of the given data. Finally,
combining the positive and negative datasets forms the
input data for the link predictor model.

The link predictor architecture is a feed-forward neural
network that consists of the following layers (presented in
Figure 4):

• An input embedding layer, with an input size of
(3, 200) accounting for input triplet of (IP,PPP,IP),
each embedding of size 200.

• A flatten operation combining the 3 input node
vectors.

• Two dense layers with ReLU activation.
• A final output dense layer with sigmoid activation

to output a likelihood probability.

Training loss will be calculated with binary cross-entropy
loss, and network optimization will be done using a

Figure 4. The link predictor model architecture.

stochastic gradient descent algorithm, such as the Adam
optimizer.

At the final stage, model inference will be done in real-
time using a predetermined probability threshold, detect-
ing network connections beneath the threshold as anoma-
lies. The threshold will be learned statistically after the
model training (e.g., the 99.99th probabilities’ percentile).

References

[1] Gilberto Junior, Joel Rodrigues, Luiz Carvalho, Jalal Al-Muhtadi,
and Mario Proença. A comprehensive survey on network anomaly
detection. Telecommunication Systems, 2019.

[2] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.
Kitsune: an ensemble of autoencoders for online network intrusion
detection. NDSS, 2018.

[3] Sawsan Abdul Rahman, Hanine Tout, Chamseddine Talhi, and
Azzam Mourad. Internet of things intrusion detection: Centralized,
on-device, or federated learning? IEEE Network, 34(6), 2020.

[4] Ying Zhao, Junjun Chen, Di Wu, Jian Teng, and Shui Yu. Multi-
task network anomaly detection using federated learning. In
Proceedings of the 10th international symposium on information
and communication technology, 2019.

[5] Poonam Mehetrey, Behrooz Shahriari, and Melody Moh. Col-
laborative ensemble-learning based intrusion detection systems
for clouds. In 2016 International Conference on Collaboration
Technologies and Systems (CTS).

[6] Lianbing Deng, Daming Li, Xiang Yao, David Cox, and Haoxiang
Wang. Mobile network intrusion detection for iot system based on
transfer learning algorithm. Cluster Computing, 22(4), 2019.

[7] Baek-Young Choi and Supratik Bhattacharyya. On the accuracy
and overhead of cisco sampled netflow. 2005.

[8] Aviv Yehezkel, Eyal Elyashiv, and Or Soffer. Network anomaly
detection using transfer learning based on auto-encoders loss nor-
malization. In Proceedings of the 14th ACM Workshop on Artificial
Intelligence and Security (AISec), 2021.

[9] Michelle Cotton, Lars Eggert, Dr. Joseph D. Touch, Magnus West-
erlund, and Stuart Cheshire. Internet Assigned Numbers Authority
(IANA) Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry. RFC 6335, 2011.

[10] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. meta-
path2vec: Scalable representation learning for heterogeneous net-
works. KDD, 2017.

[11] Muhan Zhang and Yixin Chen. Link prediction based on graph
neural networks. NIPS, 2018.

Poster: Exploiting Timing Side-Channel Leaks in Web Applications that Tell on
Themselves

Vik Vanderlinden, Tom Van Goethem, Wouter Joosen and Mathy Vanhoef
imec-DistriNet, KU Leuven

{firstname.lastname}@kuleuven.be

Abstract—The performance of remote timing attacks is
highly dependent on the network connection that the attack
is executed over, where jitter in both the up- and downstream
direction can significantly deteriorate an attack’s perfor-
mance. Traditional timing attacks overcome this problem
by obtaining a large number of measurements.

In this poster, we present a technique to remove the
inaccuracies caused by downstream jitter in a remote timing
attack, which we expect to reduce the number of measure-
ments required to perform a successful timing attack. Our
core idea is to exploit timestamps in HTTP responses, whose
values are independent of the downstream jitter. To abuse
these timestamps, the adversary synchronizes with the target
web server’s clock edge, after which the observed timestamps
allow the adversary to infer secret information.

We present a method to synchronize with the server’s
clock and discuss how to compensate for the clock drift
between the attacker and target machines. To evaluate the
feasibility of our technique, we also investigate the occur-
rence of timestamps in HTTP responses for the top 10,000
sites according to the Tranco list.

Index Terms—Side-channel attacks, timing attacks, web-
based attacks, network security

1. Introduction

The first remote timing attack was performed in 2005
by Brumley and Boneh, who used more than 1.4 million
samples to leak a 1024-bit RSA key from a server [1].
Historically, to exploit a remote timing attack an adversary
has to obtain many samples to be able to differentiate
requests in a statistically significant way. Collecting a
high number of samples makes the attack more robust
against the jitter imposed by the network. By performing
a test like the box test proposed by Crosby, Wallach and
Riedi, an attacker can confidently differentiate between
operations on a server using a quantifiable metric and leak
private data [3].

In order to reduce the need for obtaining such a high
amount of samples, the network jitter that is present has
to be reduced or removed. By eliminating the dependence
on one or both network paths, the jitter can be elimi-
nated from the obtained samples. Previous work showed
that both up- and downstream jitter can be removed by
coalescing multiple requests into a single TCP segment
and looking at the order in which the responses are
being returned [5]. However, their technique only works

over HTTP/2 and requires that the server uses concurrent
processing. We propose a new sequential timing attack
that eliminates downstream jitter and can leak sensitive
information under less strict prerequisites.

First, the core concept of the attack and the prereq-
uisites will be presented. Second, some necessary opti-
mizations to make the attack feasible will be discussed.
Specifically, the clocks of the attacker and target machines
have to be synchronized in order to leak information
from the target. Adding to the complexity, these clocks
will experience a relative drift between them over time,
due to the minor inaccuracies in the physical hardware-
clocks they use. Because the attack takes a non-negligible
amount of time, the relative drift between machines should
be compensated for in order to keep the synchronization
valid throughout the attack. Finally, the occurrence of
timing information on the web is discussed due to its vital
importance to a successful attack.

2. Proposed Attack

Consider two requests, one of which includes a secret
operation that takes additional processing time (the ‘tar-
get’ request), the other does not (the ‘baseline’ request).
When these two requests are sent to a server at exactly
the same moment, the expected outcome would be that the
response to the target request is returned after the response
to the baseline request because additional processing time
has passed. Sending both requests can be timed such that
the baseline response is returned before some state change
on the server and the target response after the state change.
The state change is reflected in the respective responses
to both the baseline and target requests. The fact that
some state is different in both responses can be used by a
malicious actor to leak information. One example of state
that constantly changes (increments) and is thus a logical
choice for an attack is the current time. If a server reflects
information about the current time in its responses, this
values continuously changes, by definition, over time and
can thus be used to leak private information.

The proposed attack eliminates the downstream jit-
ter by exploiting timing information included in HTTP
responses from the target server. Because the response
is constructed on the server, the timing information that
originated on the server travels over the downstream path
unchanged while the jitter imposed on this path has no ef-
fect on the contents (among which the timing information)
of the HTTP response.

3. Clock Synchronization

The amount of responses that are returned close to
a target server’s clock edge should be maximized to get
the largest potential for differentiating between requests.
Bringing the moment the response is sent from the target
server close to the target clock edge is exactly the goal of
the clock synchronization.

An overview of the clock synchronization process is
depicted in fig. 1. The middle bar represents the target
server, with clock ticks (where the time on the server rolls
over to the subsequent value) indicated by vertical bars.
Before the clock synchronization is performed, the client
has no knowledge about the timing of the server clock
ticks (or edges). As shown at the top of fig. 1, the client
may send requests but will not necessarily be close to the
clock edges of the target server (it is essentially similar to
a random initialization). After synchronization, the goal
is to have 50% of the responses be returned before the
clock edges and 50% after the clock edges. Practically,
the client has to find an offset to delay after its local
clock tick that moves the sending of the responses on the
server-side just the correct amount of time such that they
are being returned around the moment of the clock edge,
which is shown at the bottom of the fig. 1.

Figure 1. An overview of the effect of clock synchronization. The middle
bar represents the target server with clock ticks indicated by vertical bars.
The top bar is an unsynchronized client that sends requests to the target
server. On the bottom is the same client after the synchronization, now
sending requests at an offset in time such that the responses are returned
at the exact moments of the target clock ticks. The synchronization
process consists of finding the correct offset for the client in such a way
that 50% of the responses are returned before and 50% are returned after
the target’s clock edges.

The synchronization process only uses one request (the
‘baseline’) that is repeated to perform the synchronization.
The attacker machine starts by sending requests over
equidistant offsets within an interval (usually one second
to start). By observing the responses of the target server,
the clock edge may be discovered.

When a response is generated before the clock edge
on the target server, consider the time to be tS . After
the clock edge, the time is then incremented to tS + 1.
The attacker machine can detect this change and can infer
between which offsets the target clock edge occurred. In
practice, the detection is less straightforward because the
time on the target server is incremented every second
and not all requests necessary for the synchronization can
be sent within one second. This means that an attacker
cannot simply compare the returned timing values directly.
Rather, the attacker can use the relative difference between
the times on the attacker and target machines, because the

time is also incremented on the attacker machine at a more
or less similar rate.

When the interval at which the target clock edges
occur is found, the attacker can choose to iteratively
repeat the process of synchronization within this interval
with smaller offsets. This whole process is of course
still hindered by the jitter acting upon each request sent
over the network. Our preliminary tests show that the
synchronization can be performed down to an accuracy of
a millisecond with a very low number of required samples.
To increase the accuracy of the synchronization further,
more optimizations are required, as discussed in the next
section.

4. Clock Drift Compensation

Because clocks are inherently inaccurate, be it to a
rather small degree that is not disturbing to a human, the
clocks of the attacker and target machines may drift away
from each other. Relative clock drift has a deteriorating ef-
fect on the performed clock synchronization. First because
any synchronization that has been successfully performed
will only be valid for a small amount of time, until the
relative drift will have moved the actual synchronization
point away from the detected result. Second, a synchro-
nization of higher resolution may take too such a long time
to execute that the actual synchronization point may have
already drifted out of focus of the synchronization algo-
rithm (which is iteratively narrowing down on one point)
before the synchronization has been completed. Clearly
these effects make the attack impossible to perform as is,
because an accurate clock synchronization is vital to the
success of the attack.

In order to make the attack feasible, the relative drift
between the attacker and target machines should be com-
pensated. The absolute drift of a machine’s clock can
depend on many factors, including but not limited to
temperature fluctuations, CPU usage spikes etc. [2]. By
using machines in a shared public cloud environment,
most factors that may affect the drift are not in control of
an adversary. On the other hand, these environments allow
an adversary to execute an attack from devices that are
physically near the target machines. This means shorter
network paths and thus more accurate attacks, thereby
incentivizing the use of a public cloud environment.

The relative drift is not stable over time, because it is
the sum of two absolute drifts (of the attacker and target
machines) which themselves are not stable over time due
to the external factors. The relative drift between a ma-
chine in our university network in Belgium and a Amazon
AWS server in Frankfurt, Germany was monitored for
multiple months in 2021. The result depicted in fig. 2
shows that the drift may be approximated as a linear drift
most of the time. Note in particular that the time-scale
of this figure is large and thus the drift seems extremely
large but is actually relatively stable over most periods
of a few days. This linear nature gives an adversary the
time to approximate the drift close enough to accurately
compensate it during the remainder of the attack by taking
multiple samples of the target machine clock edge over
a few hours and performing a linear interpolation. Most
instances at which the drift seems to suddenly change in
fig. 2 are reboots of the machine in our university network.

Figure 2. The relative drift between a machine in our university network
in Belgium and an instance in the Amazon AWS public cloud environ-
ment in Frankfurt, Germany. Sudden changes in drift are mostly reboots
of a machine involved in the experiment.

To execute an attack with drift compensation, the drift
has to be estimated first, after which all timing values are
incremented with the estimated relative drift since the start
of the attack (including clock synchronization). Using the
drift compensation, we managed to increase the accuracy
of the synchronization down to around 10 microseconds.
However, it should be noted that this effort significantly
increases both the attack time and required number of
requests (due to drift compensation and more involved
synchronization). An extensive comparison between this
method and a standard timing attack regarding the number
of requests has yet to be made.

5. Timing Values on the Web

The proposed attack requires the use of timing infor-
mation embedded in the server’s response. This informa-
tion can either be present in one or more headers or in the
body (e.g. embedded within a HTML page) of the HTTP
response.

Timing information can occur in different formats.
First, there are absolute timing values that represent a spe-
cific point in the history or future, usually represented with
a year and date. Second, there are relative timing values
that represent an offset relative to some absolute time,
such as Unix timestamps (the number of seconds since 1
January 1970 UTC). Finally, there are intervals, that define
an amount of time and yet are not inherently bound to any
absolute time (i.e. an interval such as “5 seconds,” is not
bound to a specific moment in time).

To detect these different types of timing values, a
number of regular expressions have been constructed that
match a large number of common formats of timing
values. The detection in HTTP headers is a simple string-
based match against the each header’s value because a
HTTP header is essentially a single string. Detection in
structured data such as HTML is more difficult. To find
timing values in HTML, a bottom-up traversal of the
HTML DOM-tree is performed for each visited page.

To evaluate how commonly timing values occur on the
web, the Tranco list1 [4] generated on 22 February 2021

1. Available at https://tranco-list.eu/list/85NV.

top 10,000 sites were visited by a custom crawler. In total,
the crawler successfully visited 41,836 web pages, 5 per
site minus some crawler errors. Each page was visited
twice with a delay of 10 s between visits. By visiting
twice, an easier distinction between variable timing values
and static content on a page can be made. It is entirely
possible for timing values to occur statically on a site, e.g.
the date a blog post was published.

All data gathered was post-processed before any anal-
yses were performed. The post-processing is an important
step to filter out static timing values, false positives from
the regular expressions and timing values that do not
occur consistently on a web page. Because all pages have
been visited twice, the post-processor attempts to create
a mapping between all found values in both visits and
removes those values that are identical on both visits
(probably static or false positive results) and that only
occur in one out of two visits (no consistent occurrence).

An interesting statistic is that a timing value occurs
in the date (or Date) header in 92.36% of the response
documents (of all responses, the document responses with
status code 200 are the only ones used for the analyses).
Some web pages return a timing value in their date header
that is unchanged for more than 10 s (the resolution of
the timing information is very low). These values are
discarded by the post-processing step, being flagged as
static values. Even if these values are not entirely static,
the granularity of the timing values is too low to use in
the attack, thus them being discarded is not an issue.

In total, 5.65% of the documents did not include a
single timing value and 37.56% of the responses only
have one timing value embedded on them. For most of
the responses having one value, this value will be in the
date header. The median number of timing values per
response is 2. The average, however, is 6.39 indicating that
there are a number of large outliers. With 990 response
including more than 20 timing values and 62 of those
even including more than 500 it is clear that these outliers
increase the average. Finally, the analyses show that only
22.77% of timing values were found in headers, showing
that it is worth including the HTTP response bodies in
further analyses.

References

[1] D. Brumley and D. Boneh, “Remote timing attacks
are practical,” in Computer Networks, 48(5), 2005,
https://doi.org/10.1016/j.comnet.2005.01.010, pp.701—716.

[2] S. J. Murdoch, “Hot or not: Revealing hidden
services by their clock skew,” in CCS, 2006,
https://doi.org/10.1145/1180405.1180410, pp.27—36.

[3] S. A. Crosby, D. S. Wallach and R. H. Riedi, “Opportuni-
ties and Limits of Remote Timing Attacks,” in ACM Trans-
actions on Information and System Security, 12(3), 2009,
https://doi.org/10.1145/1455526.1455530, pp.1—29.

[4] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Ko-
rczyński and W. Joosen, “Tranco: A Research-Oriented Top
Sites Ranking Hardened Against Manipulation,” in NDSS, 2019,
https://doi.org/10.14722/ndss.2019.23386

[5] T. Van Goethem, C. Pöpper, W. Joosen and M. Vanhoef, “Time-
less timing attacks: Exploiting concurrency to leak secrets over
remote connections,” in Proceedings of the 29th USENIX Security
Symposium, 2020, pp.1985-–2002.

https://tranco-list.eu/list/85NV

POSTER: How Attackers Determine the Ransom in Ransomware Attacks

Tom Meurs
University of Twente

Enschede, Netherlands
t.w.a.meurs@utwente.nl

Marianne Junger
University of Twente

Enschede, Netherlands
m.junger@utwente.nl

Abhishta Abhishta
University of Twente

Enschede, Netherlands
s.abhishta@utwente.nl

Erik Tews
University of Twente

Enschede, Netherlands
e.tews@utwente.nl

Abstract—Ransomware may lead to massive economic dam-
age to victims [13]. However, it is still unclear how at-
tackers determine the amount of ransom. In this poster
we empirically study the ransom requested by attackers in
ransomware attacks. We analysed 371 ransomware attacks
reported to the Dutch Police between 2019 and 2021. Our
results indicate that attacker’s effort and opportunity are
important predictors for the ransom requested. The goal of
the poster is to invite other researchers for collaboration.

Index Terms—Ransomware, cyber attacks, criminal revenue,
police reports

1. Introduction

Ransomware attacks have become more prevalent over
the past years [1]. Even though most ransomware attackers
are financially motivated [9], the actual financial gains
made by attackers are still unclear. This poster abstract
aims at introducing a dataset that could be used to empir-
ically study the ransom requested by attackers.

The Rational Choice Perspective (RCP) [2], [3] states
that criminal decision-making is based on weighing the
costs and benefits of an attack. Costs could be effort or risk
of being caught by Law Enforcement. Benefits is mostly
money, but could also be reputation. Based on RCP, we
hypothesise that ransom requested depends on how much
effort attackers put in a ransomware attack. Furthermore,
there might be an increase of requested ransom over the
years because improved anti-virus scanners might make it
more difficult to perform ransomware attacks and there-
fore require more effort.

A complementary approach is the Routine Activity
Theory (RAT) [10]. RAT focuses on the opportunities
for attackers provided by context. From RAT it follows
that victims with more money provide the opportunity for
attackers to earn more money and therefore will demand
higher ransom [6]. Furthermore, opportunity might vary
between seasons [12], so requested ransom could also vary
between seasons.

