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ABSTRACT

Common data models solve many challenges of standardizing electronic health record (EHR)

data, but are unable to semantically integrate the resources needed for deep phenotyping.

Open Biological and Biomedical Ontology (OBO) Foundry ontologies provide semantically

computable representations of biological knowledge and enable the integration of a variety of

biomedical data. However, mapping EHR data to OBO Foundry ontologies requires significant

manual curation and domain expertise. We introduce a framework for mapping Observational

Medical Outcomes Partnership (OMOP) standard vocabularies to OBO Foundry ontologies.

Using this framework, we produced mappings for 92,367 conditions, 8,615 drug ingredients, and

10,673 measurement results. Mapping accuracy was verified by domain experts and when

examined across 24 hospitals, the mappings covered 99% of conditions and drug ingredients

and 68% of measurements. Finally, we demonstrate that OMOP2OBO mappings can aid in the

systematic identification of undiagnosed rare disease patients who might benefit from genetic

testing.
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INTRODUCTION

Electronic health record (EHR) adoption, which is nearly universal within the US healthcare

system,1,2 has increased adherence to evidence-based clinical guidelines3 and facilitated greater

patient communication4 resulting in significant improvements in care.5 EHRs contain a myriad of

systematically collected, longitudinal, patient-level information and are a valuable resource for

population-level research.6 One promise of EHR-based phenotyping is the ability to perform

population-level investigations of mechanistic drivers of disease in diverse patient populations.7,8

Despite significant progress, this objective remains largely aspirational.6,9–12

Deep phenotyping, or “the precise and comprehensive analysis of phenotypic

abnormalities in which the individual components of the phenotype are observed and

described”13, is a fundamental component of precision medicine that requires the timely

synthesis of multiple types of patient data.14,15 Deep phenotyping has successfully been applied

to rare and genetic disorders,16–28 cancer,29–35 pregnancy,36,37 and has been used to identify

patients with undiagnosed rare diseases38. While common data models (CDMs) like the

Observational Medical Outcomes Partnership (OMOP)39 have solved many of the challenges of

standardizing and utilizing clinical EHR data, most do not yet include the resources needed to

integrate and interpret molecular data.40 Ontologies exist for nearly all scales of biological

organization and when combined, can provide a semantically rich and biologically accurate

representation of molecular entities and mechanisms.41 Similar to clinical vocabularies,

ontologies are classification systems that provide detailed representations of a specific domain

of knowledge.42 Unlike clinical vocabularies, ontologies are semantically computable and

interoperable with formally defined relationships, which means they can be logically verified and

integrated with data from basic science and clinical research.42

Mapping clinical vocabularies to ontologies, like those in the Open Biological and

Biomedical Ontology (OBO) Foundry, has been recognized as a fundamental requirement for
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use in deep phenotyping.15,38,42,43 An example of how aligning these resources improves deep

phenotyping was demonstrated by Zhang et al., (2019)44 who mapped Logical Observation

Identifiers, Names and Codes (LOINC)45 to the Human Phenotype Ontology (HPO),46 which

enabled the harmonization of laboratory tests with different codes to common HPO concepts.

Aligning clinical vocabularies to OBO Foundry ontologies also has the potential to unlock

translational resources, which are otherwise not easily accessible or available in the EHR.42,43

For example, OpenTargets is a service that aligns genomic data to different disease identifiers

and ontologies like the Experimental Factor Ontology47 and the Mondo Disease Ontology

(Mondo),48,49 in order to improve the systematic identification and prioritization of drug targets for

specific diseases and phenotypes.50 Biomedical ontologies like HPO have also been used in

theoretical applications as a way to transform entire EHRs,51–53 but the majority of existing work

has focused on phenotyping particular diseases54–57 or investigating specific biological58 or

clinical domains.44,59,60 Due to the time-consuming manual effort required to map clinical

vocabularies to OBO Foundry ontologies, no comprehensive mapping across commonly used

ontologies currently exist. While automated approaches to create mappings have been

developed, they are not yet able to accurately capture the complex clinical semantics underlying

the data and knowledge encoded by clinical vocabulary concepts.

To address these limitations and enable large-scale semantically interoperable deep

phenotyping, we developed OMOP2OBO, a framework to align clinical vocabularies to OBO

Foundry ontologies (Figure 1). Using this method, we created the first healthcare system-scale

mappings between clinical vocabularies in the OMOP CDM and eight OBO Foundry ontologies61

spanning diseases (Mondo48), phenotypes (HPO46), anatomical entities (Uber Anatomy

Ontology [Uberon62]; Cell Ontology [CL]63), organisms (National Center for Biotechnology

Information Taxon Ontology [NCBITaxon]64), chemicals (Chemical Entities of Biological Interest

[ChEBI]65), vaccines (the Vaccine Ontology [VO]66), and proteins (the Protein Ontology [PRO]67).

We evaluated the mappings in three ways: (1) accuracy, examined by a team of domain
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Figure 1: Overview of the OMOP2OBO Framework.
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experts; (2) generalizability, examined through comparison to a large set of mapped concepts

used at least once in clinical practice from 24 hospital systems; and (3) clinical utility, examined

when used to identify patients with an undiagnosed rare disease.

RESULTS

OMOP2OBO is open source (https://github.com/callahantiff/OMOP2OBO) and includes an

dashboard (http://tiffanycallahan.com/OMOP2OBO_Dashboard/). Acronyms used in this paper

are provided in Supplementary Table 1 and OMOP2OBO resources are described in

Supplementary Table 2.

Mapping Data

OMOP Data

OMOP concepts were extracted from a de-identified pediatric dataset normalized to the OMOP

CDM.39,68 Supplementary Table 3 contains the counts of data available for mapping by clinical

domain (i.e., conditions, drug ingredients, and measurements) and whether the concepts were

used in at least one clinical encounter in a de-identified pediatric dataset (i.e., Standard

Concepts Used in Practice) or not (i.e., Standard Concepts Not Used in Practice). There were

109,709 condition concepts (Systematized Nomenclature of Medicine -- Clinical Terms

[SNOMED-CT]69) and 11,807 drug ingredient concepts (i.e., RxNorm70) available to map. For

measurements, there were 4,083 concepts (i.e., LOINC45), representing 11,269 measurement

results available to map. This concept set included 2,477 LOINC2HPO concepts (6,844

measurement results) after excluding 631 overlapping concepts and 11 deprecated concepts.

With respect to the Standard Concepts Used in Practice, the 29,129 conditions had a median

frequency of 25 (max=544,618), the 1,697 drug ingredients had a median frequency of 251

(max=2,267,866), and the 1,606 measurement concepts had a median frequency of 25

(max=56,823,139).
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OBO Foundry Ontologies

As shown in Supplementary Figure 1 and Supplementary Table 4, the amount of metadata

available for mapping varied across the OBO Foundry ontologies, with NCBITaxon containing

the most metadata and Uberon containing the least. A Chi-square test of independence with

Yate's correction revealed a significant association between the ontology and the amount of

available metadata ( (14) = 2,664,853.82, p<0.0001). Post-hoc tests with Bonferroniχ2

adjustment confirmed the ontologies provided significantly different amounts of metadata

(ps<0.0001).

OMOP2OBO Mappings

Figure 2 includes example mappings and illustrates how the OBO Foundry ontologies were

used to map OMOP concepts from each clinical domain. Supplementary Table 5 provides

additional details on and examples of the mapping categories. The mapping procedures and

resources are described in the OMOP2OBO Framework section of the Methods.

