
SAFETY & SECURITY MONITORING CONVERGENCE
AT THE DAWN OF OPEN HARDWARE

Sylvain Girbal, Jimmy Le Rhun, Daniel Gracia Pérez, David Faura
Thales Research & Technology, Palaiseau, France

{sylvain.girbal, jimmy.lerhun, daniel.gracia-perez, david.faura}@thalesgroup.com

Abstract—The emergence of multi-core processors into the
embedded world one decade ago led to the IT/OT convergence.
In the last few years, a second convergence is ongoing in the
domains of safety-critical and security-critical systems. Nowadays
both safety protection systems and security protection systems are
relying on monitoring to ensure the expected critical software
behaviour. However, all these systems incur a performance
overhead to fulfill the service, that could be an issue with time-
critical systems.

The safety monitoring process that was mostly involved at
design time, focusing both on the software and the hardware to
ensure hard real-time behaviour and propose some mitigation
to faults and errors, is now also targeting the integration and
deployment phases with adaptive runtime engines to deal with
the timing interference issue of multi-core architectures.

The security monitoring process that was mostly used to focus
on protecting against software vulnerabilities at runtime now has
to consider unreliable hardware that some cyberthreats such as
Spectre and Meltdown are able to exploit.

This paper proposes a short survey of existing Heath & Usage
Monitoring Systems (HUMS) and Hardware Intrusion Detection
Systems (HIDS) in safety-critical and security-critical systems,
and their associated monitoring features.

We then promote the benefits of communalizing these moni-
toring features to reduce the performance impact of HUMS and
HIDS systems. In this context, open hardware architectures are
a major opportunity, allowing us to analyze the hardware design
without black box, to seek formal proof of critical properties,
to implement mechanisms for improved predictability, and to
enhance hardware-level observability.

I. INTRODUCTION

During the last decades, we observed successive conver-
gences of computing systems. It started 20 years ago with the
convergence between high-performance computing (HPC) that
focused on power efficiency, and the mobile market that was
seeking for more performance and functionalities, both were
dealing with the challenge of controlling the balance between
low power and high performance.

A decade ago, thanks to the multi-core processors, a second
convergence [35, 47, 37] started between the mission critical
market (such as avionics, automotive, healthcare and robotics)
and the mainstream consumer electronics market, also known
as the IT/OT convergence (for Information Technology and
Operative Technology). This convergence was fueled by the
increasing requirements of the mission-critical market for com-
puting performance, as well as the growing need of embedding

more critical functionalities in the mobile devices, that started
to be connected to cars or healthcare systems.

During the past years, dealing with both safety and security
has become a prime requirement for embedded cyber-physical
systems [65] leading to a third convergence. However, the
practice is different for safety and security.

The paper is organized as follows: Section I-A and Section
I-B respectively present the safety- and the security-related
practices during the system development life-cycle. Section
II presents the impact of the introduction of multi-core ar-
chitecture on these practices, and the common safety and
security trends with regard to monitoring. Section III provides
a survey of existing HUMS and HIDS systems focusing on
their monitoring features. Finally, Section IV presents our view
on the future of monitoring techniques promoting the commu-
nalization of monitoring techniques to reduce the performance
costs.

Fig. 1. Safety & Security trends with regards to monitoring

A. Safety Practices

Figure 1 present the usual V-shaped system development
life-cycle, and how safety and security integrates into this
scheme. Regulation standards [44, 45, 71] led the safety
critical industry to focus mainly on the design phases to ensure
reliability and availability by design [39], both at the software
[72] and the hardware [73] levels.

Safety critical applications are also usually characterized by
stringent real-time constraints, which are usually guaranteed
by determining the application Worst Case Execution Time
(WCET). This WCET computation usually relies on analysis
tools based on static program analysis tools [90, 70], detailed
hardware model, as well as measurement techniques through
execution or simulation [38] to provide an estimated upper



bound of the execution time, introducing some safety margins
as depicted in Figure 2.

execution time

di
st
ri
bu

ti
on measured WCET

exact WCET

estimated WCET

safety margin

over margin

Fig. 2. Estimation of the Worst-Case Execution Time, and the over-estimation
problem

The current best practices include the use of many statically
defined mechanisms, such as static scheduling of periodic
tasks, static memory allocation and mapping, as a way to
improve the ability to demonstrate a deterministic behaviour
of the system.

The introduction of multi-core architecture to safety-critical
systems as presented in Section II was shown to have a
significant negative impact on worst-case performance [11,
66], while enhancing average performance. The current trend
to deal with this problem is to add safety nets that involve both
the integration and the operational phases.

B. Security Practices

In computing systems (hardware plus software), security
has typically been provided as specialized software executed
on top of them during operation, to overcome their weaknesses,
especially software vulnerabilities and intrusion detection sys-
tems [10].

For example at the device level host intrusion detec-
tion/protection systems (HIDS/HIPS) are used as security
software applications running on the device itself, while at the
network level the network intrusion detection/protection sys-
tems (NIDS/NIPS) are used to protect the computing systems
from malicious communications.

Furthermore, external observation is nowadays not enough,
requiring the integration of security solutions to be integrated
at the application level or underlying layers, like operating
system and even hardware. Examples are control flow integrity
(CFI) [78] solutions that integrate program flow supervision to
detect the unexpected exploitation of software by attackers.

A raising trend is the exploitation of hardware vulnerabil-
ities of computing systems. Exploits such as Spectre [53] and
Meltdown [58] have demonstrated that attackers can exploit
vulnerabilities at hardware level. While software security solu-
tions at different levels (compiler, operating system, firmware,
etc.) have partially mitigated these vulnerabilities with some
performance costs, they can only be fully and efficiently
addressed at hardware level. However, the design of security
solutions at hardware level is not a simple feature, and must
be implemented with care to avoid introducing additional
vulnerabilities [36, 56, 27].