Summarizing, attacker’s effort and opportunity could
influence ransom requested (Figure 1) .We propose the
following hypotheses:

• H1: If attackers put in more effort they will ask a
larger ransom

• H2: There is an increasing trend of requested
ransom over the years

• H3: High revenue of victims should lead to larger
requested ransom

• H4: The requested ransom varies over the different
seasons

Figure 1: Theoretical framework

2. Methods

2.1. Sample

We investigated 371 ransomware attacks registered by
the Dutch Police between 2019 and 2021. Ransomware
attacks on individuals as companies were included in
the sample. Ransomware attacks with victims outside
the Netherlands, but reported to the Dutch Police, were
excluded from this study.

2.2. Measures

To measure requested ransom information about the
ransom at first contact with victims was collected. From
the 371 observations, 172 attacks (46 %) reported ransom
demanded by attackers. If ransom demanded was un-
known, this was mostly (52 %) because attackers wanted
victims to contact them to inform them about the ransom
and the victim did not want to do so. In our analysis we
perform analysis to see if there is selection bias of the
unknown requested ransomware.

To measure effort information was collected on several
variables.

a) Ransom note. We noted whether the criminals
wanted to first have contact with the victim before in-
forming what ransom they requested, from here defined
as targeted ransom note (categories: yes/no). Yes means
that first contact with the attackers was required to obtain
information about the ransom. No means that the ransom
was stated on the ransom note.

b) Exfiltrated of data measured whether data from the
victim were exfiltrated (categories: yes/no).

c) Collaboration with other criminals, measures
whether the attackers made use of RaaS [12] or whether
they collaborated with other groups to perform the attack
(categories: yes/no).

d) What type of access was used to infiltrate victim’s
network (categories: exploit/phishing/different),

e) Network Attached Storage measures whether at-
tackers targeted the Network Attached Storage device
(categories: NAS, yes/no).

f) Furthermore, the name of group that executed the
attack was included if more than 5 attacks were observed,
the rest was aggregated to the variable ’different’. We
assumed that groups vary in the amount of effort used
in attacks, and therefore might also vary on the required
ransom.

To measure opportunity information was collected on
several other variables: We noted

a) Company size, which was based on staff and
b) Yearly revenue.
Additional variables included:
c) Insurance (categories: yes/no),
d) Economic sector (categorized by the Dutch Cham-

ber of Commerce),
e) Type of victim (categories: corpo-

rate/governmental/individual) and
f) Backups (categories: no/yes, but not possible to

recover of data/yes, but could partially recover data / yes,
and could fully recover data).

Temporal aspects were:
g) Season and
h) Year.
We assume that the context provides more opportuni-

ties when there are higher profits to be made: a victim
with high revenue might be able and willing to pay a
higher ransom. We did not have particular expectation on
seasonality.

2.3. Analysis

First, we analyse selection bias on whether the re-
quested ransom is known and correct with Heckman’s
two-step procedure [4], [7]. Second, we performed mul-
tiple imputation analysis using the R-package Mice [5].
Third, stepwise regression was performed on different
models to find a parsimonious model. From explanatory
analysis we found that ransom demanded, yearly turnover
and staff were highly skewed, so we take the logarithm.

3. Results

Our final model (1) from the stepwise regression:

Log10RR = 1.44 + 0.72DE + 1, 03TR

+ 0.51RaaS–0.99NAS

+ 0.32Log10REV –2.25IMR+ ϵ (1)

Where RR is the ransom requested, DE is data ex-
filtrated ∈ {0, 1}, TR is targeted ransom note ∈ {0, 1},
RaaS ∈ {0, 1}, NAS ∈ {0, 1}, REV is yearly turnover,
and IMR is inverse Mills Ratio. IMR is the correction for
the selection bias.

The coefficients should be interpreted as follows (Fig-
ure 2): 3034 euro is the geometrical mean. If data was
ex-filtrated, the ransom requested would be +430% above
the geometrical mean. If the ransom note was targeted,
the ransom requested would be +980%. If the group was
RaaS, the ransom requested would be +220%. If the attack
targeted a NAS, the ransom requested would be -90%. An
increase of the yearly turnover with 1% would increase
the ransom requested with 0.32 %. Finally, the negative
IMR means that the expected RR observed in this sample
is lower than the expected RR in the population.

Figure 2: Significant results of effort variables on ransom
requested.

No heteroskedasticity was found in (1) (Breusch-
Pagan (6) = 10.171, p = 0.12). Residuals ϵ are nor-
maly distributed (Shapiro-Wilk=0.993,p=0.08). To test the
sensitivity of the imputation of missing values we per-
formed the same regression on ransom requested without
the observation with missing values and found the same
coefficients to be significant (α = 0.05).

The IMR was esimated using the probit regression:

RRB = γ′
1IR+ γ′

2TR+ ν (2)

Where RRB ∈ {0, 1} is whether the ransom requested
was known in this sample, IR is whether there was a
Incident Reponse company helping the company to re-
cover after the attack and targeted ransomnote whether
the criminal first wanted to make contact with the victim
before telling how much ransom they requested for the
decryption keys. With (2) we can estimate γ and therefore
the IMR :

IMR =
ϕ(γ̂1

′IR+ γ̂2
′TR)

Φ(γ̂1
′IR+ γ̂2

′TR)
(3)

For a detailed explanation why (2) and (3) lead to

unbiased, consistent and efficient estimators in (1) when
selection bias is present, we refer to [5].

In conclusion, data exfiltration, targeted ransomnote,
RaaS, NAS, revenue predict the ransom requested by
attackers in ransomware attacks. Insurance, sector, back-
ups, corporate/governmental/individuals and ransomware
group, year and season do not influence the ransom re-
quested.

Our results indicate that criminal effort and victim’s
company size influence the ransom demanded, but that
temporal aspects did not effect the amount of ransom
demanded. Furthermore, we found selection bias in this
sample: the ransom requested in the population should
be larger than in the present sample. Surprisingly, having
backups did not effect the ransom requested. Also compa-
nies being insured did not lead to higher requested ransom,
although this might be the result of low amount of obser-
vations. Furthermore we also did not find a relationship
between year and season and ransomware requested.

4. Discussion and Conclusion

In this study we modeled the way ransomware actors
determine how much ransom they demand during a ran-
somware attack. Regarding our hypotheses we found:

• H1: If attackers put in more effort they will ask a
larger ransom, as expected.

• H2: There is no increasing trend of requested ran-
som over the years, in contrast with expectations

• H3: High revenue of victims should lead to larger
requested ransom, as expected

• H4: In contrast with previous findings does the re-
quested ransom not vary over the different seasons

Furthermore, we found there was a selection bias re-
garding requested ransomware in this sample and that the
observed requested ransomware was an underestimation
for the true requested ransomware in our sample.

There are at least two potential limitations concerning
the results. First, the selection of attacks registered to the
Dutch Police may be a (biased) subset of all attacks in
the Netherlands. However, if the Dutch Police notices that
there are Dutch victims who did not notify the Police, they
will pro-actively contact the victim. A second potential
limitation is that for some variables there was a lot of
missing information.

Despite these limitations, this study is the first to
systematically analyse ransomware with different ways of
measuring effort and contextual variables. Whereas past
researchers have used around 50 attacks and mostly com-
panies who were the victim [8], the present study analyzed
371 attacks with individuals, companies and government
as victim.

Although the generality of the current results must
be established by future research, the present study has
provided clear support that RCP and RAT are applicable
to ransomware attacks. These findings suggest several
courses of action for policy makers and Law Enforcement.
First, improve prevention by reaching out to potential
high-risk victims. Second, frustrate the ransomware pro-
cess by increasing efforts of attackers for a successful
ransomware attack.

References

[1] Oz, H., Aris, A., Levi, A., Uluagac, A. S. (2021). A survey on
ransomware: Evolution, taxonomy, and defense solutions. arXiv
preprint arXiv:2102.06249.

[2] Hechter, M., Kanazawa, S. (1997). Sociological rational choice
theory. Annual review of sociology, 23(1), 191-214.

[3] Cornish, D. B., Clarke, R. V. (1989). Crime specialisation, crime
displacement and rational choice theory. In Criminal behavior and
the justice system (pp. 103-117). Springer, Berlin, Heidelberg.

[4] Heckman, J. J. (1979). Sample selection bias as a specification
error. Econometrica: Journal of the econometric society, 153-161.

[5] Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multi-
variate imputation by chained equations in R. Journal of statistical
software, 45, 1-67.

[6] Galinkin, E. (2021). Winning the Ransomware Lottery: A Game-
Theoretic Model for Mitigating Ransomware Attacks. arXiv
preprint arXiv:2107.14578.

[7] Bushway, S., Johnson, B. D., Slocum, L. A. (2007). Is the
magic still there? The use of the Heckman two-step correction for
selection bias in criminology. Journal of quantitative criminology,
23(2), 151-178.

[8] Yuryna Connolly, L., Wall, D. S., Lang, M., Oddson, B. (2020).
An empirical study of ransomware attacks on organizations: an
assessment of severity and salient factors affecting vulnerability.
Journal of Cybersecurity, 6(1).

[9] Hassan, N. A. (2019). Ransomware revealed: a beginner’s guide to
protecting and recovering from ransomware attacks. Apress.

[10] Cohen, L. E., Felson, M. (1979). Social change and crime rate
trends: A routine activity approach. American sociological review,
588-608.

[11] Junger, M., Wang, V., Schlömer, M. (2020). Fraud against busi-
nesses both online and offline: crime scripts, business characteris-
tics, efforts, and benefits. Crime science, 9(1), 1-15.

[12] Huang, K., Siegel, M., Madnick, S. (2018). Systematically un-
derstanding the cyber attack business: A survey. ACM Computing
Surveys (CSUR), 51(4), 1-36.

[13] Oosthoek, K., Cable, J., Smaragdakis, G. (2022). A Tale of Two
Markets: Investigating the Ransomware Payments Economy. arXiv
preprint arXiv:2205.05028.

Poster: One of a Kind: Correlating Robustness to Adversarial Examples and Face
Uniqueness

1st Giuseppe Garofalo
imec-DistriNet, KU Leuven

giuseppe.garofalo@kuleuven.be

2nd Tim Van hamme
imec-DistriNet, KU Leuven
tim.vanhamme@kuleuven.be

3rd Davy Preuveneers
imec-DistriNet, KU Leuven

davy.preuveneers@kuleuven.be

4th Wouter Joosen
imec-DistriNet, KU Leuven
wouter.joosen@kuleuven.be

Abstract—Face authentication lacks key metrics to assess
the robustness of users’ representation within the system.
We fill the gap by investigating face uniqueness, which
is the distinctiveness of a face within a population, as
a proxy for robustness against adversarial examples. By
generating malicious input that escapes face verification, a
dodging attack, we show a correlation between the amount
of perturbation needed for successfully attacking a user and
their uniqueness within a dataset. Our experiments span over
multiple networks under a realistic threat model, indicating
that unique users are significantly more resilient to gradient-
based attacks than non-unique ones.

Index Terms—component, formatting, style, styling, insert

1. Introduction

Unique faces are those that are decidedly different
from the rest of the population while being easy to recog-
nize [1]. In modern face recognition, biometric uniqueness
is directly affected by the separation between two distribu-
tions: the scores originated from matching two samples of
the same user, i.e. the genuine distribution, and the scores
derived from matching samples of different users, i.e. the
impostor distribution.

It is well known that different faces exhibit varying
performance within a system [2], which is linked to their
relative uniqueness within a dataset. These performance
are mainly expressed in terms of False Acceptance Rate
(FAR), which comes from the mislabeling of a user, and
False Rejection Rate (FRR), which is failing to match
two samples of the same user. Identifying groups of users
who contribute disproportionately to a type of error can
uncover their vulnerabilities, eventually improving their
resilience. The Doddington’s Zoo [3], shown in Fig. 1,
is the first attempt to categorize users based on their
verification performance, dividing between the score dis-
tribution of classes that cause the errors (goats, lambs, and
wolves) and the distribution of the average user (sheep).
The existence of these classes was later confirmed for
a number of biometric modalities, including faces, and
expanded to new classes in a concept known as biometric
menagerie [2].

However, studies on the menagerie are usually dis-
connected from those on the security of modern face
recognition. The advent of deep learning has boosted face

Sheep

Average Genuine Similarity

Av
er

ag
e

Im
po

st
or

 S
im

ila
rit

y

Lambs
Wolves

Goats

Vulnerabilty to Attack

Figure 1. The four major classes of the Doddington’s Zoo with,
overlapped in the background, the vulnerability to evasion attacks.

matching accuracy while broadening the threat surface.
The assumption that training and test data are independent
and identically distributed (i.i.d.) has proven to be hard to
satisfy in practice, hence shifts in the data distribution
affect algorithm performance and lead to poor generaliza-
tion. In a malicious setting, imperceptible modifications
known as adversarial examples can fool a system into
assigning the wrong label to its input [4]. This shift
represents a violation of the i.i.d. assumption, contributing
to the overall FAR and FRR of a system in a way
previously not envisioned by animal categorizations like
the Doddington’s Zoo. Users who are contributing to the
errors of a system (e.g. goats and lambs) need to be
reconsidered in light of the novel threats posed by dataset
shifts.

In our analysis we use a measure of uniqueness based
on entropy to gather novel insights on the robustness
of face recognition systems against adversarial examples.
Motivated by modern tools [5], we construct a realistic
yet simplified scenario of image publishing, where a user
hides their identity before uploading a picture online. The
attacker creates a human-imperceptible adversarial mask
with the aim of fooling a face verification system that
performs 1-vs-1 matching between a pair of images, which
is called a dodging-attack. The amount of perturbation
needed to escape matching will serve as an indicator of
robustness towards an attack. We show that this notion of
robustness is correlated with how well a user is embedded
in the feature space, i.e. entropy-based uniqueness.

2. Methods

Our analysis can be divided in the following steps:

1) We compute the uniqueness of a set of users via
Kullback-Leibler (KL) divergence estimation.

2) For a subset of the total users, we generate ad-
versarial examples and derive attack robustness.

3) We correlate between uniqueness and robustness.
4) We quantify the unique and non-unique identities

shared between networks.

2.1. Computing Uniqueness

Balazia et. al [1] approximate the KL divergence by
using a distance estimator D(x, S) that measures the
average dissimilarity between a vector x and a set of
vectors S in the embedding space. If Therefore, assuming
|G| = |I|, the uniqueness U is equal to

KL(pg|pi) ≈ U(G, I) =
1

|G|
∑
g∈G

log
D(g, I)

D(g,G)
(1)

where D(g,G) measures the average distance of a
template g from embeddings of the genuine distribution
G, and D(g, I) performs the same measurement towards
the embeddings of other users, the impostor distribution
I . It is possible to separate the contribution of the genuine
scores, i.e. intra-class, from the one relative to the distance
between genuine and impostor, i.e. inter-class:

U(G, I) = InterU(G, I) + IntraU(G) (2)

InterU(G, I) =
1

|G|
∑
g∈G

logD(g, I) (3)

IntraU(G) = − 1

|G|
∑
g∈G

logD(g,G) (4)

2.2. Computing Attack Robustness

We define the robustness of an image, and by exten-
sion of a user, by computing the amount of perturbation in
the input space needed for the adversarial example xadv to
cross the verification threshold θ, causing the mislabeling.
We define this measure as Lowest Perturbation Budget
(LPB). Given an embedding network f and a perturbation
budget ϵ, we maximize the distance D:

argmaxD(f(xadv), f(x)), s.t. ∥xadv − x∥p < ϵ (5)

Since ϵ is a parameter to be decided before carrying
out the attack, the LPB of an image x, and by extension
of a user, is found by performing a binary search:

LPB(x) = min ϵ, s.t. D(f(xadv), f(x)) < θ (6)

TABLE 1. NETWORKS PERFORMANCES ON THE LFW DATASET.

Model ACC TAR0.05% U IntraU InterU

FT 99.82 99.73 0.527 -2.939 3.467
FTo 99.75 99.60 0.535 -2.932 3.467
MF 99.43 98.20 0.437 -3.029 3.466
IR50-S 99.60 98.17 0.680 -2.786 3.466
IR50-C 99.68 99.17 0.512 -2.955 3.466
FN 99.23 85.80 0.730 -2.735 3.465

2.3. Correlation Analysis

Having computed the Uk,f and LPBk,f for each
user k, from embeddings computed using a model f , we
are interested in the strength of the association between
the two variables. We perform a correlation analysis by
computing Kendall’s τ score. Fixing a model f , given n
pairs (Ux, LPBx),

τ =
nc − nd(

n
2

) (7)

where nc denotes the number of concordant pairs and
nd is the number of discordant pairs. A pair is concordant
if given two users i and j, (Ui, Uj) and (LPBi, LPBj)
have the same ordinal relationship (vice versa they are
discordant). Therefore, τ measures the pairwise ordinal
concordance between two variables, which is their mono-
tonic relationship.

3. Results

In this section, the experimental setup is followed by
an analysis of the results.

Experimental setup. Inspired by anti-facial recognition
tools [5], we create adversarial examples by using the
widely adopted gradient-based strategy FGSM and its
iterative version BIM, both under the l2 and linf norms.
The attack is white-box and does not include a defensive
strategy, which goes beyond the scope of our analysis.
The attacked embedding networks are representative of the
spectrum of SoTA face recognition solutions: FaceTrans-
former with and without overlapping patches (FT and
FTo), MobileFace (MF), Inception-ResNet trained with a
softmax and CosFace loss function (IR50-S and IR50-
C), and FaceNet (FN). They share similarities that allow
to selectively exclude the contribution of certain covari-
ates when we focus on one single aspect of the models.
RobFR [6] provides the backbone implementations on top
of which we perform our white-box attack 1.

As test dataset, we pick the Labelled Faces in the
Wild (LFW) [7]. LFW has the advantage of a big sample
size, variability, and does not overlap with the training
dataset of the attacked networks. From LFW we derive
two subsets: lfw-U which is used to compute uniqueness,
and lfw-R which is a further refined sample list to compute
LPB scores.