Conditions

Unified Medical Language System (UMLS)71 concept unique identifiers (CUIs) were found for

96.6% of condition concepts (n=105,976) representing 69 unique Semantic Types.72 The

mapping results for each OBO Foundry ontology are shown in Table 1. Of the 109,709 available

concepts, 73,418 mapped to 5,661 unique HPO concepts (83.9% Standard Concepts Used in

Practice, 60.8% Standard Concepts Not Used in Practice) and 63,375 mapped to 9,643 unique

Mondo concepts (68.9% Standard Concepts Used in Practice, 53.8% Standard Concepts Not

Used in Practice). Only 50 concepts we attempted to map (excluding purposefully unmapped

concepts) were unable to be mapped to at least one OBO Foundry ontology concept.

Mapping Categories

The frequency distributions of the Standard Concepts Used in Practice by mapping category

and ontology are visualized in Figure 3. The majority of automatic mappings were one-to-one at
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Figure 2: OMOP2OBO mapping examples by OMOP clinical domain.
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the concept-level for Standard Concepts Used in Practice (HPO: n=3,601; Mondo: n=4,836) and

Standard Concepts Not Used in Practice (HPO: n=1,166; Mondo: n=4,261). For the manual

approaches, only the Standard Concepts Used in Practice were mapped, with the majority being

one-to-many (HPO: n=10,425; Mondo: n=2,836). Cosine similarity-scored concept embeddings

enabled 5,020 HPO and 755 Mondo mappings (Supplementary Figure 2a). On average, more

evidence to support the mappings was found for Standard Concepts Used in Practice than

Standard Concepts Not Used in Practice for Mondo mappings (5.19 vs 2.29) than HPO

mappings (3.84 vs 4.28).

Drug Ingredients

UMLS CUIs were found for 99.2% of drug ingredient concepts (n=11,716) representing 23

unique Semantic Types. The mapping results for each OBO Foundry ontology are shown in

Table 2. Of the 11,807 available concepts, 4,719 concepts mapped to 2,739 unique NCBITaxon

concepts (27.3% Standard Concepts Used in Practice, 42.1% Standard Concepts Not Used in

Practice), 4,415 mapped to 4,074 unique ChEBI concepts (100% Standard Concepts Used in

Practice, 26.9% Standard Concepts Not Used in Practice), 317 concepts mapped to 145 unique

PRO concepts (14.4% Standard Concepts Used in Practice, 0.7% Standard Concepts Not Used

in Practice), and 161 concepts mapped to 134 unique VO concepts (7.4% Standard Concepts

Used in Practice, 0.4% Standard Concepts Not Used in Practice). All of the OMOP concepts

were able to be mapped to at least one ChEBI concept.

Mapping Categories

The frequency distributions of the Standard Concepts Used in Practice by mapping category

and OBO Foundry ontology are visualized in Figure 4. The majority of automated mappings

were one-to-one at the concept-level for Standard Concepts Used in Practice (ChEBI: n=959;

NCBITaxon: n=20; PRO: n=7; VO: n=92) and Standard Concepts Not Used in Practice (ChEBI:

n=2,192; NCBITaxon: n=135; PR: n=42; VO: n=18). For the manual approaches, only the
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Figure 3: Condition Concept Frequency by Mapping Category and Ontology.

Standard Concepts Used in Practice were mapped with the majority being one-to-one (ChEBI:

n=31; NCBITaxon: n=136; PRO: n=9; VO: n=5). Cosine similarity-scored concept embeddings

enabled 396 ChEBI, 4,376  NCBITaxon, 224 PRO, 38 VO, and 4,376 NCBITaxon mappings

(Supplementary Figure 2b). More evidence to support the mappings was found for Standard

Concepts Used in Practice than Standard Concepts Not Used in Practice in ChEBI, excluding

mappings to PRO and NCBITaxon (ChEBI: 46.41 vs 9.01; VO: 6.15 vs 5.00; PR: 1.32 vs. 5.59;

NCBITaxon: 1.70 vs 2.19).

Measurements

UMLS CUIs were found for 95.8% of measurement concepts (n=3,868) representing a single

Semantic Type. The mapping results for each OBO Foundry ontology are shown in Table 3. Of

the 11,807 measurement results, 10,888 results concepts mapped to 1,118 unique HPO

concepts (92.4% Standard Concepts Used in Practice, 92.4% Standard Concepts Not Used in

Practice), 10,888 results concepts mapped to 48 unique Uberon concepts (99.3% Standard

Concepts Used in Practice, 99.4% Standard Concepts Not Used in Practice), 9,902 results

concepts mapped to 446 unique ChEBI concepts (78.8% Standard Concepts Used in
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Figure 4: Drug Ingredient Concept Frequency by Mapping Category and Ontology.

Practice, 93.7% Standard Concepts Not Used in Practice), 7,460 results concepts mapped to

428 unique NCBITaxon concepts (58.1% Standard Concepts Used in Practice, 71.4% Standard

Concepts Not Used in Practice), 4,855 results concepts mapped to 176 unique PRO concepts

(35.5% Standard Concepts Used in Practice, 47.9% Standard Concepts Not Used in Practice),

and 1,045 results concepts mapped to 41 unique CL concepts (13.9% Standard Concepts Used

in Practice, 6.3% Standard Concepts Not Used in Practice). Only five concepts we attempted to

map (excluding purposefully unmapped concepts) were unable to be mapped to at least one

OBO Foundry ontology concept.
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Mapping Categories

The frequency distributions of the Standard Concepts Used in Practice by mapping category

and OBO Foundry ontology are visualized in Figure 5. The majority of the automated mappings

were one-to-one at the concept-level for Standard Concepts Used in Practice (ChEBI: n=263;

CL: n=182; HPO: n=17; NCBITaxon: n=320; PRO: n=44; Uberon: n=1793) and Standard

Concepts Not Used in Practice (ChEBI: n=400; CL: n=186; HPO: n=3; NCBITaxon: n=444;

PRO: n=12; Uberon: n=3589). For manual approaches, the majority were one-to-one (ChEBI:

n=1,369 and 2,376; CL: n=256 and 178; HPO: 3,902 and 6,671; NCBITaxon: n=2,019 and

3,516; PRO: n=1,261 and 3,047; Uberon: n=406 and 462) for Standard Concepts Used in

Practice and Standard Concepts Not Used in Practice, respectively. Cosine similarity-scored

concept embeddings enabled 464 ChEBI, 105 CL, 113 HPO, 158 NCBITaxon, 4,132 PRO, and

142 Uberon mappings (Supplementary Figure 2c). On average, more evidence to support the

mappings was found for Concepts Used in Practice than Standard Concepts Not Used in

Practice for all of the OBO Foundry ontologies (HPO: 1.11 vs 1.04; Uberon: 3.03 vs 2.79;

NCBITaxon: 1.67 vs 1.47; PRO: 1.11 vs 0.98; ChEBI: 3.51 vs 3.28) except CL (3.35 vs 3.76).