II. IMPACT OF MULTI-CORE ARCHITECTURE ON SAFE
& SECURE SYSTEMS

The recent shift from single-core COTS (component off-
the-shelf) to multi-core COTS processors for safety-critical
and security-critical products was appealing both in terms of
average performance and in terms of size, weight and power
(SWaP) [8], actually fitting with the exponential growth in
performance requirements in the embedded domain.

However, multi-core processor architectures are introduc-
ing both new sources of time variations, and new vulnerabili-
ties: multi-core architectures are characterized by the fact that
they are embedding shared hardware resource between the
cores, as depicted in Figure 3.

core L1
cache

core L1
cache

core L1
cache

core L1
cache

L
2
sh
ar
ed

ca
ch

e
L
2
sh
ar
ed

ca
ch

e

in
te
rc
o
n
n
ec
t

DDR
Memory

I/O

x

x

x

Fig. 3. Shared hardware resources & timing interference

In this figure, each core is associated with a different color,
private resources (such as L1 caches) are colored with the
same color as their cores, and shared hardware resources
are represented with a shade of the involved core colors (such
as L2 caches, the interconnect and the main memory).

On a multi-core COTS processor, different pieces of soft-
ware will be executed on different cores at the same time.
Such different software will compete electronically to use these
shared hardware resources, eventually involving hardware ar-
biters to deal with concurrent accesses, and introducing inter-
task or inter-application delay and jitter, defined as timing
interference [31].

The lack of precise documentation coupled with the black-
box aspects of these hardware arbiters impact the WCET
analysis tools, that have difficulties to deal with real industrial
programs running on multi-core COTS architectures [52, 64],
while resource over-provisioning is no longer an option. The
industry is therefore facing a trade-off between performance
and predictability [90].

The literature [32] proposes several Deterministic Platform
Solutions to tackle this problem, including control solutions
aiming at completely preventing such timing interference and
regulation solutions reducing the amount of interference below
a harmful level. However, all these techniques have to circum-
vent the black-box aspect of the COTS architecture, at the cost
of decreased performance.

On the security side, shared hardware resources are also
a source of vulnerabilities against the confidentiality and the
integrity properties, as the other cores have an opportunity to
access or alter private data of co-running applications.



Multi-core processors have also impacted the security
of the devices. The addition of new shared resources (e.g.
bus, interconnect, L3 shared caches) or new mechanisms
(or variations of existing ones) to operate in a multi-core
configuration (e.g. cache coherence protocol) have introduced
new attack possibilities. For example, the shared bus has
been exploited to perform timing covert channels [92], the
introduced cache coherence protocols have been exploited in
Meltdown and Spectre variations [85] or to perform covert
channel attacks [62], and dynamic frequency scaling of the
different cores used to perform covert channel attacks [3].

Those examples are mainly from the IT domain, but are
equally applicable to modern embedded systems with high
connectivity (e.g. edge- and fog-computing), using equally
complex computer architectures [88] and speculative processor
cores with similar vulnerabilities (e.g. ARM v8 cores subject
to Spectre attacks [7]).

Like for safety, the lack of precise documentation of those
new resources and mechanisms, or their unexpected usage (as
frequent in security exploits) make the defense against these
attacks difficult to anticipate, endangering the confidentiality
and integrity of the system and running applications.

A. Trends in Safe & Secure Systems

The introduction of multi-core architecture in safe or
secure systems already led to a couple of common solutions
like memory-space partitioning [71, 82], allowing to integrate
several applications with different safety/security requirements
in the same platform. In such a scheme, the operating system
and some hardware components (MMU, TLB) are responsible
for providing each software partition with its own protected
memory space, actually ensuring data segregation.

Multi-cores also led to some converging trends between
safety and security practice appearing in Figure 1. The timing
interference problem on time-critical systems for instance has
led to a set of control-based or regulation-based solutions [32]
that involves the integration phase or even the operational
phase with dedicated run-time engines. Health usage monitor-
ing systems (HUMS) [63] are also targeting this operational
life-cycle.

Being secure-by-design [60] has become an hot topic for
security-critical systems with a particular focus on the design
phases of the V-shaped model with approaches dedicated to
security. Also, the hardware should rather not be considered
as reliable anymore, but as a potential source for side-channel
attacks instead [62].

A common trend for both safety and security critical
systems is therefore to focus on all phases of the life-cycle
from conception to operation. Also, all these new practices
rely at different degrees on the ability to monitor the system.

III. CURRENT MONITORING IN SAFE & SECURE
SYSTEMS

This section provides a survey of emerging monitoring
techniques for safe & secure systems. Each subsection empha-
sizes a specific technique as well as the associated application
domain, and how it is integrated relatively to domain-specific
safety/security requirements.

A. Control Flow Integrity (CFI)

A classic security vulnerability consists in exploiting buffer
overflow bugs to alter the program stack and perform code-
reuse attacks [83, 42] executing malicious operations. Return
Oriented Programming [80] exploits this weakness by altering
the return address stored in the stack, hijacking the control flow
when the function returns. Jump Oriented Programming [12,
16] later extended this threat to register corruption of direct
branch targets.

Control Flow Integrity (CFI) [1, 78, 13] is a well known se-
curity approach to detects control flow hijacking, as deviation
from the expected application control flow.

At compilation time, a Control Flow Graph (CFG) is gen-
erated. Each node corresponds to an uninterruptible instruction
sequence (also called basic block) without any branch or return
instruction. Forward edges correspond to jumps and function
calls while backward edges correspond to return statements.

At runtime, to prevent control flow hijacking, we have
to ensure that all jumps and all returns correspond to a
legitimate edge of the CFG. However, it usually involves some
code instrumentation and therefore both code intrusiveness and
performance cost penalties.

1) System call instrumentation: In [49], Kadar et al.
propose the less costly alternative of instrumenting/monitoring
the system calls rather than the branches and returns, unex-
pected system call succession being also a sign of malicious
code execution. They proposed a methodology to evaluate the
system call instrumentation of the PikeOS real-time hypervisor
in terms of performance overhead.

If they were able to keep the per system-call tracing over-
head quite low with a maximum overhead of 700ns each, the
high variability in number of system calls between applications
as well as the critical impact of the number of context switches
both made the global overhead quite complex to determine, and
to be very application dependent.