Analysis. Table 1 displays the Uniqueness U and its
intra-class and inter-class components. Surprisingly, the

1. https://github.com/ShawnXYang/Face-Robustness-Benchmark.

https://github.com/ShawnXYang/Face-Robustness-Benchmark

0.4 0.5 0.6 0.7
Uniqueness (U)

1.0

1.2

1.4

1.6

1.8

2.0

Lo
we

st
 P

er
tu

rb
at

io
n

Bu
dg

et
 (L

PB
)

Kendall's =0.402

FaceTransformerOverlap-BIM-l2

0 20 40 60 80 100
Top K% users

0

20

40

60

80

100

In
te

rs
ec

tio
n

Ra
te

 (%
)

FGSM-linf
Most Unique
Least Unique
Random Sampling

Figure 2. On the left, linear regression between LPB and U with
CI=95%. On the right, percentage of shared identities across models
as we increase the most or least unique users.

network with the highest system uniqueness, i.e. FaceNet,
is the worst performing one on LFW. This is because U
delves deep into the score distribution, providing informa-
tion that go beyond the average case.

Table 2 shows a moderate-to-strong correlation be-
tween the uniqueness of a user Uk and the average lowest
perturbation budget needed to escape verification LPBk.
IntraU closely resembles the correlation of the overall U.
This is expected since IntraU explains most of variance
of U (see Table 1). Differently, the correlation analyses
between LPB and InterU show little negative correlation
and are, in most cases, not statistically significant (p-value
greater than 0.05). Nonetheless, FaceTransformerOverlap
scores have a weak negative correlation in the case of
the BIM attack that is significant and worth of further
investigations. Fig. 2 (left) shows the U score as a function
of LPB for FaceTransformerOverlap and the (BIM,l2)
attack.

The results have an interpretation from a Doddington’s
Zoo perspective (Fig. 1). Goats are users whose intraU is
particularly low and are therefore especially susceptible
to the class of attacks under study. On the other side of
the spectrum, lambs, sheep and wolves are all eligible
to containing a set of users with increased robustness
compared to the average case. These users are the ones
with higher U (and IntraU). Animal groups have been
used to create adapting strategies that move verification
threshold in order to cope with, e.g., large intra-class
variance [8]. While adaptive thresholding can positively
affect the FAR of the system in the benign case, moving
the threshold triggers a cascade effect on the perturba-
tion budgets needed to escape verification. Hence these
strategies should account for the consequences on the
robustness of the users.

Fig. 2 (right) plots the intersection rate between all
the models as a function of the most unique and least
unique K% users for the (FGSM,linf) configuration 2.
To highlight the significance of the intersection rates, a
baseline is added to the graph showing the intersection
rates for a random sampling of users repeated 6 times (as
many as the number of considered models).

4. Conclusion

Our analysis underlines the strong existing correlation
between the resilience of a user against dodging attacks
and the their distinctiveness within the population. This
gives a clear indication whether a face is harder to protect

2. Notably, the results hold for all the combinations (method, norm).

TABLE 2. KENDALL’S τ BETWEEN THE U SCORES AND LPB OF THE
USERS IN THE lfw-U LIST. A MODERATE-TO-STRONG POSITIVE

CORRELATION IS FOUND FOR U AND INTRAU.

Model Attack Norm τU τIntraU τInterU

FT BIM l2 0.38 0.39 -0.17
FT BIM linf 0.34 0.34 -0.15
FT FGSM l2 0.38 0.38 0.00
FT FGSM linf 0.44 0.44 0.02
FTo BIM l2 0.40 0.41 -0.26
FTo BIM linf 0.35 0.36 -0.26
FTo FGSM l2 0.39 0.39 -0.08
FTo FGSM linf 0.46 0.46 -0.11
MF BIM l2 0.45 0.46 -0.16
MF BIM linf 0.40 0.41 -0.19
MF FGSM l2 0.41 0.42 -0.08
MF FGSM linf 0.45 0.45 -0.09
IR50-S BIM l2 0.43 0.43 0.03
IR50-S BIM linf 0.39 0.40 0.04
IR50-S FGSM l2 0.43 0.42 0.05
IR50-S FGSM linf 0.47 0.46 0.07
IR50-C BIM l2 0.49 0.49 -0.17
IR50-C BIM linf 0.45 0.45 -0.17
IR50-C FGSM l2 0.41 0.39 -0.10
IR50-C FGSM linf 0.47 0.45 -0.09
FN BIM l2 0.44 0.45 -0.20
FN BIM linf 0.41 0.42 -0.16
FN FGSM l2 0.37 0.39 -0.16
FN FGSM linf 0.43 0.43 -0.14

using Anti-Facial recognition [5], emerging privacy tools
that rely on adversarial perturbations. Our exploration of
the embedding space can be expanded beyond the class
of dataset shift we take into consideration for our experi-
ments, to account for different attacks, like impersonation,
and benign covariate shifts, like changes in lighting condi-
tions. The implications of our findings range from a better
characterization of biometric system performance to a new
understanding of what makes a face, therefore a user, more
resilient against gradient-based adversarial attacks.

References

[1] M. Balazia, S. Happy, F. Brémond, and A. Dantcheva, “How unique
is a face: An investigative study,” in 2020 25th International Confer-
ence on Pattern Recognition (ICPR). IEEE, 2021, pp. 7066–7071.

[2] N. Yager and T. Dunstone, “The biometric menagerie,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 32, no. 2,
pp. 220–230, 2008.

[3] G. Doddington, W. Liggett, A. Martin, M. Przybocki, and
D. Reynolds, “Sheep, goats, lambs and wolves: A statistical analysis
of speaker performance in the nist 1998 speaker recognition evalua-
tion,” National Inst of Standards and Technology Gaithersburg Md,
Tech. Rep., 1998.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
arXiv preprint arXiv:1312.6199, 2013.

[5] E. Wenger, S. Shan, H. Zheng, and B. Y. Zhao, “Sok: Anti-facial
recognition technology,” arXiv preprint arXiv:2112.04558, 2021.

[6] X. Yang, D. Yang, Y. Dong, W. Yu, H. Su, and J. Zhu, “Delving
into the adversarial robustness on face recognition,” arXiv preprint
arXiv:2007.04118, 2020.

[7] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in
unconstrained environments,” University of Massachusetts, Amherst,
Tech. Rep. 07-49, October 2007.

[8] A. Mhenni, E. Cherrier, C. Rosenberger, and N. E. B. Amara, “Anal-
ysis of doddington zoo classification for user dependent template
update: Application to keystroke dynamics recognition,” Future
Generation Computer Systems, vol. 97, pp. 210–218, 2019.

Poster: Pillars of Sand: The current state of Datasets in the field of Network
Intrusion Detection

Gints Engelen
imec-DistriNet

KU Leuven
Leuven, Belgium

gints.engelen@kuleuven.be

Robert Flood
University of Edinburgh

Edinburgh, UK
s1784464@ed.ac.uk

Lisa Liu
School of Engineering and IT
University of New South Wales

Canberra, Australia
l.liuthorrold@adfa.edu.au

Vera Rimmer
imec-DistriNet

KU Leuven
Leuven, Belgium

vera.rimmer@kuleuven.be

Henry Clausen
University of Edinburgh

Edinburgh, UK
henry.clausen@ed.ac.uk

David Aspinall
University of Edinburgh

London, UK

Wouter Joosen
imec-DistriNet

KU Leuven
Leuven, Belgium

wouter.joosen@kuleuven.be

Abstract—Network Intrusion Detection Systems play a crit-
ical role in protecting network architectures from harm. In
the past decade, Machine Learning has moved to the fore-
front of research in this field, with many approaches resulting
in great performance on benchmark NIDS datasets. The rel-
evance of these performance results is however directly tied
to the quality of the benchmark datasets used for training,
which have so far not been subjected to thorough analysis. As
part of our work, we have performed a large-scale manual
investigation of the most commonly used publicly available
NIDS datasets, where we have uncovered numerous errors
due to problems in data pre-processing, attack simulation
and labelling. We also highlight the lack of variability in
both benign and malicious traffic, which often renders the
classification task trivial. To quantify this variability, we
have devised an automated methodology that can be applied
without requiring expert domain knowledge. Nevertheless,
we believe it is vital for any NIDS benchmark datasets to
undergo a thorough manual analysis before being widely
adopted. As a follow-up of our previous work where we
provided an improved version of the CICIDS 2017 dataset,
we are also actively working on improving the CSE-CIC-
IDS 2018 dataset, which we intend to release to the research
community.

Index Terms—network intrusion detection, machine learning,
benchmark dataset, data collection.

1. Introduction

Network Intrusion Detection Systems (NIDS) are de-
vices that are placed at strategic locations within a network
infrastructure in order to protect it from internal and
external threats. These threats range from attempts to gain
unauthorised access to the network, to large-scale DDoS
attacks that aim to disrupt the services of the network’s
hosts. With attackers becoming more sophisticated, new
threats are emerging on a daily basis, and traditional rule-
based Intrusion Detection Systems are at risk of being
overwhelmed by the sheer number of zero-day attacks.

This is why, over the past decade, NIDS research has
gravitated towards Machine Learning (ML), which does
not rely as much on manual updates in order to detect
new attacks.

Research in this field has shown a lot of promise. High
performance results on benchmark NIDS datasets [1]–[3]
seem to indicate that using ML for NIDS is a solved prob-
lem. However, the obtained results are heavily dependent
on the quality of the used datasets. While some research
has highlighted the disparity between traffic found in these
datasets and that of a real-world environment [4], the
network traffic found in these datasets has generally not
been subjected to a thorough manual investigation.

In earlier work, we have shown that the CICIDS 2017
dataset [5] suffered from a multitude of issues which made
its use as a benchmark dataset questionable [6]; as part
of that work we released an improved version of this
dataset. Following up on that, we have performed a large-
scale manual analysis of five modern and widely-used
NIDS datasets, where we uncovered a wide range of issues
pertaining to labelling, attack simulation, documentation,
and network traffic realism.

As part of this work, we are working on improving the
CSE-CIC-IDS 2018 dataset, specifically making sure that
the ground truth of all labels is as accurate as possible.
Using our fixed version of the CICFlowMeter tool [7]
guarantees that this version of the dataset is also free from
the kind of artefacts (such as TCP Appendices) that were
present in the CICIDS 2017 dataset [6].

Finally, while we believe that any modern NIDS
dataset will have to be subjected to intense scrutiny before
seeing widespread adoption in the field, we also pro-
pose some automated techniques that could help give an
overview of the overall quality of a NIDS dataset.

2. Background and Motivation

Machine Learning has already been applied with great
success in other fields, notably due to its capability of
learning a task while requiring minimal human supervi-
sion. Typical ML approaches do not directly operate on

raw data; instead, the data first goes through a process
called feature extraction before being fed into the model.

When it comes to network traffic, a common way to
pre-process the data is by grouping packets together into
so-called flows, identified by a 5-tuple of {Src IP, Dst IP,
Src Port, Dst Port, Protocol}. Typical flow-level features
are, for example, total forward packets, bytes sent per
second, and total flow duration.

The vast majority of ML approaches require signif-
icant amounts of training data. In contrast to fields like
Computer Vision and Natural Language Processing, where
training data is abundantly present, collecting training
data in the field of Network Intrusion Detection is more
challenging. This is mainly due to the inherent privacy
concerns that come with collecting network traffic.

Research in this domain has tried to alleviate the prob-
lem of a lack of datasets by creating synthetic datasets in
a controlled network environment, which were then made
publicly available. Given the high performance results
obtained by ML-based approaches on these datasets, it is
striking that adoption of ML for NIDS in industry has
been comparatively slow. One of the problems lies in
the fact that these synthetically generated datasets were
immediately adopted in the field, with comparatively little
research done analysing the quality and validity of these
datasets.

Due to the large variety and variability of network
traffic as well as a rapidly evolving threat landscape,
Network Intrusion Detection in a real world setting is
hard. Benchmark datasets serve to certify a model’s ca-
pability of successfully operating in such a complex real
world environment, and so the classification of traffic in
a benchmark dataset should be equally difficult. Lastly,
correct ground truth of all labels in a benchmark dataset
is crucial in order to verify that the model successfully
learned the classification task at hand.

3. Datasets and Methodology

In order to help improve the quality and utility of
NIDS datasets, we perform a large-scale manual analysis
of 5 widely-used datasets. As part of our selection criteria
we strive to include datasets that have been cited numerous
times (>100), and where authors published both the raw
traffic files (PCAPs) as well as feature-extracted data
(flows). We also included 2 IoT-based datasets - despite
not meeting the citation criteria - in order to diversify the
types of network architectures that we analyse.

The selected datasets are CSE-CIC-IDS 2018 [8],
UNSW NB15 [9], TON-IoT [10] and IoT-23 [11]. Due
to some updates in our methodology we also revisited
CICIDS 2017 [5], despite already having analysed it once
in our previous work [6].

3.1. Verifying label correctness

In this step we focus our efforts on the malicious
labels. When analysing the validity of these labels, we
verify that the underlying network traffic actually exhibits
characteristics that would be indicative of malicious traffic
of the type specified by the label. Additionally, we verify
as much as possible that the attack has been correctly

implemented and that it has an appreciable effect on the
target victim.

One key aspect that should facilitate this task is the
documentation of the dataset generation process published
by the dataset authors. For all analysed datasets, however,
we found that a significant amount of information was
lacking when it comes to the way that most attacks were
implemented. Instead, we had to rely on manual analysis
of the raw network traffic in order to understand the nature
of the attack, and verify correctness of its given label.

For CSE-CIC-IDS 2018, as part of this manual analy-
sis we also took the opportunity to fully reverse-engineer
and subsequently improve on the existing labelling logic.

3.2. Network traffic variety

As mentioned previously, the varied nature of both
benign and malicious network traffic should make the
classification task quite hard. Moreover, we can expect
that a smart adversary will try to make his malicious traffic
appear to be as similar to benign traffic as possible. For
simpler attacks such as DoS and DDoS, we expect that the
attack traffic shares some characteristics with large spikes
of normal traffic. In summary, malicious traffic found in
benchmark datasets should not be too dissimilar to benign
traffic, as this would otherwise simplify the classification
task considerably.

In order to measure this similarity, we employ 4
different ”metrics”:

• Overlap Region Volume: Calculates the amount of
overlap between data points of 2 different classes

• Maximum Fischer’s Discriminant Ratio: Gives an
indication of how easily data from 2 classes can
be separated

• 1-Nearest Neighbours Ratio: Assigns to each dat-
apoint the class of its nearest neighbour. A very
high number for a given class indicates that there
is very little overlap with other classes, again
pointing to a trivial classification task for the
model.

• Few-Shot Learning Accuracy: Using a Siamese
model, we feed it 2 samples at a time and have
it learn whether they belong to the same class or
not. We then observe how many samples it needs
to train on before reaching an accuracy score of
over 95%.

4. Results

4.1. Manual Analysis

As part of our manual analysis, we found numerous
problems which can be grouped into five categories:

• Repetitive Attack traffic: Attack traffic that is
repetitive to the extent that the classification prob-
lem is considerably simplified. While some attack
classes exhibit this characteristic as part of their
nature (e.g. Portscan traffic), we expect most at-
tack classes to each contain a decent variety of
attack traffic.

• Unclear Attack: Attacks where we are unable to
identify the attack taking place or why the attack

Mistake Majority Partially Does Not
Type Affected Affected Apply

Repetitive 22 5 40
Unclear Attack 10 1 56

Ineffective Attack 5 1 61
Simulation Artifacts 16 1 50

Mislabelled Data 6 14 47
Total 41 16 10

TABLE 1. NUMBER OF ATTACK CLASSES SUFFERING FROM EACH
PROBLEM

should be considered as malicious. For instance,
downloading a file from a server.

• Ineffective Attack: The attack fails to have an
effect on the target victim.

• Simulation Artifacts: Unintended side effects of
the dataset generation process which lead the
trained classifier to exhibit shortcut learning. This
category includes artifacts from the feature extrac-
tion process.

• Mislabelled Data: The attack class contains benign
traffic or attack traffic from another class.

A breakdown for the presence of these problems
across all classes of the five datasets is given in table 1.
We say that a class is majorly affected by a problem if it
is present in more than 50% of the flows. If the number
of flows is below that threshold, we say that the class is
partially affected.

4.2. Automated Traffic Analysis

So far, results of our automated analysis help explain
why classifiers trained on these dataset easily reach very
good performance numbers: for almost every malicious
class in our tested datasets, the Overlap Region Volume
was below 0.1. This means that the distributions of this
class and the benign traffic overlapped minimally. For
many cases the ORV value was 0, meaning the overlap
limits itself to at most one single datapoint. The Maximum
Fischer’s Discriminant and 1-Nearest Neighbours ratios
further confirmed this.

Across virtually all classes, our Siamese network was
capable of achieving over 95% accuracy after only having
seen 200 samples. In some cases, such as the UNSW
NB15’s Worms attack, it achieved over 99% accuracy after
seeing less than 50 samples.

5. Discussion and Future Work

Based on our findings, we can ascertain two things.
Firstly, for each dataset our manual analysis revealed

numerous problems with the data labelling process, attack
setup and/or feature extraction process. Secondly, our
automated analysis found that the malicious traffic shared
little similarities with underlying benign traffic, meaning
that the classification task is far from challening.

We believe the above-mentioned issues are serious to
the extent that these datasets can not be claimed to be
representative of real-world traffic. As such, good perfor-
mance results obtained by classifiers on these benchmark
datasets can not be expected to generalise to a live pro-
duction environment.

As part of our work, we are also working on an
algorithm that would help detect mislabeled samples in
a NIDS dataset, as manual analysis of each individual
data point is infeasible. Finally, we will publish the fixed
CSE-CIC-IDS 2018 dataset, as well as the extended doc-
umentation containing the details of all of our findings on
our website [7].

6. Conclusion

In our work, we are performing a large-scale analysis
of five popular NIDS datasets. We uncovered numerous
problems in the dataset generation process, and addition-
ally found that the malicious traffic found in these datasets
is often easily distinguishable from benign traffic. As a
result, existing benchmark datasets are not suitable to
evaluate a classifier’s capability to be succesfully deployed
in a real-world environment. As part of our work we hope
to pave the way for better NIDS datasets, and we stress
again that we believe a dataset should be subjected to a
thorough manual analysis by domain experts before being
adopted by the wider research community.

References

[1] L. Leichtnam, E. Totel, N. Prigent, and L. Mé, “Sec2graph: Net-
work attack detection based on novelty detection on graph struc-
tured data,” in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2020, pp.
238–258.