Validation

Accuracy

The goal of this task was to verify the accuracy of the OMOP2OBO mappings through domain

expert review. Of the 2,000 condition mappings, 73.8% were correct (n=1,477). Of the 523

(26.2%) incorrect mappings, 165 (31.5%) could be improved by creating more specific

mappings or replacing multiple concepts with a general ancestor concept. Of the 116 drug

ingredient mappings, 70.7% (n=82) were correct. Of the 34 (29.3%) incorrect mappings, 14

(41.2%) could be improved by creating more specific mappings or replacing multiple concepts

with a general ancestor concept. Measurement concepts were reviewed at the result-level using

a survey and manual domain expert review. On the survey, 92.9% (n=251) of the mappings
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Figure 5: Measurement Concept Frequency by Mapping Category and Ontology.

were found to be correct. Of the 1,350 measurement results, 97.3% (n=1,314) were correct. The

error rates for each clinical domain are expected to be much lower in the final mapping set as all

identified errors were corrected and improvements were made to the algorithm.

Generalization

The goal of this evaluation was to characterize the coverage of standard concepts in the

OMOP2OBO mapping set to standard concepts utilized at least once in practice in the

Observational Health Data Sciences and Informatics (OHDSI) Concept Prevalence Study.73

Conditions

The Concept Prevalence Study contained data for 62,335 distinct concepts from 24 sites. The

resulting OMOP2OBO mapping set contained 92,367 eligible concepts, which covered 92.5%

(99.5% weighted coverage) of the Concept Prevalence Study concepts (n=57,663 concepts;

average frequency: 526.9 [max=87,285,164.4]). Of the remaining concepts, 34,704 were only
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found in OMOP2OBO (average frequency: 131.7 [max=39,975]) and 4,672 were only found in

the Concept Prevalence Study (average frequency: 173.6 [max=8,254,186.5]). These findings

are visualized in Figure 6a. OMOP2OBO concept coverage ranged from 93-99.7% across the

24 Concept Prevalence Study sites (Supplementary Figure 3). A Chi-Square test of

independence with Yate's correction revealed a significant association between the sites and

OMOP2OBO coverage ( (23) = 7,559.1, p<0.0001). Post-hoc tests using Bonferroniχ2

adjustment confirmed that 38.8% of the pairwise site comparisons had significantly different

OMOP2OBO coverage (ps<0.001). The OMOP2OBO concept count by OBO Foundry ontology,

data wave, and coverage type are shown in Supplementary Figure 4.

Error Analysis

Results for the 4,672 concepts used in at least one Concept Prevalence Study site but missing

from OMOP2OBO are visualized in Figure 6b. Roughly 7.9% (n=367) of concepts were

accounted for using a newer version of the OMOP CDM and occurred in an average of 2.6 sites

with a mean frequency of 27,412.3 (max=3,539,698.5). 90.6% (n=4,231) of concepts

purposefully excluded from the OMOP2OBO mapping set (i.e., no clear pathological or

biological origin) occurred in an average of 1.7 sites with a mean frequency of 6,139.3

(max=8,254,186.5). The remaining concepts (1.6%; n=74) were truly missing and occurred in an

average of 2.7 sites with a mean frequency of 5,320 (max=100,483). The top-five most

frequently occurring missing concepts (reported as the average frequency across the 24 sites

and number of sites with that concept) were: (1) Increased fluid intake (SNOMED:249480002;

n=100,483; one site); (2) COVID-19 (SNOMED:840539006; n=93,585; one site); (3) Polycystic

ovary syndrome (SNOMED:237055002; n=62,900.3; 3 sites); (4) Saddle embolus of pulmonary

artery with acute cor pulmonale (SNOMED:15964701000119109; n=22,324.4; 10 sites); and (5)

Adjustment disorder with mixed anxiety and depressed mood (SNOMED:782501005; n=18,453;

one site). Domain expert review found that these concepts were likely missing due to

14



Figure 6: OMOP2OBO - Concept Prevalence Coverage.

differences in patient populations and coding practices. Comparable concepts in OMOP2OBO

were identified.

Drug Ingredients

The Concept Prevalence Study contained data for 4,588 concepts from 18 sites. The
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OMOP2OBO mapping set contained 8,615 eligible concepts, which covered 87.9% (99.9%

weighted coverage) of the Concept Prevalence Study concepts (n=4,037 concepts; average

frequency: 8,071.6 [max=125,634,570.4]). Of the remaining concepts, 4,578 were only found in

OMOP2OBO (average frequency: 468.9 [max=69,311]) and 551 were only found in the Concept

Prevalence Study (average frequency: 801.2 [max=1,795,364.8]). These findings are visualized

in Figure 6c. OMOP2OBO concept coverage ranged from 91.2-98.4% across the 18 Concept

Prevalence Study sites (Supplementary Figure 5). A Chi-Square test of independence with

Yate's correction revealed a significant association between the sites and OMOP2OBO

coverage ( (17) = 195.6, p<0.0001). Post-hoc tests using Bonferroni adjustment confirmed thatχ2

34.6% of the pairwise site comparisons had significantly different OMOP2OBO coverage

(ps<0.001). The OMOP2OBO concept count by OBO Foundry ontology, data wave, and

coverage type are shown in Supplementary Figure 6.

Error Analysis

Results for the 551 concepts missing from OMOP2OBO are visualized in Figure 6d. Roughly

0.9% (n=5) of concepts were accounted for using a newer version of the OMOP CDM and

occurred in an average of 8.4 sites with a mean frequency of 51,732 (max=221,229.7). 82.8%

(n=456) of concepts purposefully excluded from the OMOP2OBO mapping set (i.e., no clear

pathological or biological origin) occurred in an average of 3.9 sites with a mean frequency of

18,847.3 (max=1,077,258.9). The remaining concepts (16.3%; n=90) were truly missing and

occurred in an average of 2.7 sites with a mean frequency of 3,361.2 (max=175,551.3). The

top-five most frequently occurring missing concepts were (reported as the average frequency

across the 18 sites and number of sites with that concept): (1) hepatitis A virus strain CR 326F

antigen, inactivated (RxNorm:2274413; n=175,551.3; 14 sites); (2) erenumab

(RxNorm:2045613; n=60,618; 10 sites); (3) fremanezumab (RxNorm:2056691; n=15,579.6; five

sites); (4) galcanezumab (RxNorm:2058846; n=11,594.8; five sites); and (5) baloxavir marboxil
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(RxNorm:2099995; n=11,366.7; three sites). Domain expert review of these concepts found that

they were likely missing as a result of hospital vendor differences or because they were a new

high-risk biologic whose safety and efficacy had not yet been tested or confirmed for use in

pediatric populations. Comparable concepts in OMOP2OBO were identified.

Measurements

The Concept Prevalence Study contained data for 25,513 concepts from 18 sites. The resulting

OMOP2OBO mapping set contained 3,827 eligible concepts (10,673 results), which covered

11.1% (67.7% weighted coverage) of the Concept Prevalence Study concepts (n=2,260

concepts; average frequency: 3,072.3 [max=183,333,482.4]). Of the remaining concepts, 1,207

were only found in OMOP2OBO (average frequency: 346.9 [max=842,485]) and 20,893 were

only found in the Concept Prevalence Study (average frequency: 669.6 [max=1,219,846,862]).

These findings are visualized in Figure 6e. OMOP2OBO concept coverage ranged from

91.2-98.4% across the 18 Concept Prevalence Study sites (Supplementary Figure 7). A

Chi-Square test of independence with Yate's correction revealed a significant association

between the sites and OMOP2OBO coverage ( (17) = 3,872.3, p<0.0001). Post-hoc testsχ2

using Bonferroni adjustment confirmed that 60.8% of the pairwise site comparisons had

significantly different OMOP2OBO coverage (ps<0.001). The OMOP2OBO concept count by

OBO Foundry ontology, data wave, and coverage type are shown in Supplementary Figure 8.