Furthermore, detecting unexpected syscall succession
would require to previously learn this expected succession.
Applying machine learning techniques to this looks promising
but will lack the certificability of being able to build an exact
CFG at compile-time as required by CFI.

2) Hardware-assisted CFI: Another alternative to reduce
the CFI performance overhead is to rely on the hardware rather
than the software to perform branch trace collection. In [54],
Kuzhiyelil and al. exploit the CoreSight hardware core coupled
with hypervisor partitioning to transparently perform control
flow tracing.

The CoreSight is a hardware component in ARM-v8 sys-
tems performing real-time tracing and debugging of appli-
cations. It embeds private trace FIFO queues and dedicated
data paths ensuring an interference-less gathering of debugging
information. Among the collectible information, the CoreSight
is able to collect taken branches, thus actively monitoring the
application control flow.

As depicted in Figure 4(a), a first step at compile time
consists in generating the control flow graph in addition to
a non-instrumented binary. During runtime, as shown in 4(b),



application
sources

compiler

control
flow graph
(app.cfg)

elf
binary

(app.elf)

Monitored
Application

(app.elf)

app.cfg app.elf

CFI Checking

CFG path
reconstruction

Trace Collection

se
p
ar
a
ti
o
n
ke
rn
el

application
partition

CFI monitor
partition

Hardware

report

CoreSight trace

(a) compile time (b) runtime monitoring

Fig. 4. Transparent control flow integrity as defined in [54]

the trace of taken branches and returns is collected through the
CoreSight debug core to reconstruct the path followed in the
CFG and check and report for unexpected jumps to malicious
code sections.

This notion is then extended in [48] with a particular
focus on mixed-critical and safety-critical systems running
both critical and non-critical software. The later usually offers
a larger attack surface and fewer guarantees. A particular focus
in these systems is to ensure freedom from interference as
required by the safety standards standards [45, 44, 72] to
prevent an attack on the non-critical software from impacting
the critical software.

From the security point of view, such methods show
excellent detection results both in terms of false positive and
false negative rates. However the performance overhead of
CFI can be significant, even with a partitioned RTOS. In
[54], the authors measured a worst case overhead of up to
55% for branch-heavy applications. In [48], the compromize
between overhead and coverage of the detection system can
be configured by the monitoring partition. Setting an overhead
of 10% was shown to be sufficient to correctly classify 99%
of the samples.

B. HIDS for Avionics

Safety has for long being a prime concern in avionics,
however next generation aircraft systems aim at providing
more and more connectivity and services to the passengers.
From the security point of view, however, it continuously
increases the attack surface [69]. In such a context is critical
to protect aircraft software from malicious modifications of
the onboard applications, and airworthiness regulations have
evolved to that extent [74, 75].

The industrial process associated with avionic applications
currently involve several segregated actors. The software com-
ponents are developed by different solution providers working
under computing resource budget constraints from the platform
provider. Later these solutions are put together to build an
avionic system by the integrator. Ideally, if the budget con-
straints are respected the integration should be seamless.

Protecting the aircraft software therefore involves pro-
tecting third party blackbox software components where the
sources may not be available, with no possibility to add source
code instrumentation or analysis as required for CFI.

Host Intrusion Detection Systems (HIDS) and anomaly
detection [19, 41] have been introduced in a IT context as

a way to detect such malicious modification threats, and they
are now widely used for the security of information systems
as a mechanism to detect abnormal or suspicious activities.

Introducing HIDS to existing safety-critical avionics prod-
ucts requires to take additional domain-based constraints,
such as preserving the real-time constraints and the freedom
of interference between components from different solution
providers; keeping the footprint small, both in terms of mem-
ory footprint and resource requirement; provide explainable
and reproducible results; being efficient even on blackbox
components.

In [22], Damien and al. especially study how to bring HIDS
to Integrated Modular Avionics (IMA) systems, considering
above-mentioned specific avionics requirements. The author
proposes to observe the ARINC 653 API calls performed as
a model to the normal or altered behaviour of the application.
This could be performed from the specific avionics RTOS by
capturing both the call sequence and each call duration, but
it requires a significant amount of resources to so, especially
memory resources for the call trace.

Different strategies are studied to reduce the amount of data
being logged, including only logging memory communication
related ARINC 653 calls, or keeping only call frequency infor-
mation rather than a full trace information. Several detection
algorithms are also considered.

The results demonstrates that the solution keeping the
whole trace, and therefore with the larger memory footprint
is not the one providing the best detection results. Keeping on
the more meaningful communication-related data helps with
obtaining a more efficient classifier. Frequency information has
also shown to be an efficient way to detect malicious modifi-
cations while requiring a much smaller memory footprint.

This approach is extended in [21] with the ability to provide
a first onboard diagnosis of the anomalous behaviour, paving
the way to future reactive systems with the capacity to block
an attack. The author proposes the adjunction of an evolutive
knowledge database as depicted in Figure 5.

Fig. 5. Knowledge database of anomalous behaviour, as defined in [21]

This onboard knowledge database includes already known
anomalous or malicious behaviour including cyber-attacks or
safety-related failures, and relies on alert signatures. This
database has to be regularly updated with new signatures
during ground maintenance operations.



Within such a scheme, an anomaly is defined as an un-
known sequence of ARINC 653 API calls, or an abnormal
duration of such a call. When too many anomalies are observed
during the same time frame, an alert is raised.

The anomaly signature is then searched for a match within
the onboard knowledge database in order to identify the current
alert and to provide a feedback message usable immediately
or during later onground investigations.

The overall approach shows interesting results: In terms
of error detection, it exhibits a detection accuracy and correct
anomaly labeling of 87% after 70 samples. In terms of resource
usage, the trace monitoring caused a +2.7% on API call
runtimes and a +3.3% impact when including the early onboard
diagnosis.

