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Abstract. Continual learning is a crucial ability for learning systems
that have to adapt to changing data distributions, without reducing their
performance in what they have already learned. Rehearsal methods of-
fer a simple countermeasure to help avoid this catastrophic forgetting
which frequently occurs in dynamic situations and is a major limitation
of machine learning models. These methods continuously train neural
networks using a mix of data both from the stream and from a rehearsal
buffer, which maintains past training samples. Although the rehearsal
approach is reasonable and simple to implement, its effectiveness and
efficiency is significantly affected by several hyperparameters such as the
number of training iterations performed at each step, the choice of learn-
ing rate, and the choice on whether to retrain the agent at each step.
These options are especially important in resource-constrained environ-
ments commonly found in online continual learning for image analysis.
This work evaluates several rehearsal training strategies for continual
online learning and proposes the combined use of a drift detector that
decides on (a) when to train using data from the buffer and the online
stream, and (b) how to train, based on a combination of heuristics. Ex-
periments on the MNIST and CIFAR-10 image classification datasets
demonstrate the effectiveness of the proposed approach over baseline
training strategies at a fraction of the computational cost.

Keywords: Catastrophic forgetting · Continual learning · Online learn-
ing.

1 Introduction

Continual learning aims at developing methods for adapting to new data dis-
tributions without dropping their performance on previously learned tasks. De-
crease of performance on previous tasks, also known as catastrophic forgetting,
occurs due to the fact that data is presented to the model incrementally and
drawn from different distributions, essentially violating the i.i.d. assumption [1].
Several methods have been proposed to address the catastrophic forgetting prob-
lem, including (a) regularization methods [9] that pose constraints on the pa-
rameter update mechanism during training, (b) rehearsal/replay methods [14],
that keep a set of representative past samples to be used along with new data in
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training, and (c) parameter isolation methods that train only a subset of model
parameters with the new data [10]. Despite their relative simplicity, rehearsal
methods seem to work surprisingly well, as shown in a recent survey [3]. Most
methods presented in the bibliography capitalize on “offline” (batch) learning,
in which case all the data for all tasks are available for training in each iteration.
Online continual learning introduces several additional challenges, including the
continuously changing effectiveness in the current task, the forgetting of previ-
ous tasks, and the computational complexity of the training procedure. Edge
and/or real-time application environments, can impose significant restrictions in
the available computation resources for model training [4, 12, 13]. In this paper,
we consider online continual learning for image classification under the prism of
computational efficiency. For this purpose, we explore training strategies that
can be applied at each training step, and balance the trade-off between model
effectiveness and computational complexity. A rehearsal-based online continual
learning setup is used to evaluate several training strategies, which involve deci-
sions on when and how to train.

2 Related Work

Rehearsal-based methods in continual learning [3] mix selected samples from
previous tasks with samples from new tasks during training. In task incremental
continual learning, we assume clearly divided task boundaries, with all data of
each task provided incrementally, i.e. all training data from the first task, then
all data from the second task etc. [3, 14]. A way out of this relaxation to the
more general problem of online continual learning may be offered in the ap-
proach of [11], where a Bayesian approach to infer the task context is suggested.
Another approach by [17] presents an algorithm that uses the Shannon entropy
as a measure to select task samples that are representative of previously seen
classes without being affected by the fact that task boundaries are unknown.
One prominent method for the Incremental Learning in Online Scenario has
recently been introduced in [5]. This method combines various techniques to
avoid catastrophic forgetting, including an adaptation of iCaRL [14] to the on-
line learning case. A common attribute of these incremental learning methods is
that they use a “static” training strategy. The training procedure takes place at
predefined intervals (e.g., after a fixed number of samples is observed), while the
number of training iterations/epochs at each training step is also fixed. In many
occasions, this can lead to unnecessary training iterations, which add to the time
complexity and can lead to overfitting. Our work is targeting the general online
continual learning setting, where the task boundaries in the online stream of in-
put images are not known in advance. The timeliness and memory objectives are
considered together with complexity, plasticity, scalability and accuracy. Those
characteristics allow our work to depart from previous research and deliver the
following contributions:

– We propose a decision mechanism for determining when to train. This mech-
anism offers a significant advantage according to the time complexity. An-
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other advantage is that this mechanism is suitable for detecting any changes
in concept, therefore dealing with the issue of task agnosticism.