Error Analysis

Results for the 20,893 concepts missing from OMOP2OBO are visualized in Figure 6f. Roughly

0.1% (n=13) of concepts were accounted for using a newer version of the OMOP CDM and

occurred in an average of 3.2 sites with a mean frequency of 9,836.3 (max=221,229.7). 0.8%

(n=158) of concepts purposefully excluded from the OMOP2OBO mapping set (i.e., no clear

pathological or biological origin) occurred in an average of 5.2 sites with a mean frequency of

282,115.3 (max=14,317,951.9). The remaining concepts (99.2%; n=20,722) were truly missing
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and occurred in an average of 2.8 sites with a mean frequency of 218,874.1

(max=1,219,846,862). The top-five most frequently occurring missing concepts were (reported

as the average frequency across the 18 sites and number of sites with that concept): (1) Pulse

intensity of Unspecified artery palpation (LOINC:44974-4; n=1,219,846,862; one site); (2)

Penicillin G potassium [Mass] of Dose (LOINC:4380-2; n=253,609,945; one site); (3) Sodium

[Moles/volume] in Saliva (oral fluid) (LOINC:56979-8; n=246,641,211; one site); (4)

Cotinine/Creatinine [Mass Ratio] in Urine (LOINC:44311-9; n=246,063,202; one site); and (5)

Chloride [Moles/volume] in Saliva (oral fluid) (LOINC:2074-3; n=234,931,483; one site). Domain

expert review of these concepts confirmed that they were likely missing due to inconsistencies

in hospital use of LOINC, a finding that’s been observed in literature.74 Comparable concepts in

OMOP2OBO were identified.

Clinical Utility

The goal of this evaluation was to examine the clinical utility of the OMOP2OBO mappings

when used to identify undiagnosed rare disease patients using data from the All of Us Research

Program (AoU).75 OMOP2OBO mappings that aligned HPO concepts to OMOP condition

concepts were compared to Phecode mappings that aligned HPO concepts to International

Classification of Diseases [ICD] codes.38 We assessed the 73 American College of Medical

Genetics and Genomics (ACMG) secondary finding genes (ACMG-73),76 which contain

pathogenic variants found to be causative for at least 35 genetic diseases and 2,257 HPO

concepts. When querying AoU patients, the Phecode mappings (n=7,815 ICD codes) took ~30

minutes to complete and returned 201,423 patients and the OMOP2OBO mappings (n=3,783

OMOP concepts) took ~10 minutes to complete and returned 198,815 patients. 198,391

patients were found in common, 3,032 patients were only identified by the Phecode mappings,

and 424 patients were only identified by the OMOP2OBO mappings. Phenotype Risk Scores

(PheRS),77 which identify patients with clinical features similar to ACMG-73-related genetic
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diseases, were highly correlated for both mappings (r2>0.6 across all diseases). As validation,

PheRS of cases (n=504) identified by the OMOP2OBO mappings were compared with controls

(n=68,234) for 10 gene-disease pairs, in which the diseases had related diagnosis codes of high

positive predictive values. Cases were found to be significantly different than controls for all

gene-disease pairs (ps<0.001; Figure 7). These results demonstrate that the OMOP2OBO

mappings can aid in the systematic identification of undiagnosed rare disease patients who

might benefit from genetic testing.

DISCUSSION

Precise phenotyping is viewed as one of the biggest barriers to a deeper understanding of the

genetic and mechanistic basis of human disease.13 EHR-based deep phenotyping has great

potential to advance precision medicine.7,8 Despite significant progress, this promise remains

largely aspirational.6,9–12 We developed OMOP2OBO to map standard vocabularies in the

OMOP CDM to OBO Foundry ontologies and created mappings for 92,367 condition, 8,615

drug ingredient, and 10,673 measurement result concepts. To the best of our knowledge, the

OMOP2OBO mappings are the largest and most comprehensive set of publicly available

mappings between clinical vocabularies and OBO Foundry ontologies.

Our work differs from existing work, which has largely focused on using ontologies to

improve phenotyping in specific diseases (e.g., infectious disease,54 rare diseases,55,56 and

cancer57) and for the investigation of specific biological (e.g., glycobiology58) and clinical

domains (e.g., laboratory test results44 and medical diagnoses59,60). Our work is most similar to

LOINC2HPO,44 which we have included and expanded in our current mapping set. OMOP2OBO

complements existing phenotyping efforts like the Electronic Medical Records and Genomics

(eMERGE) Network78 and the AoU Research Program,75 by providing access to resources not

currently available in EHRs and opportunities to improve the semantic interoperability of

definitions through alignment to the OBO Foundry ontologies. One potential use of OMOP2OBO
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Figure 7: Phenotype Risk Scores by Disease and Mapping Set for Cases and Controls.
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is to aid in the alignment of patient data to ontologies in the Global Alliance for Genomics and

Health’s Phenopacket schema,79 which was designed to support the global exchange of

computable patient-level phenotypic information.

Several recent publications have demonstrated the value of the OMOP2OBO mappings.

The OMOP2OBO mappings have been used to characterize differences in definitions of long

COVID,80 generate long COVID phenotypes,81,82 and to improve the categorization and

prediction of psychiatric diseases among patients with long COVID.83 Additionally, our recent

work in pediatric rare disease subphenotyping demonstrated that patient representations

constructed from the OMOP2OBO mappings produced more clinically meaningful clusters than

representations built using OMOP concepts alone.84 We further demonstrated the value of the

mappings by leveraging them to successfully integrate external gene expression data from an

independent sample of pediatric patients resulting in more clinically-meaningful and

biologically-actionable phenotypes than those generated using only clinical data.

In this work, we examined whether the OMOP2OBO mappings could identify

undiagnosed rare disease patients, a problem which has been frequently identified in the

literature.85–87 The PheRS, when used with Phecodes,88 has shown great promise when used to

identify underdiagnosed rare disease patients using only EHR data.38,77 Using AoU data and the

ACMG-73 gene list, we demonstrated that queries using the OMOP2OBO mappings identified

98.5% of the patients identified by the Phecode mappings using fewer codes. Additionally, the

PheRS results demonstrated that the OMOP2OBO mappings were highly correlated to each

genetic disease and performed comparably with the Phecode mappings, the current

state-of-the-art for this task.38 Our applied example of using deep phenotyping to identify

undiagnosed rare diseases validates the clinical utility of OMOP2OBO and demonstrates the

tremendous promise of the mappings. Further application of OMOP2OBO is needed to help

elucidate its full potential.
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Limitations and Future Work

OMOP2OBO has not been optimized for performance; all possible ancestors are mapped when

unable to generate a mapping at the concept-level. A prioritization strategy would significantly

improve performance. OMOP2OBO does not take advantage of all of the knowledge available

in the UMLS. Leveraging information in the mapping and hierarchy tables could improve the

automatically map concepts and would enable use of other UMLS-aligned resources like

SemMedDB.89 We only evaluated the accuracy of a small subset of the manual mappings. It is

important to evaluate the remaining manually derived mappings as well as update all of the

mappings with citations from the resources that they were derived from. Similarly, it is important

to evaluate the automatically derived mappings as their accuracy depends upon the quality of

the resources from which they were built and ontologies are subject to a variety of errors.90–92