C. NIDS for Safety-Critical Networks

Network Intrusion Detection Systems (NIDS) are widely
used in IT computing to analyze network communication
traffic [10], usually performing network packet inspection and
comparing them to a database of attack patterns. Such NIDS
could also be combined with neural networks to increase the
detection rate [30, 87].

Safety critical-systems usually embeds specific determinis-
tic networks such as the AFDX or the CAN bus [5, 6]. In such
a safety critical-context, the key properties is to guarantee the
deterministic behaviour of the network and maintain a high
level of integrity [84]. These mechanisms ensure a safe end-
to-end transfer of information between different subsystems,
preventing the propagation of network packet errors at runtime.

A664P7 [5] implements a network monitoring protocol,
which tracks relevant events and communication protocol
errors at the switch and end-system level. The monitoring is
based on Hardware PMC dedicated to Network observability,
defined in a Management Information Base (MiB) [43].

The Network Management system [2] is in charge of re-
alizing the correlation of multi-protocol information collected
from all the components to detect/localize network failure. A
path of improvement is to distribute the advanced monitoring
computing functionality between the aircraft systems and the
airline maintenance center [25].

D. HW/SW characterization for Aerospace systems with
performance counters

In the context of multi-core processors for aerospace
systems, safety standards require the analysis and mitiga-
tion of undesirable contentions due to concurrent usage of
shared hardware resources, called timing interference. A joint
HW/SW characterization of the system behaviour is needed,
with a high level of precision, including system calls and fine-
grain interaction on shared resources.

To achieve such a precision level, hardware assistance is
mandatory, and we can take advantage of mechanisms initially
developed for performance tuning, called the performance
monitoring counters (PMC). These are simple hardware regis-
ters, able to count various events within a processor core or in
a SoC infrastructure, such as CPU clock cycles, the number of
instructions of a certain type, cache access or misses, branch

mispredicts, bus access, etc. There are typically few counters
per core (e.g. 4 to 8), but up to hundreds of events to choose
from.

The main advantage of this technique is the precise and
timely sampling of low-level information. Time is cycle-
accurate, and reading a counter only takes a couple of in-
structions. Activation of counters and event selection typically
requires supervisor privileges, but in most cases reading the
counter can be allowed in user mode, for lower overhead.

The Measurement Environment for Time-Critical Systems
(METrICS) [34] is a self-contained approach to characterize
multicore processor behaviour and timing interference. The
basic part is a probe, a small piece of code inserted in
an application program to perform a sampling of selected
hardware events. The probe is designed to minimize timing
overhead, making use of macros and inline assembly and
completely avoiding system calls. Sampled counters data is
stored in the main memory, with a structure designed to fit in
a single cache line along with a unique probe identifier, core
and process identifiers.

The probe typically takes less than 190ns to run on 1.8GHz
PowerPC. The timing overhead is therefore very low, at the
cost of a small source code intrusivity.

Time-critical
application

Time-critical
application

Collector

Instrumented System-Call Layer

PikeOS µKernel
Hardware
Monitor
Driver

Hardware-Specific PSP

Target Hardware Board

M
E

T
rI

C
S

li
b

M
E

T
rI

C
S

li
b

Shared
Memory

METrICS
Server

config

collect raw.csvraw.csvraw.csvraw.csv

xTRACT
Visualiser

C
h

ro
n

o
g

ra
m

R
u

n
ch

ar
t

H
is

to
g

ra
m

C
or

re
lo

g
ra

m

H
ea

tm
a

p

1

2

2

3

3

Target Board PC Host

Fig. 6. METrICS architecture, as defined in [34]

The extraction of stored data is performed out of the
real-time section by another component, named Collector.
This is an independent partition, that is not scheduled during
the measurement phase. The collector is also in charge of
initialization, and data link with the host (typically using
Ethernet). On-target computation is kept to a minimum, and
all data is preserved for post-processing.

Several statistical techniques can then be used offline to
analyze the collected data. For duration of tasks or system
calls, two probes can be paired and the raw values of counters
can be subtracted. Time series can be derived, as well as
full histograms exhibiting the observed-WCET. Correlation
between counters helps identifying possible cause of time
interference.

E. Online monitoring with PMCs

As the timing overhead to collect the PMCs presented in
the previous section is very low, the same principles can be
extended as an online monitoring technique, as part of the
health and safety usage monitoring subsystem. Multiple online
interference mitigation techniques have been exploiting the



PMCs’ monitoring. MemGuard [93] exploits memory accesses
PMCs to monitor the number of accesses done by the different
partitions in a multi-core system and perform on-board deci-
sions guided by budget limits associated to these partitions to
minimize the interference impact. Similarly, in [20] the time
and instructions counters are used in addition to the memory
access counters to enhance the interference control. BB-RTE
(Budget-Based RunTime Engine) [33] proposes a variation of
the previous two where all the shared resources PMCs, i.e.
not only memory accesses, are considered to perform online
interference mitigation.

To achieve the same goals without source code modifica-
tion, another approach presented by Airbus in [29] makes use
of an external Safety-Net processor to monitor the operational
multi-core processor. As depicted in Figure 7, an external
FPGA device contains a soft-core processor, connected with
a high-speed link to the debug infrastructure of the multi-
core. It is able to periodically access the performance counters
through this link, and record the application behaviour without
intrusivity.

Dual Core Processor
NXP P5020

core 1

FPGA
Xilinx Kintex-7

Safety Net Processor 
MicroBlaze

A
u
ro

ra

N
ex

u
s

High Speed
Serial

Fingerprint
Model

Quality of Service
Algorithm

core 0

Interconnect

Periodical 
access
to the

performance
counters

of all 
cores 

Debug
Interface

Other 
Application

Helicopter Terrain
Awareness and 
Warning System

Fig. 7. Safety-Net architecture, as defined in [29]

In this case, the rate of executed instructions (in instr/µs)
is the value of interest, and its evolution over the duration of a
major scheduling frame. Such fingerprints can be concatenated
over several time slices for a given partition, and compared
between isolated and concurrent executions. The presence of
timing interference can be detected by a shift of the fingerprint,
as the rate of executed instruction is slightly lower and its
variation pattern is slightly delayed. A slowdown of 1.5% can
be reliably detected in less than 15ms.