[2] A. R. Gad, A. A. Nashat, and T. M. Barkat, “Intrusion detection
system using machine learning for vehicular ad hoc networks based
on ton-iot dataset,” IEEE Access, vol. 9, pp. 142 206–142 217,
2021.

[3] J. Yoo, B. Min, S. Kim, D. Shin, and D. Shin, “Study on network
intrusion detection method using discrete pre-processing method
and convolution neural network,” IEEE Access, vol. 9, pp. 142 348–
142 361, 2021.

[4] H. Hindy, D. Brosset, E. Bayne, A. K. Seeam, C. Tachtatzis,
R. Atkinson, and X. Bellekens, “A taxonomy of network threats
and the effect of current datasets on intrusion detection systems,”
IEEE Access, vol. 8, pp. 104 650–104 675, 2020.

[5] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization.” ICISSp, vol. 1, pp. 108–116, 2018.

[6] G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an
intrusion detection dataset: the cicids2017 case study,” in 2021
IEEE Security and Privacy Workshops (SPW). IEEE, 2021, pp.
7–12.

[7] “Extended documentation of the corrected CICFlowMeter tool,
and the regenerated CICIDS 2017 dataset.” https://downloads.
distrinet-research.be/WTMC2021.

[8] “CSE-CIC-IDS 2018 Dataset,” https://www.unb.ca/cic/datasets/
ids-2018.html, accessed: 2022-04-30.

[9] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15 network
data set),” in 2015 military communications and information sys-
tems conference (MilCIS). IEEE, 2015, pp. 1–6.

[10] N. Moustafa, “A new distributed architecture for evaluating ai-
based security systems at the edge: Network ton iot datasets,”
Sustainable Cities and Society, vol. 72, p. 102994, 2021.

[11] “IoT-23 dataset,” https://www.stratosphereips.org/datasets-iot23,
accessed: 2022-04-30.

https://downloads.distrinet-research.be/WTMC2021
https://downloads.distrinet-research.be/WTMC2021
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.stratosphereips.org/datasets-iot23

Poster: Systematic Elicitation of Common Security Design Flaws

Stef Verreydt
imec-DistriNet

KU Leuven
Heverlee, Belgium

stef.verreydt@kuleuven.be

Koen Yskout
imec-DistriNet

KU Leuven
Heverlee, Belgium

koen.yskout@kuleuven.be

Laurens Sion
imec-DistriNet

KU Leuven
Heverlee, Belgium

laurens.sion@kuleuven.be

Wouter Joosen
imec-DistriNet

KU Leuven
Heverlee, Belgium

wouter.joosen@kuleuven.be

Abstract—Threat modeling allows potential security threats
to be identified and mitigated at design time. Countermea-
sures in current threat modeling approaches are mostly
modeled as a boolean: either they are implemented, or they
are not. This does not allow to take into account potential
design flaws for the countermeasure itself. A considerable
number of security issues is, however, related to the wrong
or incomplete application of common security tactics. For
example, the effectiveness of audit logs drops if the data
written to the logs is not sanitized. In this paper, we
describe our novel approach which aims to systematically
and automatically identify common security design flaws.

Index Terms—Threat modeling, CWE, Security-by-design

1. Introduction

Security and privacy by design principles are becom-
ing increasingly important to develop secure software
systems. Indeed, insecure design is one of the most critical
software risks according to the OWASP Top 10 2021 [1],
and adhering to security and privacy by design principles
is even obligated by regulations such as the General Data
Protection Regulation (GDPR) [2].

Threat modeling provides a systematic approach to
analyze the security and privacy of a software design,
thereby allowing potential threats to be identified early
on in the development lifecycle. The first step of a threat
modeling exercise involves creating a model of the system
being analyzed, usually as a Data Flow Diagram (DFD).
The DFD notation comprises just five elements, namely
processes, data stores, external entities, data flows and
trust boundaries. That model can then be analyzed to
identify potential security threats. Tool support for auto-
matic threat elicitation based on machine-readable system
models is widespread, and new techniques are being de-
veloped rapidly [3]. Common threat elicitation methods
used by these tools are based on STRIDE (an acronym
for spoofing, tampering, information disclosure, denial of
service and elevation of privilege), but more specific types
of threats or attacks such as CAPEC, CWE or CVE entries
are also identified by some [4].

The next step of a threat modeling exercise is to miti-
gate the identified threats by introducing countermeasures.
This often involves standard tactics, for example using
logging to mitigate repudiation threats [5]. Applying such
tactics in a design requires careful consideration of their
precise requirements and assumptions. For example, data

written to audit logs should be sanitized (CWE-1171), and
should not contain sensitive information such as creden-
tials (CWE-5322). Ideally, design flaws which violate such
requirements should be flagged automatically.

One of the underlying issues which prevents this type
of analyses is that most threat modeling tools [6] only
allow to capture the effect of a countermeasure, and not
how countermeasures are included in a design or which el-
ements are involved [7]. For example, a repudiation threat
could be marked as mitigated in the Microsoft Threat
Modeling Tool [6], but there is no support to explicitly
capture the countermeasure which mitigates the threat. To
allow tracing back why and how threats are mitigated,
Sion et al. [7] extended the DFD notation with a first-class
representation for countermeasures. For example, a log-
ging countermeasure can be explicitly added to the system
model, allowing tool support to automatically mark certain
repudiation threats as mitigated. In our novel approach,
we leverage this explicit countermeasure information to
automatically identify flaws rooted in the design of the
countermeasure itself.

Tuma et al. [8] leverages this notation to automatically
identify common security design flaws. Their approach,
however, only identified five flaws automatically, and
their identification method is mostly based on missing
countermeasures rather than design flaws in the coun-
termeasures themselves. For example, one of the flaws
identified by their approach is “insufficient auditing”,
which is identified simply based on the lack of a logging
countermeasure. Still their empirical evaluation shows that
automatically identifying security design flaws is possible
with acceptable precision and recall. In this paper, we
therefore describe an approach similar to the one by Tuma
et al. [8], but with the ability to automatically identify
flaws rooted in the design of countermeasures themselves.

In summary, the goal of our proposal is the following:

Goal. Automatically eliciting potential security design
flaws related to applying standard security tactics during
threat modeling.

In what follows, we provide an overview of our pro-
posed approach, and discuss the advantages compared to
traditional threat modeling approaches.

1. https://cwe.mitre.org/data/definitions/117.html
2. https://cwe.mitre.org/data/definitions/532.html

2. Proposal Overview

A high-level overview of our proposal is shown in
Fig. 1. The proposed approach was implemented as a
extension of an existing threat modeling tool [9] to demon-
strate its feasibility. We shortly discuss the main concepts
of our proposal and describe the main advantages com-
pared to existing threat modeling approaches.

CWE-117
CWE-532

Audit

Design flaw queries

Audit
design flaws

Logs

Threats

Tampering
Repudiation

...

Figure 1. High-level overview of our proposal.
The default threat modeling flow is shown in black. The extension by Sion
et al. [7], which adds first-class representations for countermeasures,
is highlighted in green. Our proposal further extends this notation by
adding queries for common security design flaws, as shown in red.

2.1. Extended system model

The following information should be included in the
system model to enable the systematic elicitation of com-
mon security design issues:

• a DFD of the system, annotated with data type infor-
mation;

• a structured and generic description of common se-
curity tactics; and

• information on how these tactics are applied in the
system being analyzed.

Each of these is shortly discussed in what follows.

2.1.1. System description. Figure 2 shows a DFD for
a simple client-server application which will be used as
a running example. To enable systematically identifying
that, for example, data written to audit logs is not sani-
tized, information on data types is required, which is not
included in the default DFD notation. The data flows are
therefore annotated with data type information, similar to
the proposal by Tuma et al. [10].

2.1.2. Security tactic description. Applying a traditional
threat modeling approach such as STRIDE to the DFD

Client Server Sensitive
Data

Audit
Logs

df1:
request data

df2:
request data

df3:
sensitive data

df4:
sensitive data

Figure 2. A DFD showing that a Client (external entity) can request data
from the Server (process), which logs the request in one data store and
fetches sensitive from another.

shown in Fig. 2 would return several potential threats,
for example a tampering threat on the Audit Logs or a
repudiation threat on the Server. The default DFD notation,
however, does not allow to systematically capture that the
audit tactic is applied to mitigate the repudiation threat on
the Server. For that, we first need to define what the audit
tactic encompasses. For our proposed approach, common
security tactics are described generically, similarly to the
proposal by van den Berghe et al. [11]. The advantage
of generic tactic descriptions is that they can be applied
in different countermeasures and across different system
models. A tactic is defined by (i) a name, (ii) the threat(s)
which it mitigates, and (iii) the roles which make up the
tactic. A role is defined by a name and a type (proces, data
store, external entity, data flow or data type). A generic
description of the audit tactic is shown in Fig. 3.

Name: Audit
Roles:

- Logged event : Data Flow
- Logged data : Data Type
- Log database : Data Store
- Protected entity: Process
- Logging process : Process

Mitigates:
- Repudiation threats on protected entity

Figure 3. Structured description of the audit tactic.

2.1.3. Applying tactics. The system model can then be
enriched with information on how tactics are applied using
the solution-aware DFD notation proposed by Sion et
al. [7]. For our proposal, we define a countermeasure as
the application of one or more tactics in a specific model.
Concretely, a countermeasure is defined by (i) a name,
(ii) the applied tactic(s), and (iii) a set of role bindings
which, for each of the roles mentioned in the applied
tactics’ descriptions, specify the DFD element fulfilling
that role. Figure 4 describes a countermeasure which
applies the audit tactic to the DFD shown in Fig. 2.

Name: Client request logging
Applied tactics: Audit
Role bindings:

- Logged event : df1
- Logged data : request data
- Log database : Audit Logs
- Protected entity: Server
- Logging process : Server

Figure 4. A countermeasure describing how the the audit tactic (Fig. 3)
is applied to Fig. 2.

Based on this information, tool support [9] can au-
tomatically mark Repudiation threats on the Server as
mitigated, as the Server fulfills the role of Protected entity,
which, as described in the audit tactic (Fig. 3), is protected
against Repudiation threats. Our approach build on this by
allowing tool support to also identify design flaws in the
countermeasure itself, as will be explained next.

2.2. Security design flaw queries

Based on the generic and structured tactic descriptions
(Section 2.1.2), queries can be composed for common
design flaws related to the tactics. Similar to the tactic
descriptions, queries are also described generically so that
they can be applied to any system model. A common flaw

for the audit tactic is, for example, that the data written to
the logs is not sanitized, as described by CWE-117.3 Thus,
if a countermeasure applies the audit tactic, and the data
written to the logs is (or contains) the exact data contained
in the logged flow, then CWE-117 should be elicited for
that countermeasure. The query for this flaw is shown in
Fig. 5.

query cwe-117{Solution S} {
S applies tactic named ‘Audit’;
S binds the ‘Logged event’ role to some data flow DF;
DF is annotated with a data type X;
S binds the ‘Logged data’ role to data type Y;
Y == X, or Y includes X;

}

Figure 5. Pseudo code for the CWE-117 elicitation pattern.

2.3. Advantages

As described earlier, applying STRIDE to the DFD
shown in Fig. 2 would result in several threats, for exam-
ple a tampering threat on the Audit Logs or a repudiation
threat on the Server. As the system model includes audit
logs, the repudiation threat can be marked as mitigated.
Traditional threat modeling approaches, however, provide
no further guidance on how to systematically evaluate
whether the logging solution is designed correctly. Suf-
ficient security knowledge and manual effort is required
to identify that (a) a tampering threat on the audit logs
reduces the effectiveness of the logging solution, and
(b) encryption is not sufficient to mitigate the tampering
threat, even though it is a standard tactic for integrity.
Indeed, the tampering threat may have been marked as
mitigated if an encryption tactic was applied, but this does
not prevent more complex issues such as CWE-117 (which
can be categorized as a tampering threat).

In comparison, our proposal allows such issues to be
identified systematically and automatically. Furthermore,
tactic descriptions and flaw queries can be reused across
models, thus limiting the security expertise required to
apply our approach. Finally, the issues identified by our
approach are tailored to the context, which is not the
case for traditional approaches. For example, whereas
a STRIDE analysis would simply flag an unmitigated
tampering threat on the audit logs, our proposal enables
automatically generating more detailed issue descriptions
such as ”Request data provided by the client is directly
written to the audit logs, which may allow attackers to
forge log entries. As a result, the client request logging
solution may not suffice to prevent repudiation threats.
See cwe-117 for more information.” This allows to clearly
trace the specific cause of the flaw, as well as its impact.

3. Discussion and Future Work

In summary, by extending a system model with in-
formation on how tactics are applied in a design, our
approach allows common security design flaws to be iden-
tified systematically and automatically. Compared to tradi-
tional threat modeling approaches, where countermeasures
are mostly modeled as booleans (present/absent), this re-
duces the time and effort needed to find common security

3. https://cwe.mitre.org/data/definitions/117.html

flaws. Furthermore, the required security expertise is also
reduced, as tactic descriptions and flaw queries are generic
and reusable across system models.

To demonstrate the feasibility of our approach, a tool
prototype was developed, as well as a number of tactic
descriptions and flaw queries for common security de-
sign issues. Applying these queries to example models
such as the running example did not reveal any issues.
In future work, we aim to compose a more extensive
catalog of tactics and common flaw queries based on
existing knowledge. The Architectural Concepts view of
the CWE4 can serve as a starting point, as it contains
a detailed collection of potential design flaws, organized
by architectural security tactics to which they apply [12].
Furthermore, an evaluation is needed based on a concrete
and realistic case.

References

[1] The OWASP Foundation, “OWASP Top 10 - 2021,” https://owasp.
org/Top10/, 2021.

[2] European Union, “Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016,” Official Journal
of the European Union, vol. 59, no. L 119, pp. 1–88, May 2016.

[3] Z. Shi, K. Graffi, D. Starobinski, and N. Matyunin, “Threat mod-
eling tools: A taxonomy,” IEEE Security & Privacy, no. 01, pp.
2–13, dec 2021.

[4] B. J. Berger, K. Sohr, and R. Koschke, “Automatically Extracting
Threats from Extended Data Flow Diagrams,” in Engineering
Secure Software and Systems, ser. Lecture Notes in Computer
Science, J. Caballero, E. Bodden, and E. Athanasopoulos, Eds.
Springer International Publishing, 2016, pp. 56–71.

[5] A. Shostack, Threat Modeling: Designing for Security, 1st ed.,
2014.

[6] Microsoft Corporation. (2020) Microsoft threat modeling tool
7. [Online]. Available: https://docs.microsoft.com/en-us/azure/
security/develop/threat-modeling-tool

[7] L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen, “Solution-
aware data flow diagrams for security threat modeling,” in
Proceedings of the 33rd Annual ACM Symposium on Applied
Computing, ser. SAC ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 1425–1432. [Online]. Available:
https://doi-org.kuleuven.e-bronnen.be/10.1145/3167132.3167285

[8] K. Tuma, L. Sion, R. Scandariato, and K. Yskout, “Automating the
early detection of security design flaws,” in Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, ser. MODELS ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 332–342.
[Online]. Available: https://doi.org/10.1145/3365438.3410954

[9] L. Sion, D. Van Landuyt, K. Yskout, and W. Joosen,
“Sparta: Security & privacy architecture through risk-driven
threat assessment,” in International Conference on Software
Architecture. IEEE, 8 2018, pp. 89–92. [Online]. Available:
https://lirias.kuleuven.be/1656829

[10] K. Tuma, R. Scandariato, M. Widman, and C. Sandberg, “Towards
security threats that matter,” in Computer Security. Springer
International Publishing, 2018, pp. 47–62.

[11] A. van den Berghe, K. Yskout, and W. Joosen, “A reimagined
catalogue of software security patterns,” in The 3rd International
Workshop on Engineering and Cybersecurity of Critical Systems
(EnCyCriS’22). ACM, 2022.

[12] J. C. S. Santos, K. Tarrit, and M. Mirakhorli, “A catalog of security
architecture weaknesses,” in 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), 2017, pp. 220–223.

4. https://cwe.mitre.org/data/definitions/1008.html

https://cwe.mitre.org/data/definitions/117.html
https://owasp.org/Top10/
https://owasp.org/Top10/
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://doi-org.kuleuven.e-bronnen.be/10.1145/3167132.3167285
https://doi.org/10.1145/3365438.3410954
https://lirias.kuleuven.be/1656829

Poster: Testability-driven security and privacy testing for Web Applications

Luca Compagna
SAP Security Research

Giancarlo Pellegrino
CISPA Helmholtz Center for Information Security

Davide Balzarotti
Eurecom

Martin Johns
Technical University Braunschweig

Angel Cuevas
Universidad Carlos III de Madrid

Battista Biggio
Pluribus One

Leyla Bilge
Norton Lifelock

Fabian Yamaguchi
ShiftLeft Inc

Matteo Meucci
IMQ Minded Security

Abstract—Modern web applications play a pivotal role in our
digital society. Motivated by the many security vulnerabilities
and data breaches routinely reported on those applications,
we initiated the EU TESTABLE research project to address
the main challenges of building and maintaining web applica-
tions secure and privacy-friendly. The ultimate goal is to lay
the foundations for a new integration of security and privacy
into the software development lifecycle (SDLC), by proposing
the novel idea of combining two metrics to quantify the
security and privacy risks of a program, i.e., the testability of
the codebase (via the novel concept of ”testability patterns”)
and the indicators for vulnerable behaviors.

We have already achieved promising results by applying
our research proposal in the area of static analysis security
testing (SAST) [2]. Hundreds of tarpits—code instructions
challenging for SAST tools—have been identified and cap-
tured in testability patterns that we used to measure SAST
tools effectiveness as well as to improve the ”SAST testabil-
ity” of open source applications via code refactoring routines
removing the tarpits. More than 180 new vulnerabilities have
been uncovered after refactoring and confirmed by open
source applications’ owners. We believe similar promising
results can also be achieved in other areas such as dynamic
analysis, privacy, and machine learning.

Index Terms—web, testability, risk, measurement, metrics,
security, privacy, ML

1. Introduction

Web applications are ubiquitous, and they are used
in a multitude of different domains. According to the
2020 Edgescan Security Report, “Web application security
is where the majority of risk still resides” [1]. This is
confirmed by the fact that most of the recent data breaches
took advantage of the poor security of web applications.