The Accuracy evaluation revealed limitations of our expert review procedures; some of the

experts experienced challenges when trying to use the OBO ontologies, which may have

negatively impacted the results. Future evaluations will provide better training and outcomes

other than correct/incorrect will be considered. OMOP standard clinical vocabularies are also

dependent upon a large set of CDM-specific mappings and may be subject to similar errors as

our mappings. In the future, we need to evaluate the logical consistency of the mappings and

output them using Semantic Web standards like RDF/XML and the Simple Standard for Sharing

Ontological Mappings or SSSOM.93

METHODS

OMOP2OBO is open source (https://github.com/callahantiff/OMOP2OBO), available on PyPI

(https://pypi.org/project/omop2obo/), and includes an interactive dashboard that summarizes the

current mapping set (http://tiffanycallahan.com/OMOP2OBO_Dashboard/). We also created a

dedicated Zenodo Community, which provides access to data, mappings, and presentations

(https://zenodo.org/communities/omop2obo). A list of the acronyms used in this paper are
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provided in Supplementary Table 1 and the resources used by OMOP2OBO are described in

Supplementary Table 2.

OMOP2OBO Framework

Mapping Resources

The National Library of Medicine's UMLS71 MRCONSO and MRSTY tables (2020AA version94)

were used to annotate each OMOP concept with a UMLS CUI and a Semantic Type.72

Overview

The OMOP2OBO framework (Figure 1) consists of five components:

1. Process OMOP Data. The framework takes as input a table of OMOP concepts including

concept identifiers, codes, labels, synonyms, and concept ancestors.

2. Process OBO Foundry Ontologies. Using OWLTools (April 06, 2020 release),95 one or

more OBO Foundry ontologies are downloaded and current classes, dbXRefs, labels, and

synonyms are extracted.

3. Map OMOP Standard Vocabulary Concepts to OBO Foundry Ontology Concepts.

This step consists of two tasks: (1) Concept Alignment: exact-string matches between

OMOP and OBO Foundry ontology concept labels, definitions, and synonyms are

obtained. Prior to alignment, the label and synonym fields are both made lowercase. This

step also obtains exact matches between OMOP standard concepts and source codes to

OBO Foundry ontology dbXRefs. To increase the likelihood of finding a match, the OMOP

standard concepts and source codes are first merged with terminologies in the UMLS

using core functionality from OHDSI Ananke,96 a program developed to align OMOP

concepts to UMLS CUIs. Prior to performing this alignment, the OMOP standard concepts

and source codes and the OBO Foundry ontology dbXRefs are normalized using a custom

dictionary (source_code_vocab_map.csv97). This resource ensures that concepts

referenced by the same code using different prefixes or symbols can be aligned (e.g.,
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SNOMED:1234567 and snomed_1234567). If a mapping at the concept-level cannot be

found, mappings to the concept’s ancestor are attempted and (2) Concept Embedding:

using scikit-learn,98 a bag-of-words99 vector space model with term-frequency

inverse-document frequency100 and L2 normalization is used to learn embeddings from

labels and synonyms for all OMOP and OBO Foundry ontology concepts and concept

ancestors. Prior to building the model, all text fields are made lowercase, stop words are

removed using the wordnet list from Python’s NLTK library,101 white spaces are removed,

and word-level tokenization and lemmatization are applied. Next, cosine similarity is used

to compute scores between all pairwise combinations of OMOP and OBO Foundry

ontology concepts and ancestor concepts. To improve the efficiency of this process, only

the top 75% of pairs with scores >=0.25 are output, which was decided after visualizing

the score distribution using a histogram. All thresholds and cut-offs are customizable. All

OMOP concepts unable to be automatically mapped will require manual curation.

4. Synthesize and Process Mapping Results. Each mapping includes a category and

human-readable evidence. The mapping category is constructed by combining the

following elements: (1) the approach used to create it (i.e., “automatic”, “manual”, or

“cosine similarity”), (2) cardinality (i.e., one-to-one or one-to-many), and (3) level (i.e.,

concept or ancestor). Mapping evidence consists of pipe-delimited free-text phrases that

explain what fields were used to construct the mapping. Supplementary Table 5 provides

additional details on and examples of the mapping categories.

5. Output Mappings. Mappings can be output in a variety of file types, like flat file, database

dump, or RDF/XML file.

OMOP2OBO Mappings

Figure 2 includes example mappings and illustrates how the OBO Foundry ontologies were

used to map OMOP concepts from each clinical domain. Supplementary Table 5 provides
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additional details on and examples of the mapping categories.

Mapping Data

OMOP Data

OMOP concepts were extracted from a de-identified copy of the Children's Hospital Colorado

pediatric OMOP database stored within University of Colorado Anschutz Medical Campus

Health Data Compass infrastructure (created in October 2018).102 The data conformed to the

structure defined by the National Pediatric Learning Health System (PEDSnet) OMOP CDM,

which is an adaptation of the OMOP CDM version 5.0.39,68 Use of these data was approved by

the Colorado Multiple Institutional Review Board (#15-0445).

Concept lists were derived from standard OMOP vocabularies (i.e., SNOMED-CT69

[v20180131], RxNorm70 [v20180507], and LOINC45 [v2.64]) from the Condition Occurrence,

Drug Exposure, and Measurement tables. There is one exception, one frequently used

measurement concept was from a local pediatric-specific source vocabulary. Two waves of data

were utilized: (1) all concepts associated with at least one patient and visit occurrence in the

PEDSnet OMOP database (i.e., -- Standard Concepts Used in Practice); and (2) all standard

OMOP concepts not used in clinical practice (i.e., Standard Concepts Not Used in Practice). For

each concept set, additional metadata were extracted from the OMOP CDM including concept

codes (i.e., codes from each standard vocabulary), labels, synonyms, and ancestor concepts

(codes, labels, and synonyms were also extracted for each concept ancestor). Additional

information for each concept set is available on the project’s GitHub Wiki

(https://github.com/callahantiff/OMOP2OBO/wiki). The OMOP CDM is built on an extensive set

of mappings between source codes, standard concepts, and source codes and standard

concepts. While we leverage these mappings when building ours (i.e., leveraging source codes

mapped to standard concepts), we do not verify their quality.
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Data Preprocessing

No preprocessing was required for concepts from the Condition Occurrence table. Concepts

from the Drug Exposure table were extracted at the ingredient-level. For concepts from the

Measurement table, a scale and result type were created. The scale (i.e., ordinal, nominal,

quantitative, qualitative, narrative, doc, and panel) of each measurement was identified from the

OMOP CDM or by parsing the concept synonym field. For all Standard Concepts Used in

Practice, reference ranges were used to determine the result type; concepts with numeric

reference ranges were typed as “Normal/Low/High” and concepts with reference ranges that

included “positive” or “negative” were typed as “Positive/Negative”. Standard Concepts Not

Used in Practice with an ordinal scale or with synonyms that contained the words “presence” or

“screen” were typed as “Positive/Negative”. Concepts with a quantitative scale were typed as

“Normal/Low/High”. All other scale types were typed as “Unknown Result Type”. While it is

possible to infer the result type from the scale type (e.g., all concepts with a quantitative scale

have result type “Normal/Low/High” and all concepts with an ordinal scale have result type

“Positive/Negative”), our approach was developed to maximize the inclusion of concepts from all

scale types.