Likely, solutions to detect security incidents exploit the
PMCs monitoring techniques [28]. For example, Li [55] pro-
poses a PMC monitoring solution able to detect a Spectre
attack using the cache miss and branch missprediction PMCs
available in most processors. Similarly, Chiappetta [17] ex-
ploits the L3 accesses PMC to detect side-channel attacks
exploiting the caches.

These and other studies have shown the capability of
PMCs usage to develop safety and security characterization
and monitoring solutions. However, multiple studies [81, 86,
9] have proven that the exploitation of these same PMCs for
the development of security attacks.

F. Miscellaneous Monitoring techniques

Some monitoring-base detection solutions introduce creative
techniques either for trace collection or for classification.

In automotive, services used to be integrated as distinct
electronic control units (ECUs) each with a specific hardware.
With the multiplication of the number of services, as well as
optimizing Size, Weight and Power (SWaP), ECUs are now
integrated on the same hardware as virtual machines.

The HIDS introduced in the [50] position paper models
the system interactions both in terms of OS service usage
as well as hardware activity collected through Performance
Monitor Counters. Traces are collected as words and sentences,
applying Natural Language Processing techniques to predict
further traces from the already collected sequence. Threat
detection is then performed by comparing the actual trace to
the predicted one, not requiring any form of previous offline
learning.

HUMS systems on their side can consider input data
beyond the software or the hardware behaviour. In [59],
Airbus captures the impact of vibration in an helicopter on
the mechanical components wear-out to guide out maintenance
tasks.

Such an activity used to being performed with on-ground
calculators during stress-test procedures. The paper proposed
to shift this activity onboard.

The main asset is to implement the fundamental ability
to analyze on the fly the data collected from various em-
bedded aircraft sensors and quickly identify safety/security-
related events to take the most appropriate actions. However,
the authors pointed some critical missing features to collect
information from the physical layer, such as a lightweight
tracing and timestamping mechanism, as well as strong cycle-
accurate synchronized time requirements.

The goal is going toward experimentation in onboard ma-
chine learning [46] to pave the way to predictive maintenance
as part of Flight Data Monitoring [25].

G. AI usage in Monitoring

In the survey presented this section, several monitoring
techniques embed different flavours of artificial intelligence:
Some [34, 20, 33] are just relying on statistical analysis to
compute a threshold used for outlier/anomaly detection. Some
others [29, 48] rely on machine learning techniques to compute
such a threshold, but are keeping the inference as a simple
comparison to this threshold. Machine learning is used to a
greater extent by [55, 17, 22, 21] with a more complex online
inference system based on neural networks. Alternative AI
approaches such as genetic algorithms or sequence prediction
are also used in [22, 50]. Finally a few papers [49, 59] are
considering machine learning techniques as a possible future
work.

It corresponds to a recent trend of using artificial intelli-
gence for anomaly detection, that was first introduced for IT
systems [15, 57], and is now considered for embedded safety
and security critical systems [51].

IV. THE FUTURE OF MONITORING IN SAFE & SECURE
SYSTEMS

As illustrated by Section III, software and hardware mon-
itoring have become prime requirements for both safety and



security, however this extra monitoring activity comes with
complexity, security and performance costs. As a consequence,
the convergence between safety-critical and security-critical
systems would benefit from communalizing the monitoring
features.

A. Multi-level aspects

Figure 8 shows the different layers composing the tech-
nology stack. This includes the user-mode applications, the
domain-specific middlewares, the operating system layer, the
embedded hardware SoC and the physical communication
layer. The arrows show regular component interactions, for
instance the operating system scheduler sets which application
should be running, setting up the proper MMU entries for
logical to physical address translation and flushes the hardware
TLB caching the MMU.

Applications USER MODE

Domain
Libraries

IPC HAL MIDDLEWARE

MMU Scheduler
System
Calls

Ressource
Management

Drivers
KERNEL
MODE

TLB

Firmware

Cores

Caches
Interconnect

DRAM DMA PCI ETH

HARDWARE

Sensors Wired / Wireless Network EDGE

Fig. 8. Multi-layer software/hardware stack

Among all the monitoring techniques presented in the
survey of Section III, many techniques are already multi-level
implying several layers.

For instance, hardware-assisted CFI [54] monitors the
application path behaviour from the debug module of the
hardware layer. To perform a transparent, uninstrumented mon-
itoring of the application the [21] HIDS gathers ARINC 653
call information from the operating system/middleware layers.
Network monitoring has the opportunity to be performed
within the hardware abstraction layer (HAL), at the Ethernet
driver level, or further down on the physical link.

In fact, each layer has only limited information and lacks
the semantics of the other layers: the hardware layer has
efficient and immediate pipeline-related information from the
Performance Monitor Counters (PMCs) such as branches or
even cache misses but does not know which application, task
or thread is running. This information is only available either
directly from the application layer or from the scheduler of
the operating system layer.

Accessing the PMCs registers is also doable from the ap-
plication layer, but at the cost of additional code to be executed
to capture this information and also the cost of traversal time

from the application layer down to the hardware (e.g. syscalls),
providing slightly outdated and noisy information.

Gathering information from multiple layers is therefore
necessary to perform efficient monitoring. Pushing this concept
further, we might also benefit from gathering information
from multiple sources, communalizing the monitoring infor-
mation from different subsystems. It will reduce the overall
performance costs, as many HIDS/HUMS are accessing the
same information, and provide opportunity to identify new
correlations for detection. However, it comes with a set of
associated challenges.

B. The Requirements for Communalizing Monitoring Infor-
mation

The survey from Section III identified several challenges
or specific requirements for the different detection techniques:

1) Trace collection: All previously detailed techniques
optimize trace collection either in terms of intrusiveness or
performance:

At user application level, [54, 21, 29, 55] minimize appli-
cation intrusiveness, avoiding any code modification by either
performing the trace collection automatically, at hardware level
or externally at the cost of some performance. [34, 50] focus
on minimizing time intrusiveness and optimizing performance
by requiring some user instrumentation.

