

Spectro-astrometry with Photonic Lanterns

UCLA UCI Caltech

Yoo Jung Kim¹, Stephanie Sallum², Jonathan Lin¹, Yinzi Xin³, Barnaby Norris⁴, Christ opher Betters⁴, Sergio Leon-Saval⁴, Julien Lozi⁵, Sebastien Vievard⁵, Pradip Gatkine³, Olivier Guyon⁵, Nemanja Jovanovic³, Dimitri Mawet³, and **Michael P. Fitzgerald**¹

¹University of California, Los Angeles, ²University of California, Irvine, ³California Institute of Technology, ⁴The University of Sydney, ⁵Subaru Telescope

Overview

- 1. Spectro-astrometry and artifacts
- 2. Photonic lanterns
- 3. Spectro-astrometry with photonic lanterns
- 4. Application & mock observation: Binary model

Spectro-astrometry measures <u>light centroid</u> as a function of <u>wavelength</u>, a technique for studying <u>angular scales smaller than the PSF size</u>

Examples: young binaries, stellar outflows, broad-line region of quasars

Slit-based spectro-astrometry suffers from <u>artifacts</u> due to <u>asymmetry in PSF</u>

Most spectro-astrometric studies used long-slit spectroscopy or image slicer-based IFU spectroscopy.

Spectroastrometry with Photonic Lanterns

Yoo Jung Kim (UCLA)

Photonic Lantern (PL)

Photonic lantern:

- A waveguide that gradually transitions from few-mode fiber geometry to a bundle of single-mode fiber geometry.
- High throughput, high stability (spatial filtering)
- Considered for future fiber-fed spectrograph
- Uses: OH line suppression, Focal-plane wavefront sensing, high contrast imaging with vortex fiber nuller

6-port Photonic lantern

Photonic Lantern (PL) for spectro-astrometry

Photonic lantern:

- A waveguide that gradually transitions from few-mode fiber geometry to a bundle of single-mode fiber geometry.
- High throughput, high stability (spatial filtering)
- Considered for future fiber-fed spectrograph
- Uses: OH line suppression, Focal-plane wavefront sensing, high contrast imaging with vortex fiber nuller

6-port Photonic lantern

For spectro-astrometry:

Relative intensities in each single mode fiber can be used to determine the light centroid precisely!

Linearity of the PL response makes it ideal for spectro-astrometry

» Photonic lanterns respond linearly to low-order aberrations.

- $(\vec{\phi} \approx B^{-1}(\vec{l} \vec{l}_0)) \text{tip/tilt, defocus, astigmatism.}$
- Zernike aberration amplitude (radians RMS)
- » In the linear regime, random errors are averaged out (example: AO-residual tip-tilt jitter)

PLs can measure 2D spectro-astrometric signals, do not suffer from artifacts, and are insensitive to random errors.

Spectroastrometry with Photonic Lanterns

Yoo Jung Kim (UCLA)

Summary: PL spectro-astrometry

Aberration amplitudes

Center of light as a function of wavelength

(spectro-astrometric signal)

 Additional information to constrain model parameters
& correct for non-linearity

Application: Binary Model

Can we recover binary parameters with PL spectro-astrometry?

Mock observation: Accreting planets show strong hydrogen emission lines

Artist's impression of PDS70 system. W. M. Keck Observatory/Adam Makarenko Spectroastrometry with Photonic Lanterns

Yoo Jung Kim (UCLA)

Linearly reconstructed aberration amplitudes (tip, tilt, defocus, astig) can be used to constrain binary parameters (cont., sep., PA)

Measure: \vec{I} , calculate: $\vec{\phi}$ (tip,tilt,defocus, astig)

Example case for zero position angle, Contrast = 0.001 tilt

In the linear regime, the tip-tilt = center of light

At large separations, the reconstructed tip-tilt deviates from the center of light

tip

Linearly reconstructed aberration amplitudes (tip, tilt, defocus, astig) can be used to constrain binary parameters (cont., sep., PA)

Example case for zero position angle, Contrast = 0.001

In the linear regime, the tip-tilt = center of light

At large separations, the reconstructed tip-tilt deviates from the center of light

At large separations, astigmatism & defocus signals can be used to constrain the separation

➔ contrast & separation degeneracy breaks!

Mock observations

Distance = 140pc, separation ~ 3 AU, PA=60 deg, Accretion rate = $10^{-8.5} M_{\odot}/yr$

Spectroastrometry with Photonic Lanterns

Yoo Jung Kim (UCLA)

- Experiments and on-sky verification
- SMF outputs can be interferometrically combined for spectro-interferometry and

coherent imaging

- Spectro-astrometry is a useful technique for studying scales smaller than the PSF size, but care is needed due to artifacts.
- A photonic lantern, with its spatial filtering property and its linearity, is ideal for a stable measurement of spectro-astrometry.
- We explored the application on the binary model, in particular on observing accreting planets with hydrogen emission lines. The spectro-astrometry with photonic lantern can constrain binary parameters.