OBO Foundry Ontologies

OBO Foundry ontologies were selected under the advice of several clinicians, molecular

biologists, and professional OBO Foundry biocurators to cover the following domains: diseases

(Mondo48 [v2020-09-14]), phenotypes (HPO46 [v2020-08-11]), anatomical entities (CL63

[v2020-05-21], Uberon62 [v2020-06-30]), organisms (NCBITaxon64 [v2020-04-18]), chemicals

(ChEBI65 [v191]), vaccines (VO66 [v1.1.102]), and proteins (PRO67 [v61.0]). Similar to the clinical

concepts, each ontology was queried to obtain labels, definitions, synonyms (including synonym

type), and dbXRefs. All OBO Foundry ontologies were downloaded in September 2020 using

OWLTools (April 06, 2020 release).95 Similar to the OMOP CDM, the OBO Foundry ontologies
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contain automatically and manually-derived mappings. While we leverage these mappings when

building ours (i.e., dbXRefs mapped to ontology concepts), we do not perform any verification of

their quality.

Mapping Constraints

Some additional constraints were applied to Condition Occurrence and Measurement concepts

in order to ensure the mapping process was reproducible and as a means to prioritize concepts

requiring manual mapping.

Conditions

For Standard Concepts used in Practice, UMLS Semantic Types were used to identify all

concepts that had a clear pathological or biological origin. All remaining concepts (e.g.,

accidents, injuries, external complications, and findings without clear interpretations) were

marked as unmapped and the reason for exclusion was provided in the evidence field. The

Semantic Types were also used to group OMOP concepts such that those typed as “Findings”

or “Signs and Symptoms” were treated as phenotypes and only mapped to HPO and concepts

typed as “Disease or Syndrome” were only mapped to Mondo. For Standard Concepts Not

Used in Clinical Practice, all possible automatic mappings were obtained and concepts which

were unable to be mapped automatically were marked as unmapped and “NOT YET MAPPED”

was provided as the mapping evidence. This same approach was applied to drug ingredients.

Measurements

Mappings were created for each result type using the procedures defined by LOINC2HPO44;

results were annotated with respect to their result type: Concepts with result type

“Normal/Low/High”. For example, Corticotropin [Mass/volume] in Plasma --4th specimen post

XXX challenge (LOINC:12460-2). Results above the reference range are mapped to Increased

circulating ACTH level (HP:0003154). Results below the reference range are mapped to

Decreased circulating ACTH level (HP:0002920). Results within the reference are mapped to
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Abnormality of circulating adrenocorticotropin level and logically negated (NOT HP:0011043).

Concepts with result type “Positive/Negative”. For example, Amphetamine [Presence] in

Urine by Screen Method (LOINC:19343-3). Positive results are mapped to Positive urine

amphetamine test (HP:0500112). Negative results are mapped to Positive urine amphetamine

test and logically negated (NOT HP:0500112). Also consistent with the procedures adopted by

LOINC2HPO, all concepts lacking sufficient detail (i.e., non-specific body substances) were

marked as unmapped and “Unspecified Sample” was provided as the mapping evidence.

LOINC2HPO Extensions

The initial set of measurement concepts was supplemented with the latest LOINC2HPO

annotations,44 which was downloaded on 08/02/2020 from the LOINC2HPO annotation Github

repository.103 OMOP2OBO expands the LOINC2HPO mappings by including the measurement

substance (i.e., body fluids, tissues, and organs via Uberon), the entity being measured (i.e.,

chemicals, metabolites, or hormones via ChEBI; cell types via CL; and proteins via PRO), and

the species of the measured entity (i.e., organism taxonomy via NCBITaxon). All modifications to

the original LOINC2HPO annotations were recorded in the mapping evidence field, enabling

users to easily identify when an original LOINC2HPO annotation had been updated.

Mapping Evaluation

The accuracy, generalizability, and clinical utility of mappings were evaluated.

Accuracy

For conditions and drug ingredients, 20% of the manual one-to-many mappings (n=2,000

conditions; n=16 drug ingredients) were manually verified by a practicing resident physician and

clinical pharmacist, respectively. Only mappings to Standard Concepts Used in Practice were

evaluated. Measurement mappings to HPO were evaluated in two ways: (1) Survey. A subset of

the mappings (n=270) were independently validated by five domain experts including three

practicing pediatric clinicians, a PhD-level molecular biologist, and a master’s-level
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epidemiologist using a Qualtrics Survey.104 Any mapping that did not meet agreement by at least

one clinician and both the biologist and the epidemiologist were re-evaluated by the most senior

clinician. These mappings were also vetted on the LOINC2HPO GitHub tracker105 by members

of the biocuration team. (2) Biocurator Validation. A random subset of 1,350 measurement

results were manually verified by an OBO Foundry biocurator. Additional details are provided on

the project’s GitHub Wiki (https://github.com/callahantiff/OMOP2OBO/wiki/Accuracy).

Generalizability

The generalizability of the OMOP2OBO mappings (only mappings to Standard Concepts Used

in Practice) were examined using data from the OHDSI Concept Prevalence Study.73 The

Concept Prevalence study was designed to provide researchers with additional context

regarding the frequency at which different OMOP concepts are used in clinical practice across

the OHDSI network. In addition to the Concept Prevalence Study sites (n=22), data were

obtained from two independent academic medical centers, bringing the total number of sites to

24. Consistent with the Concept Prevalence Study procedures, all concepts occurring fewer

than 10 times were removed and all remaining concepts occurring fewer than 100 times were

assigned a count of 100. The OMOP2OBO mappings were filtered to remove all concepts

without at least one ontology mapping.

Coverage of all standard OMOP concepts in the OMOP2OBO mapping set was

assessed by identifying: (1) concepts that existed in the OMOP2OBO set and in at least one

Concept Prevalence Study site (i.e., Overlap); (2) concepts only present in the OMOP2OBO set

(i.e., OMOP2OBO Only); and (3) concepts only present in the Concept Prevalence Study set

(i.e., Concept Prevalence Only). An error analysis was performed to examine the Concept

Prevalence Only concept set. Three scenarios were examined: (i) CDM Versioning: concepts

that could be recovered using a newer version of the OMOP CDM (v5.3.1; 02/25/2022); (ii)

Excluded Concepts: concepts without clear pathological or biological origin that were
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purposefully excluded from the OMOP2OBO mapping set; and (iii) Truly Missing: concepts that

could not be accounted for using the prior two scenarios. For all scenarios, concept frequency

within the Concept Prevalence Study sites was used as a measure of concept importance.

Findings from each scenario were reviewed by a practicing resident physician and a clinical

pharmacist. Detailed procedures and timelines are provided on GitHub

(https://github.com/callahantiff/OMOP2OBO/wiki/Generalizability).

Clinical Utility

The PheRS77 can be used to identify patients who are clinically similar to Online Mendelian

Inheritance in Man (OMIM)106 Mendelian profiles but lack formal diagnosis and has

demonstrated utility for identifying underdiagnosed rare disease patients using only EHR

data.38,77 We examined whether OMOP2OBO mappings could be used to help identify

undiagnosed rare disease patients who lacked relevant diagnosis codes in their clinical records.

For this evaluation, ACMG-73 genes (v3.0), which have specific mutations known to cause

disorders, have well-defined phenotypes, and are clinically actionable, were used to generate a

list of Mendelian diseases.76 The OMIM106 database was used to identify the Mendelian

diseases associated with each gene, which resulted in 35 genetic diseases. Aligning the genes

to phenotypes, using the HPO gene annotation table,107 produced a list of 2,257 HPO concepts.