Some techniques perform their collection at operating
system level, such as [54, 21, 50, 20, 93], requiring the source
code of the RTOS. Instead, [34, 55] rely on a kernel driver to
perform the actions requiring privileged mode.

Many collection techniques rely on hardware level infor-
mation: [54, 29] use a specific but COTS hardware component
to gather debug traces. [34, 29, 55, 50, 20, 93] are gathering
the hardware-level Performance Monitor Counters.

2) Classification/detection: is usually performed outside
of the monitored application, as an distinct adhoc process. To
limit the impact of such a process on the monitored application,
[54, 21, 33, 50, 20, 93] are relying on a separation kernel or
partitioning hypervisor.

From the hardware point of view, [29, 59] are rely-
ing on specific onboard hardware to perform the detection,
whereas [34] relies on an external host to perform the statistical
analysis as a post-processing action.

3) Exploiting monitoring for side channel attacks: As
stated before, most classification algorithm are performed in
software from trace data extracted from the hardware [54, 21,
34, 33, 50, 55, 17]. As a consequence the monitored infor-
mation is available in user-mode and therefore also available
for malicious purpose to implement side-channel attacks. [29,
59] are alleviating this risks by performing this on dedicated
hardware.

Ideally, to reduce the attack surface and performance cost,
supervision solution should be implemented at hardware level
with private resources. However, customizing hardware could
be costly.



C. Open Hardware in Safe & Secure Systems and the
benefits of low-level monitoring

Many of the issues faced in critical embedded systems
are rooted in the incomplete or imprecise knowledge of the
processor system inner operation. The high complexity of
current processors necessitates abstraction for efficient usage,
and many implementation details are hidden to the developer,
either with each software layer or even at hardware register
level. While those hidden details are specifically designed not
to impact functional correctness or average-case performance,
they can have a significant impact on worst-case performance
that matters for critical systems.

In reaction to the increasing complexity of hardware im-
plementation of processor systems, we observe a current rise
in popularity for Open Source Hardware. Several institutions
team up to develop more generic hardware platforms, with a
common set of requirements, and share under a more or less
permissive license the burden of development, verification and
documentation on an accessible code base. From this point,
extensions and product differentiation is possible. The open-
source nature also allows security audit of the source code,
and precise documentation of low-level mechanisms such as
shared resource arbitration.

1) RISC-V ecosystem: One of those Open-Source Hard-
ware initiatives, currently gathering a large momentum in
the industry, is RISC-V [89]. As a fifth-generation processor
instruction set specification, it aims at becoming the “Linux of
the processors” with applications from simple IoT devices up
to supercomputers. The specification is maintained by RISC-
V International [76], a non-profit organization structured in
several working groups and strong of more than 280 members,
including all major actors of the computing industry.

The RISC-V ISA is modular and specifies 32-, 64- and 128-
bits versions, with various optional extensions such as bitwise
operations or hardware virtualization. In addition, industry
associations such as OpenHardware Group [67] or Chips
Alliance [18] focus on open-source implementations of RISC-
V processors.

2) Safety & Security in the context of Open Hardware
systems: Safety- and security-critical systems are niche mar-
kets, compared to mainstream computing products, and face
difficulty to have their stringent requirements satisfied in the
COTS market. The Open Source ecosystem allows several
stakeholders to team for the specification, the implementation
and the validation of processors with suitable features, whereas
they would not have had the resources to do so or to influ-
ence COTS vendors individually. Within RISC-V International,
these topics are notably addressed in the Security Standing
Committee and the Functional Safety Special Interest Group.

Among the specific mechanisms required for critical sys-
tems, a guarantee of time-, memory-space and computer-space
isolation is a common need to ensure that a dysfunctional
application cannot impact other critical applications. Health
monitoring, integrity checks and run-time monitoring are
needed to ensure proper operation and react to errors/attacks.

In the context of multi-core processors, achieving those
properties present extra difficulty as explained in Section II.
However the openness of Open Hardware allows to lift the

curtain on previously black-box subsystems such as the arbiters
on the interconnect and other shared hardware resources,
and take into account their scheduling policy in interference
mitigation strategies.

Furthermore, the access to such low-level design elements
offers the opportunity to perform formal validation of safety-
and/or security-related properties, for example using tools such
as Yosys [91].

Lastly, it provides the opportunity to add or modify specific
features in the implementation, and tune hardware mechanisms
to increase predictability or immunity to attacks, e.g. by
reducing the sources of speculation.

3) Benefits of Open Hardware on Monitoring: In addition
to the well-known advantages of openness listed above, Open-
Source Hardware presents several interesting opportunities for
monitoring activities, as it enables addition or modification of
hardware mechanisms specifically optimized.

Low-level instrumentation can generate large amounts of
data, as it operates at very fine grain. It is therefore beneficial
to implement filtering capabilities in order to focus on relevant
information for a given observation goal. Filter examples
include address range of memory transaction, initiator core,
or type of request, but very complex detection can be crafted
with a combination of several monitors and filters.

Another opportunity is to propagate semantic information
across system layers, that would otherwise be lost or ignored.
For example, an application parameter or loop iteration could
be logged along with hardware performance counters. As
described in [23] this information and the filtering capabilities
are actually required to perform an efficient monitoring, as
those required in [55, 17].

Many low-level monitoring mechanisms focus on each
processor core, but the most worrisome aspect of critical multi-
core lies in the interactions at SoC-level, notably within the
interconnect. Additional monitors and counters in the SoC
infrastructure allow a better understanding of interference
channels, and in some cases enable mitigation techniques.
This is particularly interesting when combined with filtering
capabilities.

A simple interrupt mechanism triggered when a perfor-
mance counter reaches a given threshold allows the implemen-
tation of budget-based interference mitigation, e.g. de-schedule
a task when it has exhausted its budget of memory access to
ensure it is not slowing down other tasks, either because of a
bug or an attack.