Software security testing plays a fundamental role to
mitigate this problem. In particular, developers regularly
use static code analysis and automated testing tools to
verify their application and identify vulnerabilities. But
existing solutions are often limited in their ability to
automatically discover security problems. When problems
are not detected is always challenging to know for sure
what the testing tools left uncovered.

While threat modeling and risk assessment method-
ologies are often adopted by industry at early phases of
the software development lifecycle, they are too far from
the implementation details and therefore they can only
set high-level recommendations for later phases, such as
testing. Computing risk measures that are closer to the
application code itself can be used to complement early
risk assessment phases, and could help to prioritize the
testing effort. However, this area has so far mainly focused
on determining the likelihood that an application contains
a vulnerability (what we call vulnerability indicators).
Therefore, even when these indicators exist, they provide
little guidance to the developers on how the corresponding
risk could be mitigated. For instance, knowing that a web
application has a high risk of containing vulnerabilities
(even when none have been detected during development
and testing) is a piece of information that can be difficult
to translate into actionable insights.

The poor state of web security is further exacerbated
by two rapidly emerging aspects. First, more and more
web applications integrate machine learning (ML)
components at the code or at the service level to im-
plement business functions or to protect web applications
from abuse1. Unfortunately, existing techniques to detect
vulnerabilities in web application lack the sophistication
to interact with and interpret the behavior of ML compo-
nents, thus impeding the analysis and testing of a larger
and larger number of ML-based web applications. Second,
web applications are facing more and more a social and
political pressure to be designed, implemented, and de-
ployed in a way that preserves the users privacy. This re-
quirement is especially relevant in Europe after the adop-
tion of the General Data Protection Regulation (GDPR)
that aims, among other things, to establish a framework
to guide organizations to manage citizens’—and by ex-
tension web applications users’—personal data. GDPR re-
quires developers to extend existing risk-based and secure
development methodologies with privacy-preserving solu-
tions when designing and implementing the application
software. It also introduces specific challenges to existing
testing methodologies, as the privacy of an application

1. E.g., Google Cloud’s Vision API https://cloud.google.com/vision or
Microsoft Cognitive Services https://azure.microsoft.com/en-us/services/
cognitive-services/

https://cloud.google.com/vision
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/

depends on the composition of a large number of third-
party services and libraries, which are often not under
developers’ control. Moreover, while it is reasonable to
believe that developers have a clear incentive in fixing
security vulnerabilities, it might be counterproductive for
them to collect less user data. These two aspects combined
result in the fact that privacy testing cannot be performed
solely on the developers’ side, but it also requires constant
monitoring from the end-user perspective. To summarize,
we can classify existing shortcomings around three main
challenges:
(C1). Security testing of web-based applications is a task
of ever growing complexity, which cannot sufficiently be
addressed with the current set of technologies. The rapid
inclusion of ML classifiers as part of (or as backend
of) web applications further reduces the effectiveness of
traditional white and black-box testing solutions.
(C2). Existing approaches do not provide a clear feedback
to the developers on how to interpret the (lack of) results.
In particular for areas of the application that are hard to
test or even out of reach for the utilized testing tool, no
information is given on the encountered problems or about
potential remedies to provide more robust testing.
(C3). Existing static and dynamic frameworks to test web
applications focus on the identification of well-known
security vulnerabilities. Privacy issues are regularly over-
looked and often left to a third party analyst to discover
through tedious manual processes.
While there is a lot of research investigating over (C1),
we believe that (C3) and (C2) tend to be overlooked and
more research should focus on that. In our EU funded
project TESTABLE [3] we are researching over all those
challenges. Our idea is to re-design the way we test web
applications around a new testability metric.

By applying this idea in the context of SAST we
obtained very promising results [2]. In there, hundreds of
tarpits—code instructions challenging for SAST tools—
have been identified and captured in testability patterns
that enabled us to measure SAST tools effectiveness, to
make developers aware of the tarpits in their code (via
automated discovery rules for the tarpits), and to improve
the ”SAST testability” of open source web applications
(via code refactoring routines removing the tarpits). Hun-
dreds of new vulnerabilities have been uncovered after
refactoring and confirmed by applications’ owners.

An introduction to our approach, instantiated for the
SAST domain, is discussed in Section 2. However, the
approach is more general and future directions, shortly
presented in Section 3, include its application to dynamic
application security testing (DAST) and beyond security
so to consider also the privacy and (adversarial) machine
learning dimensions.

2. Approach and results for SAST

Fig. 1 depicts our approach. The core idea is to
introduce the (un-)testability dimension in the risk score.
Existing methodologies for measuring risk focus on the
probability V that a certain web application would contain
a vulnerability. These mono-dimensional methodologies
are based on vulnerability indicators such as the size and
complexity of the code, the type of information handled by

Testing tools

Patterns

Code
analysis

Testing toolsTesting tools

Coverage
measurement

Web Application

Code Analysis and Remediation

Security, Privacy and ML Testing

Indicators

U
nt

es
ta

bi
lit

y

RISK THRESHOLD
High risk

Hard to be
tested

Low risk
Easy to be
tested

Figure 1: Our approach

the application, the number of commits over time, or the
total number of developers—all elements that are difficult
to modify in a running project. We propose instead a
new orthogonal dimension measuring the testability of
the application into the current notion of risk (cf. two-
dimensional graph in the right-hand side of Fig. 1).

As a simple example, we can imagine two applica-
tions, A1 with a vulnerability indicator V=40% and A2
with V=63%. While lowering these values can improve
the security and privacy of the applications, it can be
very difficult to do that in practice. For instance, reducing
code size or changing the number of developers are dif-
ficult aspects to act on. Moreover, it is possible that A1
(V=63%) avoids certain coding and practices (we refer to
them as testability patterns in our work), thus making
the application easier to analyze by testing tools. As a
result, even if the likelihood of containing a vulnerability
is higher for A1, the developers can expect that most of
these problems will be detected during the testing phase—
thus resulting in a final product that is more secure than
the one corresponding to A2 (V=40%).

For space limitation, we illustrate in the next sub-
sections the three main activities of our approach when
applied to SAST, providing a summary of the results
published in [2]. However the approach is more general
and can be applied beyond SAST (see Section 3).

2.1. Testability patterns creation

Core to our research idea is the identification of the
crucial testability patterns for specific testing approaches
of web applications.

In the context of SAST, we created hundreds of testa-
bility patterns for both PHP and JavaScript (JS), two of
the most popular web programming languages. A SAST
testability pattern captures a few code instructions in
language X that, when present, may impede the ability of
state-of-the-art tools to analyze an application developed
in X. Those few code instructions are referred to as the
”tarpit”. For instance, let us consider the following pattern
instance for PHP:

1 function F($var) {
2 return $var;

3 }
4 $a = $_GET["p1"]; // source
5 $b = call_user_func("F", $a); // tarpit
6 echo $b; // sink

First, note that all instances include, in purpose, a
simple cross-site scripting (XSS) vulnerability to set an
expected result when measuring SAST tools: in line 4 the
attacker controls the input parameter "p1" (the source)
that is printed, without any sanitization, into the HTML
web page in line 6 (the sink). Second, in between this
source-sink data-flow there is the tarpit. The tarpit is the
code area that may confuse the SAST tools. The tarpit in
line 5 is a form of dynamic dispatching (reflection) that
allows the programmer to invoke a function specified by
passing its name inside a string.

This specific pattern instance, that we will refer to
as simple dispatching, is hardcoding a constant parameter
"F", thus making the target function resolvable from a
static analysis perspective. Other similar pattern instances
could be created. For instance, that constant could be first
assigned to a variable and that variable could be then used
as first parameter of call_user_func. Similarly, a
concatenation instruction could be used as first parameter
of the dynamic dispatching making the tarpit even more
challenging and so on and so forth.

To be comprehensive, the internal specifications, and
the APIs of both PHP and JS were reviewed and distilled
into many SAST testability patterns, around several cat-
egories (e.g., object-oriented programming, security, etc):
120 instances were created for PHP and 150 for JS. We
made all these patterns available to the entire web and
SAST community [2].

2.2. Measurement and advancement of security,
privacy and ML testing

Based on our patterns a comprehensive measurement
of current testing approaches will be conducted to identify
strenghts and weaknesses. Advanced techniques can be
then designed and implemented to overcome some of
these weaknesses (cf. lower green loop in Figure 1).

For SAST, we considered so far only the measurement
part. An arsenal of 11 commercial and open-source SAST
tools (6 for PHP and 5 for JS) were selected and measured
against the created pattern instances. The best commercial
tools were only able to handle 50% of the PHP and 60%
of the JS tarpits, thus potentially leaving large parts of
an application code unexplored. For instance, only 2 tools
over 6 were able to detect the XSS in the simple dispatch-
ing pattern instance outlined above. The measurements,
in [2] are detailed over the pattern categories showing
that certain SAST tools may exceed in a category and fall
short toward others. All these are precious information
for SAST tools’ owners and for the research community
trying to advance SAST. You can know very precisely
which pattern instances are blocking your tool and invest
enginnering effort to support them in a future release.

2.3. Web Application Analysis and Remediation

For our risk measurements and iterative testing pro-
cess, it is essential to reliably identify testability patterns

in the source code of a web application under test. Thus,
analysis techniques (mainly at the code level, but not
only) will be designed to detect the testability patterns.
Furthermore, following up on the results of our web
application analysis, we will investigate remediation tech-
niques such as code debloating and refactoring methods
to remove problematic code patterns or replacing them
with alternatives that are better handled by testing tools
(cf. upper yellow loop in Figure 1).

In the context of SAST, to measure the impact on
the unsupported tarpits, automated discovery rules were
implemented and run to analyse more than 3000 open-
source applications (the Testbed, in short). The experi-
ments demonstrate that these tarpits are very common in
the real world: the average project contains 21 different
tarpits and even the best SAST tool cannot process more
than 20 consecutive instructions without encountering a
tarpit that prevents it from correctly analyzing the code.
For instance, the dispatching pattern instance was discov-
ered in more than 500 projects in the Testbed. The ability
to automatically discover each tarpit brings many benefits.
First, it can provide immediate and precise feedback to
the developers about the tarpits in their code (e.g., by
integrating the discovery rules into an IDE plugin). This
information can then be used to make an informed deci-
sion about which combination of SAST tools are better
suited to analyze the code, which parts of the application
are blind spots for a static analyzer and thus may require a
more extensive code review process, and which region of
code could be refactored into more testable alternatives.

A few experiments were executed to evaluate the
power of code refactoring as a mean to make an applica-
tion more testable for SAST tools. By running SAST tools
both before and after the transformations, a significant im-
provement in the overall testability of the application was
observed. More than 400 new true positives emerged upon
transformations and 188 have been already confirmed by
the respective team, 55 of which affected very popular
projects with more than 1000 stars in Github.

3. Conclusion and future directions

The outcomes from the previous section confirm the
added-value of the overall approach of Figure 1, when
applied to SAST, not only in measuring testing tools, but
also and foremost in the impact of removing testability
patterns’ tarpits as a means to increase the testability of
web applications.

Besides maturing the work for SAST (e.g., by comput-
ing also vulnerability indicators and combining that with
testability to derive an overall risk score), we aim to apply
our approach to DAST, privacy and machine learning. The
core idea is to create testability patterns for all these areas
so to measure the available state-of-the-art testing tools,
advance/develop the techniques underlying these tools,
and mitigate these patterns whenever possible to increase
the testability of the application. For instance, we expect
many testability patterns to emerge as a means to probe
DAST crawlers. A failure in the crawling phase may leave
a large portion of the web application uncovered. On the
other hand, aware that privacy testing, when compared
to security testing, is still in its infancy, our research
in that area will focus on defining the scope of privacy

testing and implement privacy testing techniques to ad-
dress relevant and well-known web related privacy issues.
Last, but not least, we want to create testability patterns
which are hindering security and privacy testing of ML-
based components so to measure these patterns against
the many emerging tools to detect adversarial machine
learning attacks.

References

[1] Edgescan. 2020 vulnerability statistics report. 2020.

[2] Feras Al Kassar, Giulia Clerici, Luca Compagna, Fabian Yamaguchi,
and Davide Balzarotti. Testability Tarpits: the Impact of Code
Patterns on the Security Testing of Web Applications. In Network
and Distributed System Security (NDSS) Symposium, NDSS 22,
April 2022.

[3] TESTABLE consortium. TESTABLE: TestabiliTy Pattern-driven
Web Application Security and Privacy Testing. https://testable.eu/,
Accessed August 31, 2022.

https://testable.eu/

Poster: The Beauty and the Beast (40 years of process algebra and cybersecurity)

1st Silvia De Francisci
SySMA Unit

IMT School for Advanced Studies
Lucca, Italy

silvia.defrancisci@imtlucca.it

2nd Gabriele Costa
SySMA Unit

IMT School for Advanced Studies
Lucca, Italy

gabriele.costa@imtlucca.it

3rd Rocco De Nicola
SySMA Unit

IMT School for Advanced Studies
Lucca, Italy

rocco.denicola@imtlucca.it

Abstract—Process algebras provide the mathematical foun-
dation for several formal verification techniques, and they
profoundly influenced many fields, from correct design to
testing. Process algebras were greatly influential also for
the security community. One of the main reasons for their
success is their compact, yet expressive and flexible syntax,
which allows to model the relevant aspects of computation
while abstracting away the secondary ones. Although most
authors acknowledge the importance of process algebras for
the security community, it is not trivial to estimate how they
shaped the past and present researches.

The goal of this work is to provide a comprehensive
outlook on some prominent works about process algebras
and security. These include both the application of process
algebras to security problems and process algebras inspired
by security-related aspects of computation. To achieve this,
we consider three fundamental fields of cybersecurity, i.e.,
secure development, threat modeling and vulnerability assess-
ment.

Index Terms—process algebra, cybersecurity, formal meth-
ods in security.

1. Introduction

Process Algebras (PA) are formal languages com-
monly used to model the behavior of a computational
agent. Roughly speaking, PA put most of the emphasis
on the control flow structure of the modeled agent, rather
than on its data flow. In most PA, computational steps also
emit observable actions. This allows to elegantly introduce
the role of an external observer, i.e., someone who aims
at understanding an agent’s behavior, but has no control
on its internal structure. Under reasonable assumptions,
an attacker is, in fact, an external observer. As a matter
of fact, an attacker is generally represented by its capa-
bilities and goals. In terms of capabilities, the possibility
to partially interact with the agent’s I/O mechanism is
a typical setting (e.g., think of information flow [19]).
In terms of goals, the attacker’s aim can be modeled as
a target state, e.g., denoting a failure of the agent, she
wants to reach. Formal models of both the attacker and
the system are the fundamental building blocks of most
automated, formal reasoning techniques. Not surprisingly,
a vast literature about the adoption of PA in cybersecurity
exists. As a result, determining the overall influence of PA
in cybersecurity and its sub-fields is difficult.

This poster proposes a systematization of the existing
PA and their applications to the cybersecurity fields. Our
contributions are the following.1

• We show significant PA from a genealogy stand-
point, as well as their unique characteristics.

• We discuss the impact of some PA and its ge-
nealogy in three application scenarios for cyberse-
curity classification: Secure Development, Threat
modeling, and Vulnerability assessment.

• We show the state-of-the-art of PA for secure
Development Life Cycle (DLC).

2. Genealogy of PA

The genesis of PA goes back to the 80s, when
a few authors independently proposed different calculi
for the specification of processes: Milner’s Calculus of
Communicating Systems (CCS) [16], Brookes, Hoare
and Roscoe’s Communicating Seqential Processes (CSP)
[8], and Bergstra’s Algebra of Communicating Processes
(ACP) [6], which inspired a considerable number of other
PA. Typically, derived PA introduce some new elements
w.r.t. their archetypes. These elements often aim to model
some specific aspects of computation. In order to better
highlight these extensions we label PA with icons de-
noting their peculiar features. Such features include the
ability to model security aspects (µ), timed computation
(�), stochastic behaviors (), quantum computing (C),
imperative statements (), cyber-physical systems A and
wireless networks . Arguably, the main reason behind
this diversification is the needing of considering specific
aspects of the computation of distributed agents. In this
landscape, security is no exception and several security-
related PA (µ) emerged. However, the main difference
w.r.t. other domain-specific PA is that security does not
refer to some peculiar aspect of the computation. In gen-
eral, security has to do with all the things that might go
wrong during the execution of a process. These behaviors
of interest can be modeled with specific, secure PA or even
with general purpose ones. As a consequence, PA used
in this field require particular attention for understanding
which security concerns they deal with, as explained
below.

1. Tables and figures highlighting our results are omitted in this
abstract and will be included in the poster above.

3. Secure PA

We now focus on PA that have been specifically
proposed for tackling security aspects. Security is a mul-
tifaceted issue. It is common knowledge that there is no
“silver bullet” for security and that several security tasks
must be carried out to improve the robustness of a system,
e.g., as in Security-by-Design [11].

Here we put forward a classification based on the
following three areas.

3 Secure development, i.e., PA supporting the secure
design, implementation and execution of a system.

 Threat modeling, i.e., PA used for modeling and
analyzing the behavior of an attacker and her
strategies.

 Vulnerability assessment, i.e., methods employing
PA for spotting out actual flaws in existing sys-
tems.

Needless to say, precisely measuring the impact of
a certain PA in these areas is extremely hard or even
impossible. However, a rough estimation can be obtained
by considering the scientific literature. In particular, we
propose the following scale that, to the best of our knowl-
edge, we can measure for a any given PA and security
area.

0 No literature exists applying PA in the area.
1
2 Some papers exist, but their authors belong to a

single clique.2
1 Some papers exist and their authors belong to two

or more cliques.

Below we discuss some observations we consider
more interesting.
Secure Development According to the considered liter-
ature, most PA-based proposals focus on secure design
and development. According to our analysis, for each
considered PA, 3 ¿ 0. However, when only considering
security PA (µ), the trend changes significantly.
Secure PA Secure PA are usually employed for modeling
threats and identifying vulnerabilities. Interestingly, SPA
with its extensions and especially applied π-calculus with
its extensions are used for the secure development of
systems.