– We propose a dynamic rehearsal strategy as a solution of how to train, in
an unpredictable, online setup. We propose strategies for dynamically deter-
mining the number of training iterations and learning rate based on the error
of the model, as well as based on the convergence of the model parameters.

3 Online Continual Learning

3.1 Scenario

In a real-world setting, boundaries between different image classification prob-
lems, are not known in advance. We consider the following motivating scenario,
where a constant stream of annotated data is used for model training in an online
fashion as shown in Figure 1. The stream of data is non-i.i.d., since it is sampled
from different tasks in each time period. The task boundaries and identities are
unknown. Each task is a sequence of annotated samples from a set of n classes
C1, . . . , Cn. For simplicity, we assume that data comes in fixed-size batches (e.g.
32 samples per batch), so the stream is considered as a sequence of batches,
which comprises of a set of samples Bt = (Xt, Yt), with t ≥ 1 representing the
batch index. The goal is to train a sequence of models, where each model ht for
t ≥ 1 is trained with Bt in an online manner.

3.2 The proposed online rehearsal method framework

This section describes the general rehearsal framework, which is more formally
defined in Algorithm 1. During training, we maintain two buffers P and R, called
the Postponed and Rehearsal buffers respectively. Let’s assume that at time-step
t a batch of new samples Bt = (Xt, Yt) is acquired from the stream, ht−1 is the
model from the previous time-step, and Pt and Rt are the current state of the two
buffers. The Postponed buffer is initially empty and the Rehearsal buffer initially
contains a user-selected fixed number q = |R|/n, where n is the number of classes,
of exemplars per class sampled uniformly at random. Algorithm 2 covers a wide
range of training strategies for the online continual learning scenario.

In the one extreme the model is trained in each iteration by stacking the
new batch Bt with a single (sampled uniformly at random) batch from the
Rehearsal buffer [2]. In the other extreme, we may assume that all task data is
available at a single moment in time, and an oracle correctly predicts the task
boundaries and retrains at the end of each task using all the data. Between these
two extreme cases, without any knowledge about the task boundaries, we are
forced to deal with several issues such as: (a) when to train, (b) how to mix
samples from the Postponed and Rehearsal buffers, (c) how many iterations to
train at the current time-step, and (d) what learning rate schedule to use. At
each time-step the algorithm first decides whether to train the model with a new
batch or not. If not, the new batch is appended to the Postponed buffer Pt and
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Fig. 1. Proposed strategy outline. Each batch Bt, Bt+1, Bt+2, . . . belongs to a specific
classification task Ta, Tb, . . . and ht, ht+1 . . . is the sequence of produced models after
each step. A new batch Bt is added to a Postponed buffer Pt if the model doesn’t
need any updates. When training is needed in the next batch (i.e Bt+1), both the new
Rehearsal buffer Rt+1 and a new Postponed buffer Pt+1 are mixed together with Bt+1

for rehearsal training. In every step the Rehearsal buffer is being updated, regardless
of training schedule.

the algorithm returns. If the algorithm decides to train the model, it employs a
rehearsal strategy (see Section 4 for the supported options). Part of the strategy is
to create mini-batches by combining new samples (i.e. from Pt∪Bt) with samples
from the Rehearsal buffer Rt. If training took place in the previous time-step,
then Pt = ∅. After each training step, the Rehearsal buffer Rt is updated (as
explained in the following) and the Postponed buffer Pt is cleared.

Algorithm 1: Streaming rehearsal framework single timestep t.