To calculate the phenotypic burden of each genetic disease, OMOP concepts from the

OMOP2OBO HPO mappings (v2.0.0 beta) and ICD concepts from the Phecode HPO to ICD

mappings38 were queried against AoU data75 (v6; n=230,000 patients). PheRS for each gene

were then calculated for patients from each the OMOP2OBO and Phecode mapping sets. As a

validation, 10 gene-disease pairs, for which diagnosis codes were available and showed good

prediction were examined: (i) NF2 with neurofibromatosis; (ii) SDHAF2, SDHB, and SDHC with

paragangliomas; (iii) MEN1 and RET with multiple endocrine neoplasia; (iv) TSC1 and TSC2

with tuberous sclerosis complex; and (v) FBN1 and TGFBR1 with Marfan Syndrome. For each
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gene, a one-sided Wilcoxon rank sum test was performed in order to determine if PheRS were

significantly higher for cases than controls. Cases were defined as patients with at least two

occurrences of a relevant diagnosis code and control patients had no instances of these codes.

Cases and controls were matched on age, sex, and length of EHR record. Results were verified

by a PhD-level Epidemiologist specializing in genetics (CZ).

Technical Specifications

OMOP2OBO was developed using Python 3.6.2 on a single machine with 8 cores and 16GB of

RAM. All code and project information are publicly available and detailed on GitHub

(https://github.com/callahantiff/OMOP2OBO). The OMOP2OBO (v1.0) mappings are publicly

available from Zenodo.108–110 The OMOP2OBO Mapping Dashboard was built with R (v4.2.1)

using Rmarkdown (v2.14) and flexdashboard (v0.5.2).

Descriptive and inferential statistics were performed to evaluate the data available for

mapping and the OMOP2OBO mapping set. Chi-square tests of independence with Yate's

correction were used to: (1) assess differences in the proportions of metadata available from

each OBO Foundry ontology; and (2) assess differences in the proportions of mapped concepts

between OHDSI Concept Prevalence sites. Post-hoc tests using Bonferroni adjustment to

correct for multiple comparisons were performed for significant omnibus tests. Analyses were

performed in Jupyter Notebooks (v6.1.6) using the scipy (v1.4.1), statsmodels (v0.12.1),

statistics (v1.0.3.5), and numpy (v.1.18.1) libraries. Visualizations were created using matplotlib

(v.3.3.2). The Clinical Utility evaluation was performed in the AoU Researcher Workbench111

using R (v4.1.2) and Python (v3.7). Analyses were performed on a machine with 16 CPUs and

60GB of memory.
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DATA AVAILABILITY

Supplementary Table 2 provides a complete list of the resources used in this project. OMOP

concepts are available for download through Athena (https://athena.ohdsi.org/). The MRCONSO

and MRSTY tables (2020AA) are available through the UMLS

(https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html).

The OBO Foundry ontologies are publicly available (https://obofoundry.org/). The OMOP2OBO

v1.0 mappings can be downloaded from Zenodo: Condition Occurrence

(https://doi.org/10.5281/zenodo.6774363); Drug Exposure Ingredients

(https://doi.org/10.5281/zenodo.6774401); and Measurements

(https://doi.org/10.5281/zenodo.6774443).

CODE AVAILABILITY

The OMOP2OBO is available through GitHub (https://github.com/callahantiff/OMOP2OBO) and

PyPI (https://pypi.org/project/omop2obo/).
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FIGURE LEGENDS

Figure 1: Overview of the OMOP2OBO Framework.
The OMOP2OBO framework112 consists of five steps: (1) Query OMOP CDM. This step
processes a table of OMOP concepts including identifiers, source codes, labels, synonyms, and
concept ancestors. (2) Process OBO Foundry Ontologies. During this step, one or more OBO
Foundry ontologies are downloaded and current classes, database cross-references, labels,
and synonyms are extracted. (3) Map OMOP Standard Vocabulary Concepts to OBO
Foundry Ontology Concepts. This step obtains three types of mappings and relies on publicly
available resources like the UMLS Metathesaurus94. First, exact-string matches between OMOP
and OBO Foundry ontology concept labels, definitions, and synonyms are obtained. Exact
matches between OMOP standard concepts and source codes and OBO Foundry ontology
database cross-references are also obtained. Then, a scoring metric is applied to embeddings
learned from concept labels and synonyms. Manual mappings are accepted for all concepts
unable to be automatically mapped. (4) Synthesize and Process Mapping Results. This steps
generates a category (i.e., string constructed by combining: (i) the approach used to create it
(i.e., “automatic”, “manual”, “cosine similarity”, or “unmapped”), (ii) cardinality (i.e., one-to-one or
one-to-many), and (iii) level (i.e., concept or ancestor) and evidence (i.e., pipe-delimited
free-text phrases that explain what fields were used to construct the mapping) for each
mapping. (5) Output Mappings. Mappings are output as a flat-file, SQL database dump, or an
RDF/XML file. Acronyms: OBO (Open Biological and Biomedical Ontology); OHDSI
(Observational Health Data Sciences and Informatics); OMOP (Observational Medical
Outcomes Partnership); UMLS (Unified Medical Language System).

Figure 2: OMOP2OBO mapping examples by OMOP clinical domain.
This figure illustrates which OBO Foundry ontologies were used for each OMOP clinical domain
and provides example mappings. (A) OMOP conditions are mapped to HPO and Mondo. (B)
OMOP drug ingredients are mapped to ChEBI, NCBITaxon, PRO, and VO. (C) OMOP
measurements are mapped to ChEBI, CL, HPO, NCBITaxon, PRO, and Uberon. Acronyms:
OMOP (Observational Medical Outcomes Partnership); UMLS (Unified Medical Language
System); OBO (Open Biological and Biomedical Ontology); HP (Human Phenotype Ontology);
MONDO (Monarch Disease Ontology); CHEBI (Chemical Entities of Biological Interest);
NCBITaxon (National Center for Biotechnology Information Taxon Ontology); PR (Protein
Ontology); VO (Vaccine Ontology); UBERON (Uber-Anatomy Ontology); CL (Cell Ontology).

Figure 3: Condition Concept Frequency by Mapping Category and Ontology.
This figure presents the distributions of the frequency of OMOP standard condition concepts
used at least once in clinical practice by mapping category and OBO Foundry ontology.
Acronyms: HPO (Human Phenotype Ontology); Mondo (Monarch Disease Ontology); OBO
(Open Biological and Biomedical Ontology); OMOP (Observational Medical Outcomes
Partnership).

Figure 4: Drug Ingredient Concept Frequency by Mapping Category and Ontology.
This figure presents the distributions of the frequency of OMOP drug exposure ingredient
concepts used at least once in clinical practice by mapping category and OBO Foundry
ontology. Acronyms: ChEBI (Chemical Entities of Biological Interest); NCBITaxon (National
Center for Biotechnology Information Taxon Ontology); PRO (Protein Ontology); VO (Vaccine
Ontology); OBO (Open Biological and Biomedical Ontology); OMOP (Observational Medical
Outcomes Partnership).
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Figure 5: Measurement Concept Frequency by Mapping Category and Ontology.
This figure presents the distributions of the frequency of OMOP measurement concepts used at
least once in clinical practice by mapping category and OBO Foundry ontology. Acronyms: HPO
(Human Phenotype Ontology); Uberon (Uber-Anatomy Ontology); NCBITaxon (National Center
for Biotechnology Information Taxon Ontology); PRO (Protein Ontology); ChEBI (Chemical
Entities of Biological Interest); CL (Cell Ontology); OBO (Open Biological and Biomedical
Ontology); OMOP (Observational Medical Outcomes Partnership).