4. PA for Secure Development

A cornerstone of Security-by-Design is that security
should be considered from the very early stages of the
design process. In this respect, thanks to their abstract
and compact syntax, PA have often been proposed as a
design formalism. Also, their formal semantics permits to
carry out verification procedures which are not natively
supported by other design languages, e.g., UML [7] and
BPMN [26]. Often, formal verification occurs via model
checking [10].

We reports the adoption of PA in DLC w.r.t. some
major application domains, specifying whether there exists
at least one implementation among PA-based tools.

We consider the following DLC macro-phases:

2. Cliques are computed by considering the co-authoring relation
induced by the literature considered in this poster.

• Planning, i.e., the initial conceptualization of the
system and its requirements.

• Design, i.e., the architectural modeling of the sys-
tem and its components.

• Implementation, i.e., the actual development of the
system.

• Testing, i.e., for validating the implementation
against the expected requirements.

• Maintenance, i.e., for monitoring, updating and
eventually disposing the system.

To the best of our knowledge, we conclude the following
use of PA related to DLC phases:
No usage for planning. No author proposes PA for the
earliest stage of the development process. Reasonably, this
happens because during this phase there is no information
about the modules that will constitute the system to be
implemented.
Design, implementation and testing. Many authors pro-
pose approaches employing PA during design, implemen-
tation and testing. This is somehow expected since PA
are particularly suitable for modeling a system and its
components. Moreover, their formal semantics provide the
foundation for refinement methods, useful at implemen-
tation time for driving the development process from its
initial specification. Also, at testing time, model checkers’
counterexamples can be converted to test cases.
Almost no maintenance. Not surprisingly, PA are
scarcely used for maintenance, with a few, interesting
exceptions mostly related to runtime enforcement. In par-
ticular, this topic is recurrent in the field of policy speci-
fication. The main reason is that PA provide a theoretical
background for policy enforcement. As a matter of fact,
some authors [1], [4], [5], [15], [14] found it convenient to
model policy monitors as agents that run in parallel with a
target system. In this context, action authorization amounts
to synchronous transitions between the two agents, i.e., the
monitor and its target.
Types of PA When only the Design phase is studied,
the PA employed are frequently new, generated for the
article’s purpose. While, when the Design, Implementa-
tion, and Testing phases (D-I-T) are considered together,
the PA used are typically those associated with a tool.
An ad hoc PA could better model the architecture under
consideration, but at the same time, it could be challenging
to verify the model’s correctness. As a result, sometimes
authors translate a PA or a programming language into
another PA to take advantage of a model checker. For
example, on [20], CHP is translated into LOTOS in order
to allow the application of CADP; Ferrara [13] also shows
a translation from BPEL into LOTOS for the same reason.

5. Related Work

Some authors revised the history of PA and the rele-
vant application domains. For instance, Baeten [3] surveys
PA in a general, he summarizes the history of CCS, CSP,
and ACP and he presents the developments of time and
stochastic features. More recently, Brookes and Roscoe [9]
approach from a historical point of view to CSP and
in particular to the FDR tool. Wang presents ATCP and
its variants in [25] and [24], considering cryptographic
properties, abstraction and introducing guards. In the first

article, he uses ATCP to analyze several protocols, while
in the second one, ATCP is used to model Map-Reduce,
Google File System, cloud resource management, Web
Service Composition, and QoS-aware Web Service orches-
tration. Aldini et al. [2] survey the application of PA to
software architecture, emphasizing on component-oriented
modeling. Beek et al. [21] compare formal methods used
on web service composition considering three features:
connectivity, correctness, and quality of services. In the
same domain Eddine [12] compares the different ap-
proaches, among which are PA, to design and implement
Web services focusing on choreography and orchestration.
Tuan Anh et al. [22] look into the issues surrounding
the security and privacy of the Internet of Mobile Things
utilizing PA, with a focus on the mobile PA π-calculus.
Wan et al. [23] survey composition mechanisms and then
models for cyber-physical systems, concluding that “CPS
development must be supported from the design phase
by process algebras to achieve strong results on correct-
ness,performance, cost and efficiency.” Related to protocol
specification and verification, Ryan et al. [18] model
and analyze protocols and properties through CSP, using
FDR and Casper tools. Ryan and Smyth [17], present
the applied pi-calculus, in which areas it was used, and
how to use it to model protocols and properties. Wideł et
al. [27] investigate the different generation and analysis
approaches for Attack Trees; among the formal methods
studied are PA, while among the analysis methods is the
tool UPPAAL and its variants.

References

[1] Kamel Adi, Lamia Hamza, and Liviu Pene. Automatic security
policy enforcement in computer systems. computers & security,
73:156–171, 2018.

[2] Alessandro Aldini, Marco Bernardo, and Flavio Corradini. A pro-
cess algebraic approach to software architecture design. Springer
Science & Business Media, 2010.

[3] Jos CM Baeten. A brief history of process algebra. Theoretical
Computer Science, 335(2-3):131–146, 2005.

[4] David Basin, Samuel J Burri, and Günter Karjoth. Dynamic
enforcement of abstract separation of duty constraints. ACM Trans-
actions on Information and System Security (TISSEC), 15(3):1–30,
2012.

[5] David Basin, Samuel J Burri, and Günter Karjoth. Obstruction-
free authorization enforcement: Aligning security and business
objectives. Journal of Computer Security, 22(5):661–698, 2014.

[6] Jan A Bergstra and Jan Willem Klop. Process algebra for syn-
chronous communication. Information and control, 60(1-3):109–
137, 1984.

[7] Grady Booch. The unified modeling language user guide. Pearson
Education India, 2005.

[8] Stephen D Brookes, Charles AR Hoare, and Andrew W Roscoe.
A theory of communicating sequential processes. Journal of the
ACM (JACM), 31(3):560–599, 1984.

[9] Stephen D Brookes and AW Roscoe. Csp: a practical process
algebra. In Theories of Programming: The Life and Works of Tony
Hoare, pages 187–222. 2021.

[10] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron
Peled, and Helmut Veith. Model checking. MIT press, 2018.

[11] Daniel Deogun, Dan Johnsson, and Daniel Sawano. Secure by
Design. Manning Publications, 2019.

[12] Meftah Mohammed Charaf Eddine et al. A comparative study of
formal approaches for web service oriented architecture. Netw.
Commun. Technol., 5(2):15–33, 2020.

[13] Andrea Ferrara. Web services: a process algebra approach. In Pro-
ceedings of the 2nd international conference on Service oriented
computing, pages 242–251, 2004.

[14] Mahjoub Langar, Mohamed Mejri, and Kamel Adi. Formal en-
forcement of security policies on concurrent systems. Journal of
Symbolic Computation, 46(9):997–1016, 2011.

[15] Fabio Martinelli, Ilaria Matteucci, and Charles Morisset. From
qualitative to quantitative enforcement of security policy. In Inter-
national Conference on Mathematical Methods, Models, and Ar-
chitectures for Computer Network Security, pages 22–35. Springer,
2012.

[16] Robin Milner et al. A calculus of communicating systems. Springer
Verlag, 1980.

[17] Mark D Ryan and Ben Smyth. Applied pi calculus. In Formal
Models and Techniques for Analyzing Security Protocols, pages
112–142. Ios Press, 2011.

[18] Peter Ryan, Steve A Schneider, Michael Goldsmith, Gavin Lowe,
and Bill Roscoe. The modelling and analysis of security protocols:
the CSP approach. Addison-Wesley Professional, 2001.

[19] Andrei Sabelfeld and Andrew C Myers. Language-based
information-flow security. IEEE Journal on selected areas in
communications, 21(1):5–19, 2003.

[20] Gwen Salaun, Wendelin Serwe, Yvain Thonnart, and Pascal Vivet.
Formal verification of chp specifications with cadp illustration on
an asynchronous network-on-chip. In 13th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC’07),
pages 73–82. IEEE, 2007.

[21] Maurice H Ter Beek, Antonio Bucchiarone, and Stefania Gnesi.
Formal methods for service composition. Annals of Mathematics,
Computing & Teleinformatics, 1(5):1–10, 2007.

[22] Vu Tuan Anh, Pham Quoc Cuong, and Phan Cong Vinh. Context-
aware mobility based on π-calculus in internet of thing: A survey.
In Context-Aware Systems and Applications, and Nature of Com-
putation and Communication, pages 38–46. Springer, 2019.

[23] Kaiyu Wan, Danny Hughes, Ka Lok Man, and Tomas Krilavičius.
Composition challenges and approaches for cyber physical sys-
tems. In 2010 IEEE International Conference on Networked
Embedded Systems for Enterprise Applications, pages 1–7. IEEE,
2010.

[24] Yong Wang. Actors–a process algebra based approach. arXiv
preprint arXiv:2104.05438, 2021.

[25] Yong Wang. Secure process algebra. arXiv preprint
arXiv:2101.05140, 2021.

[26] Stephen A White. Introduction to bpmn. BPTrends, 2004.

[27] Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie
Pinchinat. Beyond 2014: Formal methods for attack tree–based
security modeling. ACM Computing Surveys (CSUR), 52(4):1–36,
2019.

Poster: The impact of data sampling in the anonymization pipeline

Jenno Verdonck, Kevin De Boeck, Michiel Willocx, Jorn Lapon, Vincent Naessens
imec-DistriNet

KU Leuven
Ghent, Belgium

firsname.lastname@kuleuven.be

Abstract—An increasing number of companies are selling
data as an additional source of revenue, or acquire data
from other parties to optimize their business. In many
cases, the shared data contains sensitive personal records.
According to the GDPR regulation, personal data should be
anonymized before it is released to third parties. A frequently
applied technique is the k-anonymity metric, which ensures
that every record in the dataset becomes indistinguishable
from K other records through data generalization. This
work combines generalization techniques with sampling.
By adding a sampling step in the anonymization pipeline,
additional uncertainty is introduced towards a potential
attacker. As attackers can no longer be sure that an in-
dividual is in the sampled dataset, the re-identification risk
is mitigated. This work proposes and evaluates multiple sam-
pling techniques. Both the privacy and the utility properties
of the anonymized datasets are embraced. The utility of
the anonymized datasets is further evaluated in a machine
learning use-case.

Index Terms—anonymization, sampling, privacy, utility

1. Introduction

Data collection and processing have become aspects
of increasing importance in the daily operation of many
businesses and organizations. Amongst others, data is
employed for optimizing production processes and to in-
crease the effectiveness of marketing campaigns. Hence,
sharing (or trading) data can be very lucrative, and might
even bootstrap cooperation between organizations. While
data sharing exposes great opportunities for companies,
caution should be taken. First, the European GDPR regu-
lation states that datasets containing personal information
should be anonymized before they are released. This
means that a record in the shared dataset can no longer
be linked to an individual afterwards. Second, thoughtless
release can undermine the competitiveness of companies.
Anonymization techniques can be applied to mitigate
these threats.

An often cited and applied strategy for data
anonymization relies on privacy metrics such as k-
anonymity [1]. The goal of this metric is to generalize
attribute values in such a way that each individual be-
comes indistinguishable from at least k − 1 other indi-
viduals in the dataset. However, constructing a feasible
anonymized dataset is no sinecure for most organizations.
Some information is inevitably lost during anonymization

caused by generalization. Hence, companies often struggle
to find a satisfactory balance between the privacy and
the utility of an anonymized dataset. Moreover, solely
applying k-anonymity does not always protect against
attackers with membership knowledge, a key assumption
in the prosecutor attacker model [2]. This work argues
that the aforementioned risk is mitigated by applying an
additional sampling step in the anonymization pipeline.
An attacker can no longer be sure that the target is in the
dataset, making it harder to re-identify individuals. The
prosecutor becomes a journalist, corresponding to the also
well-known but less powerful journalist attacker model.
Contributions. This paper presents preliminary results of
our research on combining traditional anonymization tech-
niques (i.e. k-anonymity) and sampling. Three different
sampling strategies are presented, implemented and as-
sessed. The impact of each strategy on both the utility and
the privacy properties of the remaining data is evaluated
in a practical machine-learning use-case.

The remainder of this work is structured as follows.
Section 2 points to related work. Section 3 describes
different sampling strategies. Thereafter, Section 4 details
the evaluation methodology. Lastly, Section 5 outlines the
conclusions and points to future work.

2. Related work

Sampling has been the subject of previous research.
Rocher et al. [3] demonstrate that solely applying ran-
dom sampling does not sufficiently protect the privacy
of individuals in the dataset. Hence, this work combines
sampling with techniques for k-anonymity. Other research
shows that random sampling in combination with k-
anonymity can achieve differential privacy [4], [5]. Their
main focus is redefining differential privacy in this con-
text. Our work is complementary as it considers multiple
sampling strategies and focuses on the utility-privacy bal-
ance. Still others do focus on the privacy-utility balance.
[6] and [7] assess this balance in an optimization and an
association rule mining case respectively. They do how-
ever solely focus on anonymization metrics and do not em-
brace sampling. Previous work [8] combined k-anonymity
and sampling, and focused on the privacy-utility balance
in an optimization use-case. This paper expands on this
work by assessing this balance in a machine-learning set-
ting, and by applying multiple sampling strategies. When
training machine learning models on anonymized data,
additional steps are required in order to apply the machine

learning models with non-anonymized data. Inan et al [9]
elaborate on this challenge.

3. Sampling strategies

This work combines sampling with attribute general-
ization (i.e. k-anonymity). In the anonymization pipeline,
the sampling step can be executed either before (pre-
sampling) or after (post-sampling) the generalization step.
Both approaches have advantages. Pre-sampling reduces
the size of the dataset, and hence the complexity of the
generalization step. Post-sampling enables more intelli-
gent sampling based on the output of the generalization
algorithm. Note that – especially in larger datasets – both
strategies can be combined.

This work evaluates and compares three sampling
strategies, namely random sampling, stratified sampling
and balanced stratified sampling. Note that the latter two
are only applied in post-sampling, as they require the out-
put of the generalization algorithms (i.e. the equivalence
classes of size ≥ k):

• Random sampling. The main advantage of this
straightforward sampling technique is that, by def-
inition, no bias is introduced. Nevertheless, this
technique has one major disadvantage. Because
the sampling is completely random, there are no
guarantees that records are removed from each
equivalence class. Therefore, some equivalence
classes can remain complete, giving an advantage
to attackers with membership knowledge of the
original dataset.

• Stratified sampling tackles the aforementioned
problem by forcing that records are removed from
each equivalence class. This method first calcu-
lates the amount of records that need to be re-
moved from each equivalence class (based on the
sizes of the equivalence classes), after which the
required amount of records are removed from each
equivalence class randomly.

• Balanced stratified sampling. Data is increas-
ingly acquired for use in machine learning applica-
tions. Many machine learning techniques heavily
benefit from a balanced target attribute. However,
by nature, many datasets are unbalanced. The
balanced stratified sampling is a variation on the
stratified sampling technique. Instead of apply-
ing full random sampling within each equivalence
class, priority is given to removing a record that
is over-represented in the target attribute.

4. Evaluation methodology

The goal of this work is to assess the impact of
anonymization on the utility of datasets when applied
in machine learning. Fig. 1 illustrates the evaluation
methodology. The original dataset is first anonymized in
a two-step process, combining sampling (pre- or post-
sampling) and generalization (for achieving k-anonymity).
Thereafter, a machine learning model is created using the
gradient boosted decision tree algorithm by scikit-learn.
Finally, the privacy and utility of the anonymized dataset
are evaluated. The experiments are executed on census

data extracted by the Folktables tool [10]. The dataset
of 1.6M records contains attributes such as age, place of
birth, sex, marital status and income. The goal is to create
an accurate machine learning model to predict whether the
income of citizens reaches a certain threshold. The tests
are repeated for a set of different values for k, sampling
strategies and sample sizes. Each test is executed multiple
times in order to rule out sample-dependent results. The
remainder of this Section first outlines both the utility and
privacy measurements used for the evaluation, after which
some preliminary results are presented and discussed.

Figure 1. Evaluation workflow

4.1. Privacy measurements

The privacy properties of the anonymized datasets
are evaluated by means of two metrics, namely re-
identification risk and certainty. For calculating the risks,
the journalist risk formula is applied [2], as the sampling
step during anonymization ensures that an adversary is un-
certain about the presence of the target in the anonymized
dataset. The formula for calculating the journalist risk
is presented in Equation (1), with fj and Fj being the
sizes of the equivalence classes in the sampled and the
non-sampled dataset respectively. Note that the journalist
risk is independent of the sample size. The certainty is
calculated using Equation (2). It represents the certainty
of an attacker that the target is in the sampled dataset.

Riskj =
fj
Fj

· 1
fj

=
1

Fj
(1) Certaintyj =

fj
Fj

(2)

4.2. Utility measurements

This work focuses on two aspects of utility, namely
case-agnostic utility and utility when applied for a spe-
cific machine learning purpose. In order to assess the
former, this work analyses the selected generalization
levels. Harsher generalizations typically imply increased
information loss. It also compares the distribution (chi-
square and F-test) of the data in the original dataset to
the anonymized dataset. The machine learning utility is
measured using the accuracy (3) and F1-score (4). The
models are evaluated by applying a 5-fold cross-validation
on the dataset. In the equations below, TP and TN
represent the amount of true positive and true negative
predictions respectively, FN represents the amount of
false negatives.

accuracy =
TP + TN

#records
(3)

F1-score =
TP

TP + 1
2 (FP + FN)

(4)

4.3. Preliminary results

While this research is ongoing, some preliminary re-
sults are already available.

Fig. 2 presents a violin plot of the (journalist) risk
for random pre- and post-sampling with k=20 and sample
size 1/8. First of all, this plot demonstrates that results
can vary between pre- and post-sampling. This difference
can be attributed to the fact that pre-sampling reduces the
amount of records in the dataset, and thereby the likeliness
that records can be grouped in groups of size k. Therefore,
the generalization algorithm is forced to impose harsher
generalization levels to reach k-anonymity. Because the
pre-sample has undergone harsher generalizations, the risk
is lower compared to the post-sample. However, it should
be noted that the post-sample dataset will score higher in
utility metrics.