Input: Model ht, State St (global variables from previous timesteps),
Postponed buffer Pt, Rehearsal buffer Rt, New batch Bt = (Xt, Yt)
from stream S

Output: updated h′
t, S

′
t, P

′
t , and R′

t

1 train← decideToTrain({ht, St, Pt ∪Bt, Rt});
2 if train = False then
3 update P ′

t ← Pt ∪Bt and state S′
t;

4 return {ht, S
′
t, P

′
t , Rt};

5 h′
t, S

′
t ← RehearsalTraining({ht, St, Pt ∪Bt, Rt});

6 R′
t ← updateRehearsalBuffer(Rt, Pt ∪Bt);

7 P ′
t ← ∅;

8 return {h′
t, S

′
t, P

′
t , R

′
t};



Computationally Efficient Rehearsal for Online Continual Learning 5

The updating of the Rehearsal buffer is performed using the state-of-the-art
algorithm proposed by [5]. It is a simplified variant of the prioritized example
selection algorithm [14] that is based on herding. Its main difference, which is
in-line with our computational complexity requirements, is that it maintains a
running average estimator for each class, in all occasions the buffer is constant
and always contain q = |R|/n exemplars per class.

Algorithm 2: RehearsalTraining

Input: model h, state S (global variables), Postponed buffer P , Rehearsal
buffer R

Output: updated model h′ and state S′

1 iter ← decideIterations(S, P,R);
2 lrs← decideLearningRateSchedule(S, P,R);
3 initialize optimizer with lrs;
4 forall i ∈ 1, . . . , iter do
5 D ← createMixedMiniBatches(i, S, P,R);
6 foreach mini-batch b ∈ D do
7 perform one optimizer (e.g. SGD) step with mini-batch b;

8 return updated model h′ and state S′;

4 Alternative Rehearsal Strategies

This section presents a number of alternative ways to perform the rehearsal
during training.

4.1 Continuous rehearsal

The baseline strategy, referred as continuous rehearsal in the following, assumes
that training takes place in each time-step. In each iteration, the latest batch Bt

is combined with a different batch rj ∈ Rt in order to produce two new batches
containing samples from Bt and rj in a 50-50 ratio. A different batch of samples,
rj , is selected from Rt at each time step t in a round-robin fashion.

A simple experience replay method [2] can be achieved by setting the number
of iterations to one. As shown in Section 5, this proves quite effective w.r.t.
forgetting, but does not learn new tasks fast enough. This can be solved by
increasing the number of iterations at each time-step at the cost of more training
times. In what follows, we use CONR-n to denote this baseline method with n
iterations (CONR-1 for a single iteration).

4.2 Drift activated rehearsal

In the task-agnostic scenario, where the boundaries of tasks are unknown, we
rely on a concept drift detector [18] in order to decide when to train. The
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ECDD detector [16] that we employ uses exponentially weighted moving average
charts (EWMA) as an indicator of divergence between samples. This single pass
method, with O(1) update in each time-step, is suitable for performance-critical
streaming applications.

µ̂t and variance of the misclassification error Ut. It also maintains a more
slowly updated running average Zt, of the error. The following rules are used to
decide whether to train:

(i) Zt > µ̂t+Ltσ̂Zt
, i.e., the running average error estimate must not exceed Lt

times the standard deviations above the mean, where Lt is a dynamically
updated control limit computed by ECDD.

(ii) Ut > µ̂t + 2σ̂Ut
, i.e., the current batch error Ut must not be too high (2

standard deviations above the estimated mean).
(iii) Zt > E, the running average of the error must not exceed a threshold E.
(iv) no training during the last ρ time-steps.

Reasonable choices are E = 0.2 for the error threshold, and ρ = 20 for the
no-training time-steps threshold. Assuming a constant number of iterations for
training, the main difference with the CONR-n method is that when triggered,
the Postponed buffer P will likely contain multiple batches. In each training
iteration we iterate over all batches of P . For each batch pi ∈ P we read a batch
rj ∈ R and create two batches which contain 50% from each. Again the buffer R
is used in a round-robin fashion using a position pointer that is updated at each
time-step. We use DRIFTA-n to denote the method which performs a constant
number of n iterations when the drift detector is triggered. A variation of this
method is to use two detectors, one for the stream Bt as above, and another
for the Rehearsal buffer R, by sampling from the Rehearsal buffer uniformly at
random. Training takes place when any of the two detectors is triggered, based
on the above mentioned heuristics. Let 2DRIFTA-n denote this strategy with a
constant number of n iterations for training.