A recent development in this direction is the Safe Statistics
Unit from BSC [14], consisting of three novel kinds of
performance counters tailored for the monitoring of timing in-
terference on multi-core processors: the Maximum-Contention
Control Unit (MCCU), the Request Duration Counter (RDC),
and the Cycle Contention Stack (CCS). By analyzing the
traffic on a shared processor bus, it allow new ways of
understanding and controlling the interactions between cores.
The MCCU monitors access to a shared resource, and enforce
per-core quotas. The RDC can log maximum duration of a
bus transaction, and act as a watchdog. The CCS helps in the
identification of the initiator at the origin of the interference
suffered by each core.



Finally, a dedicated hardware mechanism can be an im-
provement for security concerns, as it can be designed as a
separate entity, not accessible from vulnerable application soft-
ware or isolated from side-channel attacks. Similarly, designs
with private memories and communication channels dedicated
to monitoring avoid any overhead on the system operation, and
any skew in the observed behaviour.

D. Opportunities for AI-based HIDS/HUMS

Some industry domains are reluctant to introduce artifi-
cial intelligence in safety critical systems. For decades, au-
tonomous piloting, one of the most critical function in avionics
has been relying on deterministic algorithms, and the benefits
in shifting to AI-based systems is not likely to cover the
additional certification costs. As the monitoring subsystem runs
at a lower criticality level, such a system is a good candidate
to introduce AI, with lower certification costs. However em-
bedded safety-critical systems have additional constraints to be
taken into account by the AI-based systems.

In avionics, post-mortem analysis is critical to maintain
flight authorization from the authorities. As a consequence it
is not only a matter of successfully performing the classifica-
tion/detection with an acceptable amount of false-positive and
false-negative, but also a matter of identifying the root causes
of a detected event. Also post-mortem analysis involves a large
degree of replaying the conditions that led to the studied event.
As a consequence, we expect determinism in terms of the same
input causing the same answer from the AI system. Such a
behaviour seems to be incompatible with continual/continuous
learning [68], but more in cope with explainable AI [24] such
as symbolic AI [40, 61].

Embedded systems also have stringent requirements in
terms of resource usage, including processing power, real-
time behaviour and memory footprint [26]. Machine learning
[4, 79] seems to be in adequation with such requirements:
the learning phase that builds neural networks requires both
processing power and memory, but could be performed offline
on external systems, while only the inference part is performed
onboard with a small neural network memory footprint, and
involves a constant number of multiply-add operations leading
to deterministic time processing.

Another challenge for the application of AI techniques in
critical systems is the low occurence of some safety/security
hazards in these systems. This difficults the usage of AI tech-
niques, particularly during the learning phase. Frugal learning
[77] especially focuses on being less dependent on large
collections of input data, learning from few samples with
additional semantic information.

Beyond these additional challenges for embedding AI
in safety/security critical systems, it also comes with new
benefits and potential new markets, especially predictive main-
tenance, and the ability to propose more complex embedded
HUMS/HIDS systems.

V. CONCLUSION & FUTURE WORKS

In this paper, we presented a survey of emerging moni-
toring technologies implemented in Health Usage Monitoring
Systems or Host Intrusion Detection Systems in the domain
of safety-critical and security-critical devices.

Cyber BlackBoxOpen
Hardware

AI-based
Detection

performance
monitor
counters

timings

context
switches

power, voltage
& temperature

system calls

control flow

Fig. 9. Cyber BlackBox: a multi-level/muti-source approach to monitoring

We then promoted the communalization on monitoring re-
sources in a multi-layer and multi-source approach, as depicted
in Figure 9.

We foresee Open Hardware as being an enabler to im-
plement the supervision system with dedicated software and
especially hardware resources, allowing us both to capture the
necessary hardware-related information, but also as a way to
protect from side-channel attacks exploiting the monitoring
features.

Finally, using Artificial Intelligence-based techniques looks
like a promising opportunity to merge monitoring data of dif-
ferent natures, layers and sources to identify new correlations
allowing us to detect either new safety failures or security
threats, or to detect already known ones sooner.

Machine Learning in particular is usually decomposed into
two phases: a preliminary learning phase, and an inference
phase performing the classification. The resource-consuming
learning phase could be performed offline, only leaving the
inference phase to be embedded onboard and therefore reduc-
ing the resource footprint of such systems, while keeping open
the explainability challenge.

The Cyber BlackBox approach presented in Figure 9
considers each monitoring source/technique as an optional
plugin to the overall supervision infrastructure, so that it could
be adapted the the specifics of each safety/security critical
domain.

ACKNOWLEDGEMENTS

This research work has received funding from the European
Union’s Horizon 2020 research and innovation programme
under Grant Agreements No 871385 and 869945.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow in-
tegrity principles, implementations, and applications. ACM Transactions
on Information and System Security (TISSEC), 2009.

[2] AIRBUS. US8190727B2, airbus patent, network management system
for an aircraft, 2012.



[3] M. Alagappan, J. Rajendran, M. Doroslovački, and G. Venkataramani.
DFS covert channels on multi-core platforms. In IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), 2017.

[4] E. Alpaydin. Introduction to machine learning. MIT press, 2020.
[5] ARINC. Aircraft data network part 7 avionics full duplex switched

ethernet (afdx) network, 2005.
[6] ARINC. General standardization of can (controller area network) bus

protocol for airborne use, 2007.
[7] ARM. Whitepaper: Cache speculation side-channels, version 2.5, 2020.
[8] T. G. Baker. Lessons learned integrating COTS into systems. In

Proceedings of the First International Conference on COTS-Based
Software Systems, ICCBSS ’02, 2002.

[9] S. Bhattacharya and D. Mukhopadhyay. Utilizing Performance Counters
for Compromising Public Key Ciphers. ACM Trans. Priv. Secur., 21(1),
jan 2018.

[10] E. Biermann, E. Cloete, and L. M. Venter. A comparison of intrusion
detection systems. Journal on Computers & Security, 2001.

[11] J. Bin, S. Girbal, D. Gracia Pérez, A. Grasset, and A. Merigot.
Studying co-running avionic real-time applications on multi-core COTS
architectures. Embedded Real Time Software and Systems conference,
2014.