Figure 2. Journalist risk violin plots for random pre- and post-sampling
with k = 20, samplesize = 1

8

Fig. 3 presents a violin plot of the certainty for both
the full random and stratified post-sample technique (k=5,
sample size 0.5). This figure demonstrates that, while for
most records the random sampling achieves its goal of
introducing uncertainty for attackers, a set of records is
underaffected by the sampling step (all records >0.5 in the
left graph). Almost 50% of the records have a certainty
over 0.5 and 0.2% (i.e. more than 2K records) have a
certainty of over 80%. The stratified sampling strategy on
the other hand boasts a maximal certainty of 0.5 (= the
sample size).

5. Future work and conclusions

This work presented an overview of work in progress
research on the effects of applying an additional sampling
step in an anonymization pipeline. Different sampling
strategies are presented and evaluated with respect to
privacy and utility. However, many more experiments are
required to finish this work. Firstly, we suspect that dif-
ferent combinations of sampling and generalization levels
will achieve similar privacy properties but varying utility
levels. Completing our experiments will lead to guidelines

Figure 3. Certainty violin plots for random and stratified post-sampling
with k = 5 and samplesize = 1

2

for achieving optimal utility with respect to a certain
privacy level. Moreover, based on our initial tests, our
privacy and utility measurement metrics will undergo fine-
tuning. Lastly, our tests currently cover one dataset and
one specific machine learning problem. Expanding these
tests to other data and algorithms will undoubtedly provide
us with more complete and generic results.

References

[1] L. Sweeney, “k-anonymity: A model for protecting privacy,” Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 10, no. 05, pp. 557–570, 2002.

[2] K. El Emam, Guide to the de-identification of personal health
information. CRC Press, 2013.

[3] L. Rocher, J. M. Hendrickx, and Y.-A. De Montjoye, “Estimating
the success of re-identifications in incomplete datasets using gen-
erative models,” Nature communications, vol. 10, no. 1, pp. 1–9,
2019.

[4] R. Bild, K. A. Kuhn, and F. Prasser, “Safepub: A truthful
data anonymization algorithm with strong privacy guarantees,”
Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 1,
pp. 67–87, 2018. [Online]. Available: https://doi.org/10.1515/
popets-2018-0004

[5] N. Li, W. Qardaji, and D. Su, “On sampling, anonymization, and
differential privacy or, k-anonymization meets differential privacy,”
in Proceedings of the 7th ACM Symposium on Information, Com-
puter and Communications Security, 2012, pp. 32–33.

[6] R. Hoogervorst, Y. Zhang, G. Tillem, Z. Erkin, and S. Verwer,
“Solving bin-packing problems under privacy preservation: Possi-
bilities and trade-offs,” Information Sciences, vol. 500, pp. 203–
216, 2019.

[7] T. Li and N. Li, “On the tradeoff between privacy and utility
in data publishing,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2009, pp. 517–526.

[8] K. De Boeck, J. Verdonck, M. Willocx, J. Lapon, and V. Naessens,
“Dataset anonymization with purpose: a resource allocation use
case,” in 2021 International Symposium on Computer Science and
Intelligent Controls (ISCSIC). IEEE, 2021, pp. 202–210.

[9] A. Inan, M. Kantarcioglu, and E. Bertino, “Using anonymized data
for classification,” in 2009 IEEE 25th International Conference on
Data Engineering. IEEE, 2009, pp. 429–440.

[10] F. Ding, M. Hardt, J. Miller, and L. Schmidt, “Retiring
adult: New datasets for fair machine learning,” arXiv preprint
arXiv:2108.04884, 2021.

https://doi.org/10.1515/popets-2018-0004
https://doi.org/10.1515/popets-2018-0004

Poster: The impact of public data during de-anonymization: a case study

Kevin De Boeck, Jenno Verdonck, Michiel Willocx, Jorn Lapon, Vincent Naessens
imec-DistriNet

KU Leuven
Ghent, Belgium

firstname.lastname@kuleuven.be

Abstract—Many companies, non-profit organizations and
governmental bodies collect personal information during
service interactions. However, releasing sensitive personal
data may impose huge privacy risks. First, an increasing
amount of sensitive personal information becomes publicly
available online after user consent. Moreover, data breaches
may result in huge data dumps that can contain personal
records of millions of individuals. Hence, malicious entities
are able to scrape, collect and combine personal data from
multiple sources in order to compile detailed profiles of
many individuals. This paper demonstrates the impact of
publicly available data during de-anonymization by means
of a concrete case study. Journalists are often reluctant
or even prohibited to release the identity of suspects or
victims in criminal cases. They do, however, often release
initials and background (such as their age and residential
location). Through a large scale study of over 132.000
news articles, this paper demonstrates that currently applied
privacy measures are often insufficient and straightforward
re-identification strategies can de-anonymize individuals.

Index Terms—Privacy, re-identification, data breaches

1. Introduction

Today, many companies and services we interact with
in our daily lives collect data about individuals. Based on
the acquired data, companies are able to offer personalized
advertisements to customers and to build models to im-
prove their service. Online service providers store prefer-
ences and personal interests for recommendations. While
this is very convenient to end-users, huge data sources
pose serious risks to our privacy. Besides data sources
that are already publicly available online (e.g. social media
and the whitepages), huge data breaches occur frequently.
These breaches often result in huge amounts of personal
data collected by services and companies being dumped
on the internet.

Entities with doubtful or malicious intents can compile
these dumps and scrape publicly available data in order
to gain information on a large set of individuals. These
data sources can in their turn be applied as background
knowledge to perform large-scale re-identification attacks.
For example, an anonymized dataset can be linked to the
aforementioned publicly available datasets to support de-
anonymization.

This work presents a practical use-case in which the
negative impact of public data on the privacy of individ-
uals is demonstrated. In news articles about crime-related

cases, journalists are often reluctant or even prohibited to
release the exact name and details of potential subjects or
victims. They do however often opt to provide the reader
with contextual information about these individuals. Ex-
amples are (partial) initials, the age and their residential
location. If only the information in the newspaper was
publicly available, only relatives would be able to de-
anonymize individuals based on the info included in the
article. However, due to the multiple publicly available
data sources, interested readers can often quite easily re-
identify a large set of individuals.

Contribution. This paper assesses the impact of pub-
lic data for re-identification purposes. Firstly, this work
categorizes publicly available data sources. Next, the neg-
ative impact of these data sources is assessed by means
of a large-scale case study, namely the automatic re-
identification anonymized individuals in news articles.
Experimental results are presented and evaluated. The
remainder of this work is structured as follows. Section 2
points to related work. Section 3 provides a general
overview of public data sources. Next, our case study is
presented in more detail. Preliminary results are discussed
in section 5. This paper ends with conclusions and hints
at future work.

2. Related work

Many research can be found on de-anonymization
attacks. Pontes et al. [1] identify individuals based on
the location information contained in reviews on the
Foursquare platform. No data from external sources was
required for this attack. Other papers, however, do rely
on external data. Narayanan et al. [2] were able to link
anonymized Netflix profiles to public IMDB profiles.
Douriez et al. [3] demonstrated that drivers can be re-
identified in an anonymized dataset by linking them to
their unique cab ID. These works demonstrate that back-
ground knowledge and external data should be taken
into consideration during anonymization. Several papers
attempt to model the background knowledge of attack-
ers [4]–[6] in order to improve the anonymization process.
These papers approach background knowledge from a
theoretical point of view, in which the knowledge of
an attacker is fixed and pre-defined. In many real-life
scenarios however, attackers have access to numerous data
sources (e.g. data breaches and publicly available data).
This work targets a real-life practical scenario in which
the background knowledge of an adversary is not limited
to a narrow, fixed amount of knowledge.

3. Public datasets

This work distinguishes three ways in which data can
be acquired: data sharing, data scraping and data breaches.

Data sharing. Companies increasingly opt to share
data with third parties. Data release can either occur in
a bilateral agreement with a third party, or by publishing
the data online.

Data scraping. This implies the collection of data
beyond its intended use. Well-known examples of online
data sources are the whitepages and social networks. Ex-
ploiting these online data sources by large-scale retrieval
mechanisms allows malicious actors to optimize searches
in the collected data, and additionally enables more com-
plex and in-depth analysis of the data. Moreover, repeated
crawling enables the construction of an historical view of
an individual.

Data breaches. These occur when non-public data is
accessed by an unauthorized person or party. Nowadays,
this occurs frequently, as demonstrated by UpGuard [7]
with their collection of the largest publicly-disclosed data
breaches. Many well-known companies such as Facebook
and Twitter have previously experienced multiple data
breaches. The Facebook data breach [8] from 2019 is
an example of a data breach impacting more than 500
million individuals, containing people’s full names, phone
numbers, locations, email addresses, dates of birth and
more. The Facebook dataset is an example of a data breach
that was dumped online for free. Other, more exclusive
and harmful data is sold for premium prices.

4. Case study: News articles

The remainder of this work focuses on the data leakage
by news articles. The goal is to investigate up to what
extent individuals can be re-identified based on informa-
tion given in news articles. News articles expose dates,
locations and information about the persons involved such
as their age, gender by means of pronouns, and surname.
Journalists often replace full names with initials to protect
an individual’s privacy. The focus of this case-study is
to reconstruct the full name of de-identified individuals
based on the information in the news articles combined
with publicly available data. This Section first presents the
attacker model, after which the research methodology is
outlined.

4.1. Attacker model

This study assumes a curious or malicious actor at-
tempting to learn the full name of an individual based on
the information included in a news article. The attacker
attempts to single out one individual (or a small set of
possible individuals) by searching through public datasets
with key attributes contained in the article. Depending
on the resources of the attacker, different capabilities
are assumed. Weaker adversaries solely have access to
freely available datasets (publicly shared data, data breach
dumps and querying online platforms such as search en-
gines), while stronger adversaries are able to scrape data
and have access to a collection of datasets after a paywall.

Small scale attacks in which the identity of a few
individuals in one of a limited numbers of articles must

be exposed can be executed manually by an attacker.
However, for the purpose of this paper, the whole process
is automated and executed on a large set of news articles
in order to correctly assess the broader privacy impact.

4.2. Research methodology

This research was executed in three steps. Firstly, a
large set of news articles was crawled. Next, all rele-
vant information was extracted from the crawled articles.
Lastly, a re-identification attempt is made by mapping the
extracted information to two public datasets.

Crawling news articles. A script was developed
that automatically retrieves the title, abstract, content,
author(s) and the date of all articles from an archive of
news articles. Firstly, all articles present in the archive
were crawled, starting from the year 1998 until January
2022. Next, articles were filtered based on two conditions:
They had to contain keywords matching lawsuits (e.g.
lawyer, trial, arrested) and keywords such as theft, murder
or extortion in the abstract. Four prevalent news sites in
Belgium were crawled for nearly 7 million articles. Based
on the prerequisites, ±132.000 articles were selected. Af-
terwards, the data contained in the articles was extracted.

Data extraction. For the data extraction, a hybrid
approach is employed, combining natural language pro-
cessing and regular expressions. Two NLP models were
used, namely Spacy [9] and Flert [10]. The Spacy model
was used for sentence extraction while the Flert model al-
lowed named entity recognition. This means identification
of names, organizations, locations,. . . The data extraction
process works as follows. Firstly, sentences were extracted
from the article. Next, names and locations were iden-
tified. Afterwards, using regular expressions, ages were
extracted. Finally, all found information per individual was
merged. This process resulted in approximately 292.000
individuals. For our research, only news articles from 2017
and later are considered since these are more likely to
match on our public data sources. This research focuses
on reconstructing full names from (partial) initials or a
partial name (only first or last name). Hence, full names
are omitted from the test dataset. This leaves a total of
13.865 individuals in the test dataset, of which 2712 and
2904 include a location and age respectively. For 1128
individuals, both a location and age are known.

Re-identification. During the re-identification
phase, the known attributes (initials, age, location)
are matched to two different datasets, namely the
aforementioned publicly available Facebook data breach
dataset and the whitepages. The whitepages dataset is
an extract from the Belgian whitepages1. It consists of
1.912.055 entries, and contains a name and a location
(full address) for each record. The Facebook dataset
(Belgian extract) consists of 3.183.529 entries, of which
1.546.421 entries have a location and 96.649 records
have an age associated. Only a small subset of 71.512
records contain both a location and an age. Naturally, a
more complete dataset (ideally the full population with
all attributes), would inevitably result in more accurate
re-identifications.

1. Belgian PhoneBook: https://www.whitepages.be

https://www.whitepages.be

5. Preliminary results

While this research is ongoing, it is possible to share
some preliminary results. In the results presented below,
a distinction is made between matches solely based on
the names of individuals and matches based on the com-
bination of name with another attribute (location, age).
The more matching attributes, the higher the certainty of
a correct match. Often, one individual in the test dataset
matches to multiple individuals in the matching dataset
(false positive results). A large amount of matches de-
fines a low certainty for the attacker. Therefore, a second
distinction is made between individuals with less than
five matches and individuals with five or more matches.
Note that the correct individual is not necessarily in the
matching dataset.

The results from the experiment with the Belgian
whitepages are presented in Table 1. For over half of the
individuals in our test dataset, at least one match was
found. Approximately a quarter of them had less than
five matches. When matching a combination of name and
location, only 787 individuals were matched, however half
of them had less than five matches. When only considering
the partial initials (complete first name and abbreviated
last name or vice versa), 3666 individuals were matched
(444 when matching name + location). The majority of
these individuals (77%) had less than five matches.

TABLE 1. WHITE PAGES MATCHES WITH OUR TEST DATASET

Attribute Matches Initials Partial Partial
name initials

Name < 5 0 1198 778
≥ 5 830 2567 2888

Name + Location < 5 26 53 344
≥ 5 245 19 100

The results from the experiment with the Facebook
dataset are displayed in Table 2. 9600 individuals matched
but only 19% had fewer than five matches. When also
matching on location, 991 individuals were matched with
half of them having fewer than five matches. Matching on
age gives similar results. Matching on age and location
often resulted in unique matches. However, due to the
small number of records in the matching dataset that
contain both an age and a location, the total amount of
matched individuals for this category is low.

TABLE 2. FACEBOOK MATCHES WITH OUR TEST DATASET

Attribute Matches Initials Partial Partial
name initials

Name < 5 0 1249 618
≥ 5 830 3240 3663

Name + Location < 5 36 52 433
≥ 5 238 65 167

Name + Age < 5 25 58 481
≥ 5 234 60 96

Name + Age +
Location

< 5 20 2 7
≥ 5 2 0 0

6. Conclusions and future work

This poster paper presented preliminary research re-
sults of a case study on the impact of public data for re-
identification purposes. While the current results support

our hypothesis that re-identification by employing pub-
licly available data is a realistic threat when publishing
anonymized data, it should be noted that the accuracy of
the attack strongly depends on the quality of the datasets
available for the attacker. For example, because neither
matching datasets used in the experiments are complete,
our current results display a large number of false posi-
tives. However, even in its current form, our demonstrator
eases the re-identification of individuals significantly by
narrowing the search-space to a small set of individuals.
Moreover, additional improvements to our current work
can be made. Firstly, when other more complete match-
ing datasets (more attributes and/or more individuals) are
available, the quality of our matches will undoubtedly in-
crease. Secondly, the experiments with different matching
datasets are currently executed separately. Combining all
public data sources into one combined matching dataset
could also significantly improve our results.

After the offensive line of research presented in this
paper, a next step could be to apply our research results to
create guidelines for taking into account public data when
leaking anonymized information on individuals. In this
case specifically, a software tool could warn journalists
when they unintentionally compromise the privacy of an
individual.

References

[1] T. Pontes, M. Vasconcelos, J. Almeida, P. Kumaraguru, and
V. Almeida, “We know where you live: Privacy characterization of
foursquare behavior,” in Proceedings of the 2012 ACM Conference
on Ubiquitous Computing, ser. UbiComp ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 898–905.

[2] A. Narayanan and V. Shmatikov, “Robust de-anonymization of
large sparse datasets,” in 2008 IEEE Symposium on Security and
Privacy (sp 2008). IEEE, 2008, pp. 111–125.

[3] M. Douriez, H. Doraiswamy, J. Freire, and C. T. Silva, “Anonymiz-
ing nyc taxi data: Does it matter?” in 2016 IEEE international
conference on data science and advanced analytics (DSAA). IEEE,
2016, pp. 140–148.

[4] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-
niam, “l-diversity: Privacy beyond k-anonymity,” ACM Transac-
tions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1,
pp. 3–es, 2007.

[5] T. Li, N. Li, and J. Zhang, “Modeling and integrating background
knowledge in data anonymization,” in 2009 IEEE 25th Interna-
tional Conference on Data Engineering. IEEE, 2009, pp. 6–17.

[6] W. Du, Z. Teng, and Z. Zhu, “Privacy-maxent: integrating back-
ground knowledge in privacy quantification,” in Proceedings of the
2008 ACM SIGMOD international conference on Management of
data, 2008, pp. 459–472.

[7] “The 63 biggest data breaches (updated for february 2022),”
Feb 2022. [Online]. Available: https://www.upguard.com/blog/
biggest-data-breaches

[8] “Facebook data on 533 million users
reemerges online for free,” Apr 2021. [Online].
Available: https://www.bloomberg.com/news/articles/2021-04-03/
facebook-data-on-533-million-users-leaked-business-insider

[9] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd, “spaCy:
Industrial-strength Natural Language Processing in Python,” 2020.

[10] S. Schweter and A. Akbik, “Flert: Document-level features for
named entity recognition,” 2020.

https://www.upguard.com/blog/biggest-data-breaches
https://www.upguard.com/blog/biggest-data-breaches
https://www.bloomberg.com/news/articles/2021-04-03/facebook-data-on-533-million-users-leaked-business-insider
https://www.bloomberg.com/news/articles/2021-04-03/facebook-data-on-533-million-users-leaked-business-insider

POSTER: Towards Cyber Resilience of Cyber-Physical Systems using Tiny Twins

Fereidoun Moradi*
Mälardalen University

Västerås, Sweden
fereidoun.moradi@mdu.se

Sara Abbaspour Asadollah
Mälardalen University

Västerås, Sweden
sara.abbaspour@mdu.se

Marjan Sirjani
Mälardalen University

Västerås, Sweden
marjan.sirjani@mdu.se

Abstract—We propose a method to detect attacks on sensor
data and control commands in cyber-physical systems. We
develop a monitor module that uses an abstract digital
twin, Tiny Twin, to detect false sensor data and faulty
control commands. The Tiny Twin is a state transition system
that represents the observable behavior of the system. The
monitor observes the sensor data and the control commands
transmitted in the network, walks over the Tiny Twin and
checks whether the observed data and commands are con-
sistent with the transitions in the Tiny Twin. The monitor
produces an alarm when an attack is detected. The Tiny
Twin is built automatically based on a timed actor code of
the system. We demonstrate the method and evaluate it in
detecting attacks using a temperature control system.