4.3 Dynamic Number of Training Iterations

So far we have assumed a fixed number of n training iterations per time-step.
A more adaptive strategy is to dynamically compute the number of training
iterations based on the rate of wrong predictions in the stream. We denote as
DRIFTA-DYN-n the strategy which relates the estimator Zt values to the number
of iterations. We have experimented with a simple rule which computes the
number of iterations as d2 ∗ n ∗ log2(1 + Zt)e where n is a user chosen constant.
Similarly, 2DRIFTA-DYN-n does the same using both drift-detectors by using the
maximum of Zt and Ẑt.

4.4 Iterate until convergence

A different approach in deciding the number of training iterations is to rely on
the convergence of the model. In this approach we monitor the loss function L
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during the iterations and keep two exponential moving averages, one short and
one long. They are updated as

As = (1− αs)As + αsL (1)

Al = (1− αl)Al + αlL (2)

with αs = 0.5 and αl = 0.05 respectively. We stop training when the two values
converge, i.e. |Al − As| < ε for some hyper-parameter value ε. This approach
can be combined with both continuous and drift-activated approaches resulting
in CONR-CONV, DRIFTA-CONV and 2DRIFTA-CONV.

4.5 Adjust learning rate

A last action that can affect the efficiency of the rehearsal strategy is to adjust
the learning rate across iterations.

The simplest approach is to keep the learning rate η constant to a pre-defined
value. Another approach is to use a decay mechanism, e.g. an inverse time decay,
that modifies the learning rate through the training iterations. Finally, the drift-
activated methods can also use Zt and a predefined η value to dynamically adjust
the initial learning rate. We concluded that a good choice of learning rate can
be achieve by using the following function:

LRnew = LR0 ∗min(100, 5 ∗ e3Zt) (3)

where LRnew is the new initial learning rate and LR0 is the global, pre-defined
learning rate.

5 Experiments

5.1 Experimental setup

Dataset To evaluate the online continual learning strategies of Section we use
both MNIST digits [8] and the CIFAR-10 image classification dataset [7].

Following the online continual learning scenario described in Section 3.2, we
split the training data into five tasks, where each task contains images from two
classes, i.e., Ti = {(x, y)|y ∈ {2i, 2i+ 1}}, i = 0, 1, 2, 3, 4. An online annotated
image stream, S, is generated by first sampling multiple images from the first
task, then the second task and so on

S = (T
(0)
0 , T

(0)
1 , T

(0)
2 , T

(0)
3 , T

(0)
4 , T

(1)
0 , T

(1)
1 , · · · ) (4)

For our experiments, each set T
(j)
i has a fixed size of 3200 images, grouped

into 100 batches. The model does not know when this change occurs, relying
only to the drift detector for feedback. Each batch consists of 32 images sampled
randomly from the classes of the current task, Ti. The stream for each experiment
has a total length of 1500 batches, with each task appearing three times (j =
0, 1, 2). To keep results comparable across experiments, we use the same random
seed for sampling, as well as for the initialization of model parameters.
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Model and pre-training Following [14] and [5], we use the ResNet32 model
for the experiments, and specifically its adaptations to the MNIST and CIFAR-
10 dataset, as described by [6]. The MNIST model is trained offline for 15 epochs
with 500 images while the CIFAR-10 variant is trained for 100 epochs with a
random subset of 15000 images. In both occasions there is an equal number of
training images for each of the ten classes. This leads to a model that has gone
through a “warm-up” training stage but has not yet been fully trained.

Metrics To evaluate the effectiveness and efficiency of each training strategy,
we use the following metrics:

– Accuracy (At): Accuracy of the model evaluated in the held-out test set,
averaged across all tasks.

– Current task accuracy (Ct): Accuracy of the model evaluated in the held-out
test set, but only for the images belonging to classes of the current task, Ti.

– Online accuracy (Ot): Accuracy in each batch of S, evaluated right before
it is used for training. This approach was also used in the work of [5].

– Training iterations (Nt): Cumulative number of iterations performed during
stochastic gradient descent optimization. Given that the model and the batch
size is the same across all experiments, this metric that can be used to
compare the computational complexity of different training strategies.

Each metric is computed at every step, t, while we report averages across t, e.g.,
Āt.