Figure 6: OMOP2OBO - Concept Prevalence Coverage.
This figure presents the coverage of the OMOP2OBO mappings using Concept Prevalence
Study data. Please note that the Y axes vary in scale. These kernel density estimation plots
were created for condition concepts (A and B), drug ingredients (C and D), and measurement
(E and F) results, where the distribution of the Overlap (OMOP concepts that exist in
OMOP2OBO only sets and one or more Concept Prevalence sites), Concept Prevalence only
and OMOP2OBO sets are shown on the left, for, respectively from top to bottom, (A) condition
concepts, (C) drug ingredients, and (E) measurement results. On the right, the Error Analysis
Concepts (concepts that can be accounted for in a newer OMOP CDM version), Excluded Set
(purposefully or not yet mapped concepts), and Truly Missing (the concept’s missingness
cannot easily be accounted for). These distributions were created for (B) condition concepts, (D)
drug ingredients, and (F) measurement results.

Figure 7: Phenotype Risk Scores by Disease and Mapping Set for Cases and Controls.
Boxplots of Phenotype Risk Score cases and controls for 10 gene-disease pairs in which the
diseases had related diagnosis codes of high positive predictive values in the AllofUs (AoU)
data (ps <0.001). The 10 gene-disease pairs were: (i) NF2 with neurofibromatosis; (ii) succinate
dehydrogenase genes (i.e., SDHAF2, SDHB, and SDHC) with paragangliomas; (iii) MEN1 and
RET with multiple endocrine neoplasia; (iv) TSC1 and TSC2 with tuberous sclerosis complex;
and (v) FBN1 and TGFBR1 with Marfan Syndrome.
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Table 1: OMOP Condition Concept Mapping Results by OMOP2OBO mapping method.

Ontology HPO Mondo

Used in > 1 Clinical Encounter Yes No Yes No

OMOP Concepts 24459 48959 20055 43320

Mapped Ontology Concepts 41384 183667 57848 396234

Mapping Category

Automatic

One-to-One
Concept 3601 1166 4836 4261

Ancestor 3155 10440 5961 2949

One-to-Many
Concept 125 25 632 253

Ancestor 1138 36947 4482 35743

Cosine Similarity One-to-One Concept 995 380 553 114

Manual
One-to-One

Concept
5020 0 755 0

One-to-Many 10425 0 2836 0

Unmapped

aNone 50 20771 84 5118

Injury 3323 10730 3323 10726

Carrier Status 23 0 22 103

Complication 906 128 906 103

Finding 368 3 4739 21323

Mapping Evidence

Database Cross-References 38473 279236 52430 339210

Synonyms 10169 42191 67381 85132

Labels 19343 97920 75795 113565

Similarity 11975 15825 12789 114
aThe unmapped “None” category for data used in one or more clinical encounters includes concepts that have not yet
been mapped. When applied to data not used in a clinical encounter, “None” indicates concepts that were unable to
be mapped to an Open Biological and Biomedical Ontology Foundry ontology concept.
Acronyms: HPO (Human Phenotype); Mondo (Mondo Disease Ontology).
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Table 2: OMOP Drug Ingredient Concept Mapping Results by OMOP2OBO mapping method.

Ontology ChEBI PRO VO NCBITaxon

Used in > 1 Clinical Encounter Yes No Yes No Yes No Yes No

OMOP Concepts 1697 2718 245 72 125 36 463 4256

Mapped Ontology Concepts 2555 3307 270 73 131 36 485 4258

Mapping Category

Automatic

One-to-One
Concept 959 2192 7 42 92 18 20 135

Ancestor 17 130 5 19 0 0 22 14

One-to-Many
Concept 235 169 0 1 0 0 0 1

Ancestor 61 149 3 0 2 4 2 1

Cosine
Similarity One-to-One Concept 318 78 214 10 24 14 271 4105

Manual
One-to-One

Concept
31 0 9 0 5 0 136 0

Constructor 76 0 7 0 2 0 12 0

Unmapped

aNone 0 7392 1425 10038 1572 10074 1234 5584

Mapping Evidence

Database Cross-References 957 759 0 0 0 0 0 0

Synonyms 4567 7732 26 94 92 18 59 199

Labels 5578 9676 25 132 282 97 71 391

Similarity 1352 2562 16 54 100 32 160 4241

aThe unmapped “None” category for data used in one or more clinical encounters includes concepts that have not yet
been mapped. When applied to data not used in a clinical encounter, “None” indicates concepts that were unable to
be mapped to an Open Biological and Biomedical Ontology Foundry ontology concept.
Acronyms: ChEBI (Chemical Entities of Biological Interest); PRO (Protein Ontology); and VO (Vaccine Ontology);
NCBITaxon (National Center for Biotechnology Information Taxon Ontology).
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Table 3: OMOP Measurement Concept Mapping Results by OMOP2OBO mapping method.

Ontology HPO Uberon NCBITaxon PRO ChEBI CL

Used in > 1 Clinical Encounter Yes No Yes No Yes No Yes No Yes No Yes No

OMOP Concepts 1437 2462 1437 2462 910 1788 567 1237 1226 2327 225 152

Test Results 4087 6801 4087 6801 2572 4888 1572 3283 3487 6415 616 429

Mapped Ontology Concepts 4136 6813 5336 8869 2601 6362 1762 3493 3914 8301 707 474

Mapping Category

Automatic

One-to-One
Concept 17 3 1793 3589 320 444 44 12 263 400 182 186

Ancestor 23 20 592 593 184 360 15 6 1382 1912 14 0

One-to-Many
Concept 0 0 10 0 0 0 0 0 0 0 46 24

Ancestor 0 0 2 0 0 0 0 0 21 0 3 0

Cosine
Similarity One-to-One Concept 108 5 50 92 44 114 4103 29 102 362 85 20

Manual
One-to-One 3902 6761 406 462 2019 3516 1261 3047 1369 2376 256 178

One-to-Many 37 12 1234 2065 5 454 149 189 350 1365 30 21

Unmapped

aNone 95 16 95 16 1610 1914 2610 3519 695 387 3566 6734

Other 74 14 74 14 74 14 74 14 74 14 74 14

Mapping Evidence

Database Cross-References 7 0 6 26 0 0 0 0 409 960 261 145

Synonyms 12 4 5232 8308 465 1627 73 24 2824 6348 486 413

Labels 28 24 1637 1242 310 467 35 14 3035 5797 296 226

Cosine Similarity 234 128 699 553 487 844 165 61 1485 2092 296 232

aThe unmapped “None” category for data used in one or more clinical encounters includes concepts that have not yet
been mapped. When applied to data not used in a clinical encounter, “None” indicates concepts that were unable to
be mapped to an Open Biological and Biomedical Ontology Foundry ontology concept.
Acronyms: HPO (Human Phenotype Ontology); Uberon (Uber-Anatomy Ontology); NCBITaxon (National Center for
Biotechnology Information Taxon Ontology); PRO (Protein Ontology); ChEBI (Chemical Entities of Biological Interest);
CL (Cell Ontology).
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