Index Terms—Monitoring, Model Checking, Cyber-Physical
Systems, Attack Detection and Prevention, Cyber-Security

1. Introduction

Cyber-Physical Systems (CPSs) are safety-critical sys-
tems that integrate physical processes in the industrial
plants (e.g., thermal power plants or smart water treatment
plants) with sensors, actuators and controller components.
Since these components are integrated via a communica-
tion network (usually wireless), a CPS is vulnerable to
malicious cyber-attacks that may cause catastrophic dam-
age to the physical infrastructure and processes. Cyber-
attacks may be performed over a significant number of
attack points and in a coordinated way. So, detecting and
preventing attacks in CPSs are of significant importance.

Intrusion Detection Systems (IDSs) are deployed in
communication networks to defend the system against
cyber-attacks. Regular IDSs cannot easily catch complex
attacks. They need to be equipped with complicated logic,
based on human (safety and security engineers) reason-
ing [1]. In rule-based IDSs [1], a set of properties that
are extracted from the system design specification are
considered as rule-sets to detect attacks. Indeed, if an
IDS finds a deviation between the observed packets in the
network and the defined rules, it produces an alarm and
takes a predefined action such as dropping the packets.
The key challenge is the effort required to specify the
correct system behavior as rules.

2. Overview

We propose a method to detect cyber-attacks on sensor
data and control commands in CPSs. The overview of

Model Checking
(Afra)

Abstraction
(Abstraction tool)

Generate Monitor
(LF compiler)

Ti
m

ed
 R

eb
ec

a
m

od
el

St
at

e
Sp

ac
e

Ti
ny

 T
w

in

LF
 c

od
e

M
on

ito
r m

od
ul

e

+

Mapping Rebeca to LF

Step (1) Step (2) Step (3)

Figure 1: The overview of our method. Step (1), we generate the state
space of the Timed Rebeca code of a CPS by the Afra model checker
(see Sec. 3). Step (2), the state space is abstracted by our abstraction
tool (see Sec. 4). The result of the abstraction is a Tiny Twin that is used
within a monitor module (see Sec. 5) to detect the attacks. Step (3), we
develop the monitor module in LF language and use the LF compiler to
generate an executable file.

our method is shown in Figure 1. The model of a CPS
is developed in Timed Rebeca [2] and the Afra model
checker [3] is used to verify the model (step (1) in Fig-
ure 1). In [4], it is shown that how entities of a CPS, i.e.,
sensors, actuators, controllers, and physical plant are mod-
eled as actors, and interactions between them are modeled
as messages passed between the actors. We develop an
abstraction tool (step (2) in Figure 1) that abstracts the
state space of the Timed Rebeca model (generated by
Afra model checking tool) to create a Tiny Twin (TT) [5].
Digital Twins (DT) [6] are used as digital representation of
the system to advance the system monitoring. We develop
a monitor module that uses the created Tiny Twin to track
the order and the timing of events (step (3) in Figure 1).

3. Model Checking and Security Analysis

We assess the security aspects of a CPS by verifying
its security properties. Afra supports LTL, TCTL and
assertions for property specification. By model checking
we analyze security of the CPS design to recognize where
the potential attack scenarios can successfully cause a
failure in the system. We utilize the STRIDE [7] model as
a reference for classifying potential attacks on a CPS. In
Table 1, we classify the significant attacks on CPS based
on the STRIDE categories. The cyber and physical attacks
exploit emerging CPS-related vulnerabilities in the two
aspects of communication and component, and are shown
in Table 1 as Scheme-A and Scheme-B. Scheme-A consists
of the attack scenarios which are secretly recording or
modifying the data transmitted over the channels (e.g.,
eavesdropping, MITM and injection attack). Scheme-B
includes the attacks that inject malicious code into the
software components or perform a malicious alteration on
a physical component (e.g., malware and physical attack).

TABLE 1: Attack Classification according STRIDE threat modeling [4].

Threat Type Cyber or Physical Attack Scheme-A Scheme-B

Spoofing
(Authentication)

Masquerade attack [8]
Packet spoofing attack [9]

Tampering
(Integrity)

Man-in-the-middle (MITM) [8]
Injection attack [9] [9]
Replay attack [8]
Malware (Virus or Worms) [9]
Physical attack [9] [10]

Reputation
(Non-Repudiation) On-Off attack [10]

Information
Disclosure
(Confidentiality)

Eavesdropping [8]
Malware (Spyware) [9]
Side-channel attack [9]
Physical attack [9] [10]

Denial of Service
(Availability)

Resource exhaustion attack [8] [9]
Interruption attack [8]
Malware (Ransomware) [9]
Physical attack [9] [10]

Elevation of Privilege
(Authorization) Malware (Rootkit) [9]

4. Abstraction and Tiny Twin

To create a Tiny Twin, we abstract the given state
space with respect to the sensor data and control com-
mands. We abstract the state space generated by the model
checker in order to preserve sequences of observable ac-
tions while hiding internal actions. Our abstraction method
is implemented in a tool by considering the reduction
algorithm in [11]. It is applied to the original state space
where it iteratively refines indistinguishable states, i.e., the
classes containing equivalent states, while hides transi-
tions that are called silent transitions. Figure 2 illustrates
how the abstraction tool performs on an example.

The Tiny Twin defines the observable behavior of
the system in the absence of an attack and contains the
order and the time at which the sensor data and control
commands are communicated. Transitions in Tiny Twin
are tagged by a label that indicates an action or the
progress of time.

5. Monitoring and Attack Detection

We develop a monitor module that observes the sensor
data and the control commands transmitted in the network
and decides to drop or pass the control commands to
the actuators (see Figure 3). The Tiny Twin is placed
within the module and serves as a baseline for detect-
ing attacks. The module starts its observation when the
system executes. Upon receiving sensor data, the module
compares it with the state variables in the Tiny Twin. If
the module finds no differences between them, it proceeds
and checks whether the commands are consistent with
the corresponding transitions in the model. If this is the
case, the module sends the commands to the actuators.
Otherwise, the module produces an alarm and terminates
the process of monitoring.

We implement our monitor module in Lingua Franca
(LF) [12] that is a language for programming CPSs.
In principle, a Lingua Franca code can connect to the
physical plant and the controller through the input/output
communication channels in the actual system. We use
Lingua Franca to simulate the system at runtime and
evaluate the detection capability of our method by defining
compromised components.

e_class_4

e_class_3

e_class_1

e_class_5

e_class_2

e_class_6

S6
s: 20

w: true
 h: true

(now: 10)

S7
s: 21

w: false
 h: true

(now: 10)

GETSENSE
@(10>>0)

S8
s: 21

w: true
 h: true

(now: 10)

GETSENSE
@(10>>0)

S4
s: 20

w: true
 h: true
(now: 0)

S5
s: 20

w: true
 h: true
(now: 0)

HEATING
@(0>>0)

time +=10
@(0>>0)

S1
s: 21

w: false
 h: false
(now: 0)

S2
s: 21

w: false
 h: false
(now: 0)

GETSENSE
@(0>>0)

S3
s: 20

w: true
 h: false
(now: 0)

GETSENSE
@(0>>0)

time +=10
@(0>>10)

SWITCHOFF
@(10>>10)

S9
s: 21

w: true
 h: true

(now: 20)

time +=10
@(10>>0)

ACTIVATE_H
@(0>>0)

GETSENSE
@(20>>10)

GETSENSE
@(20>>10)

(a)

GS1
s: 21

h: false
(now: 0)

GETSENSE
@(0>>0)

time +=10
@(0>>10)

GS2
s: 20

h: false
(now: 0)

GETSENSE
@(0>>0)

GS3
s: 20

h: true
(now: 0)

GS4
s: 20

h: true
(now: 10)

time +=10
@(0>>0)

GS6
s: 21

h: true
(now: 20)

GS5
s: 21

h: true
(now: 10)

GETSENSE
@(20>>10)

SWITCHOFF
@(10>>10)

time +=10
@(10>>0)

ACTIVATE_H
@(0>>0)

GETSENSE
@(10>>0)

(b)

Figure 2: (a) The transition system of an example Timed Rebeca model
with the equivalence classes created by the abstraction tool. (b) The Tiny
Twin of the transition system depicted in Figure 2(a) [5].

Monitor Module

(Tiny Twin)
Se

ns
or

 d
at

a

C
on

tr
ol

co
m

m
an

ds

SensorsActuators
Physical
Process

Controllers
TamperingTampering

Masquerade
attack

Figure 3: The monitor module observes the input/output of the con-
trollers and drops faulty control commands if it identifies a mismatch
between the state transitions in Tiny Twin and the observed sensor data
and control commands.

6. Case Study: a Temperature Control Sys-
tem

We evaluate our method in detecting and preventing
cyber-attacks using a temperature control system. The
temperature control system is responsible for maintaining
the temperature of a room at a desired range (e.g., the
values between 21 and 23). This system includes a sensor,
a hc unit (heating and cooling unit) as an actuator, and
a controller. The controller receives sensor data from the
sensor and transmits the activate c, activate h or switch
off command to the hc unit to respectively activate the
cooling or heating process, or switch the heating/cooling
process off. We use the Afra model checker to produce
the state space of the developed Timed Rebeca model and
exploit our abstraction tool to generate the Tiny Twin. We
implement both the system and the monitor module in LF.

6.1. Tiny Twin

We create the Tiny Twin of the state space of the de-
veloped Timed Rebeca model for the temperature control
system. The Tiny Twin is generated by the abstraction tool
based on the list V={sensedValue, cooler on, heater on}
of state variables. The original state space of the model
includes 76 states and 103 transitions while the generated
Tiny Twin contains 21 states (i.e., equivalence classes) and
36 transitions. The Tiny Twin is trace equivalent to the
original state space (projected on the variables containing
sensors data and control commands).

6.2. Attack Types and Detection Capability

We evaluate the capability of the developed monitor
module in detecting the attacks. We consider three types
of attacks that target the integrity aspect of CPS (see Fig-
ure 3). (1) Attackers have the ability of tampering sensor
data or injecting any arbitrary values into the vulnerable
channel between controller and sensors, i.e., replay or
tampering attack, (2) attackers are able to manipulate
the controller through malicious code injection into the
software of the controller, i.e., fabrication or masquerade
attack, and (3) one or more attackers can perform a
coordinated attack to force the system to change its correct
functionally.

We consider the number of false sensor data and faulty
control commands sent by the compromised components
as the number of attacks. In our experiments, we simulate
20 false sensor data and 12 faulty control commands as
listed in Table 2. We also simulate 240 coordinated attacks
(combination of the false sensor data and the faulty control
commands). We calculate the detection rate of the monitor
with respect to the detected/undetected attacks. In this case
study, the detection rate is around 68.8 percent.

TABLE 2: Attacks and detection capability of the monitor [5].
System # False sensor data/ Detection Capability
States Attacks Faulty control commands (DS/DC)

GS1 and GS2 4 Sensor data (20, 21, 23, or 24) DS (20 and 24)
GS3 and GS5 4 Sensor data (20, 21, 22, or 24) DS (20 and 21)
GS4 and GS6 4 Sensor data (20, 22, 23, or 24) DS (23 and 24)
GS8 2 Command (activate h or switchoff) DC (activate h and switchoff)
GS9 2 Command (activate c or switchoff) DC (activate c and switchoff)
GS11 and GS13 4 Sensor data (20, 21, 22, or 23) DS (20 and 21)
GS12 and GS14 4 Sensor data (21, 22, 23, or 24) DS (23 and 24)
GS15, GS16, GS17, GS18 2 Command (activate h or activate c) DC (activate h and activate c)

#Attacks.: Number of simulated attacks, DS: Detect false sensor data, DC: Detect faulty control commands.

Table 3 shows the alarms list returned by the monitor
module when a false sensor data or a faulty control
command is detected. The alarm is comprised of a time
value, a false sensor data or a faulty control command, the
status of the physical plant reported by the sensor and the
value of the state variables in the state where the monitor
module terminated the system execution.

TABLE 3: Alarms of the monitor module in case of attacks [5].
System False sensor data/ Alarms
States Faulty control commands list

GS1 and GS2 Sensor data (20) [time, yi : 20, y : 23, s : 22, c : false, h : false]
GS3 and GS5 Sensor data (21) [time, yi : 21, y : 22, s : 23, c : false, h : false]
GS4 and GS6 Sensor data (23) [time, yi : 23, y : 22, s : 23, c : false, h : false]
GS8 Command (activate h) [time, ud : activate h, y : 24, s : 24, c : false, h : false]
GS9 Command (switchoff) [time, ud : switchoff, y : 20, s : 20, c : false, h : false]
GS11 and GS13 Sensor data (21) [time, yi : 21, y : 22, s : 24, c : true, h : false]
GS12 and GS14 Sensor data (24) [time, yi : 24, y : 22, s : 20, c : false, h : true]
GS16 Command (activate c) [time, ud : activate c, y : 22, s : 22, c : true, h : false]

time: The logical time which is derived using Lingua Franca code.

In a CPS, there may be several variables involved
in the physical process as well as various sensors and

actuators. The monitoring approach using the Tiny Twin
enables us to consider only variables are affected during
an attack (i.e., violation of properties). Tiny Twin provides
relevant information about attacks that can be employed
in mitigation techniques, backtracking and recovering the
system after attacks. We have developed the models and
the LF codes of two case studies (Pneumatic Control
System and Secure Water Treatment system), for which
the monitor module can properly detect the attacks on the
system.

7. Conclusion and Future Work

In this work, we proposed a method for detecting
cyber-attacks on CPSs. In particular, we used a Tiny Twin
to detect the attacks on sensor data and control commands.
We developed an abstraction tool to build the Tiny Twin,
which is an abstract version of a state transition system
representing the system correct behavior in the absence of
an attack. In our method, we built a monitor module that
executes together with the system. It produces an alarm if
the sensor data or the control commands are not consistent
with the state transitions in the Tiny Twin. We evaluated
the capability of our method in detecting attacks on a
temperature control system. As the future work, we aim
to build a module to mitigate impacts of the attacks based
on the predefined mitigation plans.

References

[1] R. Mitchell and I.-R. Chen, “A survey of intrusion detection
techniques for cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 46, no. 4, pp. 1–29, 2014.

[2] M. Sirjani and E. Khamespanah, “On time actors,” in Theory and
Practice of Formal Methods, pp. 373–392, Springer, 2016.

[3] “Afra: an integrated environment for modeling and verifying rebeca
family designs.” https://rebeca-lang.org/alltools/Afra, 2022. [On-
line; accessed Feb 09, 2022].

[4] F. Moradi, S. A. Asadollah, A. Sedaghatbaf, A. Čaušević, M. Sir-
jani, and C. Talcott, “An actor-based approach for security analysis
of cyber-physical systems,” in International Conference on Formal
Methods for Industrial Critical Systems, pp. 130–147, Springer,
2020.

[5] F. Moradi, M. Bagheri, H. Rahmati, H. Yazdi, S. A. Asadollah, and
M. Sirjani, “Monitoring cyber-physical systems using a tiny twin
to prevent cyber-attacks,” in International Symposium on Model
Checking of Software (SPIN), 2022.

[6] M. Eckhart and A. Ekelhart, “A specification-based state replication
approach for digital twins,” in Proceedings of the 2018 workshop
on cyber-physical systems security and privacy, pp. 36–47, 2018.

[7] A. Shostack, Threat modeling: Designing for security. Wiley, 2014.
[8] S. Choi, J.-H. Yun, and S.-K. Kim, “A comparison of ics datasets

for security research based on attack paths,” in International Con-
ference on Critical Information Infrastructures Security, Springer,
2018.

[9] J.-M. Flaus, Cybersecurity of industrial systems. J. Wiley & Sons,
2019.

[10] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths,
N. O. Tippenhauer, H. Sandberg, and R. Candell, “A survey of
physics-based attack detection in cyber-physical systems,” ACM
Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–36, 2018.

[11] D. N. Jansen, J. F. Groote, J. J. Keiren, and A. Wijs, “A simpler o
(m log n) algorithm for branching bisimilarity on labelled transition
systems,” arXiv preprint arXiv:1909.10824, 2019.

[12] M. Lohstroh, C. Menard, A. Schulz-Rosengarten, M. Weber, J. Cas-
trillon, and E. A. Lee, “A language for deterministic coordination
across multiple timelines,” in 2020 Forum for Specification and
Design Languages (FDL), pp. 1–8, IEEE, 2020.

https://rebeca-lang.org/alltools/Afra

	Posters
	Introduction
	The Approach
	Building the Network Graph
	Training Vector Embeddings
	Link Predictor Model

	References
	Introduction
	Proposed Attack
	Clock Synchronization
	Clock Drift Compensation
	Timing Values on the Web
	References
	Introduction
	Methods
	Computing Uniqueness
	Computing Attack Robustness
	Correlation Analysis

	Results
	Conclusion
	References
	Introduction
	Background and Motivation
	Datasets and Methodology
	Verifying label correctness
	Network traffic variety

	Results
	Manual Analysis
	Automated Traffic Analysis

	Discussion and Future Work
	Conclusion
	References
	Introduction
	Proposal Overview
	Extended system model
	System description
	Security tactic description
	Applying tactics

	Security design flaw queries
	Advantages

	Discussion and Future Work
	References
	Introduction
	Approach and results for SAST
	Testability patterns creation
	Measurement and advancement of security, privacy and ML testing
	Web Application Analysis and Remediation

	Conclusion and future directions
	References
	Introduction
	Genealogy of PA
	Secure PA
	PA for Secure Development
	Related Work
	References
	Introduction
	Related work
	Sampling strategies
	Evaluation methodology
	Privacy measurements
	Utility measurements
	Preliminary results

	Future work and conclusions
	References
	Introduction
	Related work
	Public datasets
	Case study: News articles
	Attacker model
	Research methodology

	Preliminary results
	Conclusions and future work
	References