5.2 Experiment 1: The need for continuous rehearsal

This experiment demonstrates the need for an adaptive training strategy in
online settings. In figure 2, we compare three training strategies which include
(i) no rehearsal (ii) continuous rehearsal with 1 training iteration/experience
replay [15] (CONR-1), and (iii) 50 training iterations (CONR-50). In all cases the
learning rate was fixed to η = 0.01. For the MNIST dataset, it is obvious that
CONR-1 and CONR-50 are very close in terms of average accuracy, albeit the
computational cost of CONR-50 is 50 times higher. Experiments on the current
task accuracy Ct on the CIFAR-10 dataset (Figure 3) pinpoint more accurately
the core of the problem for continuous rehearsal strategies. We can see some
improvement by CONR-50, yet the computational cost is 50 times higher than
CONR-1 which can be prohibitive in resource constrained environments.

5.3 Experiment 2: Choosing the best rehearsal strategy

This experiment evaluates the proposed training strategies. Table 1 contains
MNIST results and compares all methods in terms of the training batches (Nt)
as well as in terms of the average accuracies Āt, C̄t and Ōt. Note that we have
added a decay factor for the learning rate (d=0.05) in all methods for a more
fair comparison. According to the results for the MNIST dataset, the proposed
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Fig. 2. Results of average accuracy (At) for the MNIST dataset. The buffer includes
50 samples per class in the Rehearsal buffer. Continuous rehearsal with one rehearsal
CONR-1 is sufficient. CONR-50 is slightly better but at the cost of a more resource inten-
sive implementation
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0.6

0.7

0.8

0.9
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No rehearsal
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CONR-50

Fig. 3. Results of current task accuracy (Ct) for the CIFAR-10 dataset. the buffer
includes 500 samples per class. CONR-1 performs similar to having no rehearsal at all.
CONR-50 iterations has a clear benefit, but requires 50 times higher computational cost

Table 1. Comparison of the different online training strategies for the MNIST dataset
in terms of average values of the metrics across the entire stream. Results are provided
for a Rehearsal buffer with 50 samples per class.The highest effectiveness per metric
is shown in bold. Numbers in red and blue show the sum of training iterations of the
best continuous rehearsal methods and the best proposed methods respectively

Strategy Nt Āt C̄t Ōt

NO REHEARSAL 1500 0.788 0.93 0.924

CONR-1 3000 0.943 0.964 0.963
CONR-25 75000 0.963 0.984 0.982
CONR-50 150000 0.963 0.985 0.984

DRIFTA-DYN-50 9562 0.961 0.986 0.984
2DRIFTA-DYN-50 10366 0.962 0.986 0.985

DRIFTA-CONV 3808 0.92 0.983 0.981
2DRIFTA-CONV 4982 0.949 0.984 0.982

drift activated dynamic rehearsal methods are most of the times almost equal
whilst decreasing training iterations significantly. In CIFAR-10 tests, illustrated
in Figure 4, convergence-based methods are even better in terms of computa-
tional efficiency with very little compromise in the average metrics. The results
clearly demonstrate the benefit of using the proposed drift activated dynamic
and convergence rehearsal (especially 2DRIFTA-DYN-n and 2DRIFTA-CONV) for
the CIFAR-10 dataset. The results show both the limitations of training with
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Fig. 4. CIFAR-10 results of (a) Current task accuracy Ct and (b) number of batches Nt

for t = 1000, · · · , 1500 of the stream for a Rehearsal buffer with 500 samples per class.
2DRIFTA-CONV is consistently more effective and significantly more computationally
efficient in this experimental setup.

continuous rehearsal methods in an online setting and the benefits of a dynamic
approach.

6 Conclusions

This work examined the problem of online continual learning from non i.i.d im-
age streams, with unknown task boundaries, and introduced a generic rehearsal
strategy that decides when, as well as how to train. The proposed strategy com-
bines drift detection for the early detection of the task change with methods
for determining training parameters (number of training iterations and learning
rate) at each training step. The combination of these techniques achieves almost
identical current and online task accuracy compared to the static rehearsal strat-
egy baselines, while being more efficient in the use of rehearsal samples, leading
to significantly reduced computational cost.
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