[12] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: A new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’11, 2011.

[13] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer. Control-flow integrity: Precision, security, and performance.
ACM Comput. Surv., Apr 2017.

[14] G. Cabo, F. Bas, R. Lorenzo, D. Trilla, S. Alcaide, M. Moretó,
C. Hernández, and J. Abella. Safesu: an extended statistics unit for
multicore timing interference. In 2021 IEEE European Test Symposium
(ETS), pages 1–4, 2021.

[15] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3), jul 2009.

[16] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-oriented programming without returns. In
Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, CCS ’10, 2010.

[17] M. Chiappetta, E. Savas, and C. Yilmaz. Real time detection of
cache-based side-channel attacks using hardware performance counters.
Applied Soft Computing, 2016.

[18] CHIPS (Common Hardware for Interfaces, Processors and Systems)
Alliance. https://chipsalliance.org/. [Online].

[19] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of
malicious behavior. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference, ESEC-FSE ’07, 2007.

[20] A. Crespo, P. Balbastre, J. Simó, J. Coronel, D. Gracia Pérez, and
P. Bonnot. Hypervisor-based multicore feedback control of mixed-
criticality systems. IEEE Access, 2018.

[21] A. Damien, P.-F. Gimenez, N. Feyt, V. Nicomette, M. Kaâniche, and
E. Alata. On-board diagnosis: A first step from detection to prevention
of intrusions on avionics applications. In 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), 2020.

[22] A. Damien, M. Marcourt, V. Nicomette, E. Alata, and M. Kaâniche.
Implementation of a host-based intrusion detection system for avionic
applications. In 2019 IEEE 24th Pacific Rim International Symposium
on Dependable Computing (PRDC), 2019.

[23] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose.
SoK: The Challenges, Pitfalls, and Perils of Using Hardware Perfor-
mance Counters for Security. 2019 IEEE Symposium on Security and
Privacy (SP), May 2019.

[24] F. K. Došilović, M. Brčić, and N. Hlupić. Explainable artificial
intelligence: A survey. In 2018 41st International Convention on
Information and Communication Technology, Electronics and Micro-
electronics (MIPRO), pages 0210–0215, 2018.

[25] European Union Aviation Safety Agency. Flight data monitoring on atr
aircraft, 2016.

[26] M. Evchenko. Frugal Learning: Applying Machine Learning with
Minimal Resources. 2016.

[27] S. Fei, Z. Yan, W. Ding, and H. Xie. Security vulnerabilities of SGX
and countermeasures: A survey. ACM Comput. Survey, July 2021.

[28] J. C. Foreman. A survey of cyber security countermeasures using
hardware performance counters. CoRR, abs/1807.10868, 2018.

[29] J. Freitag and S. Uhrig. Quality of Service for Integrated Modular
Avionics (IMA) on Multicore Processors using a Safety Net Architec-
ture. In ERTS 2018, 9th European Congress on Embedded Real Time
Software and Systems (ERTS 2018), Toulouse, France, Jan. 2018.

[30] F. Garzia, M. Lombardi, and S. Ramalingam. Artificial neural networks
framework for security/safety systems management and support. In
International Carnahan Conference on Security Technology, 2017.

[31] S. Girbal, D. Gracia Pérez, J. Le Rhun, M. Faugère, C. Pagetti, and
G. Durrieu. A complete toolchain for an interference-free deployment
of avionic applications on multi-core systems. In Proceedings of the
34th Digital Avionics Systems Conference, DASC’2015, 2015.

[32] S. Girbal, X. Jean, J. Le Rhun, D. Gracia Pérez, and M. Gatti.
Deterministic Platform Software for hard real-time systems using multi-
core COTS. In Proceedings of the 34th Digital Avionics Systems
Conference (DASC), 2015.

[33] S. Girbal and J. Le Rhun. BB-RTE: a Budget-Based RunTime Engine
for Mixed & Time Critical Systems. In Embedded Real Time Software
and Systems, ERTS ’18, 2018.

[34] S. Girbal, J. Le Rhun, and H. Saoud. METrICS: a measurement
environment for multi-core time critical systems. In Embedded Real
Time Software and Systems, ERTS ’18, 2018.

[35] S. Girbal, M. Moretó, A. Grasset, J. Abella, E. Quiñones, F. J. Cazorla,
and S. Yehia. On the convergence of mainstream and mission-critical
markets. In 50th IEEE Design Automation Conference (DAC), 2013.

[36] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. ASLR on
the line: Practical cache attacks on the MMU. In NDSS, 2017.

[37] B. Gyselinckx, R. Vullers, C. Van Hoof, J. Ryckaert, R. F. Yazicioglu,
P. Fiorini, and V. Leonov. Human++: Emerging technology for body
area networks. In 2006 International Conference on Very Large Scale
Integration, 2006.

[38] R. Heckmann and C. Ferdinand. Verifying safety-critical timing and
memory-usage properties of embedded software by abstract interpreta-
tion. In Proceedings of the conference on Design, Automation and Test
in Europe, DATE’05, 2005.

[39] C. Hobbs. Embedded software development for safety-critical systems.
CRC Press, 2019.

[40] V. Honavar and L. Uhr. Symbolic artificial intelligence, connectionist
networks & beyond. 1994.

[41] N. Hubballi, S. Biswas, and S. Nandi. Sequencegram: n-gram modeling
of system calls for program based anomaly detection. In 3rd Interna-
tional Conference on Communication Systems and Networks, 2011.

[42] A. Humayed, J. Lin, F. Li, and B. Luo. Cyber-physical systems
security—a survey. IEEE Internet of Things Journal, 2017.

[43] IETF. Rfc4293: Management information base for the internet protocol
(ip), 2006.

[44] International Electrotechnical Commission. IEC 61508: Functional
safety of electrical, electronic, or programmable electronic safety-
related systems, 2011.

[45] International Organization for Standardization (ISO). ISO 26262: Road
Vehicles – Functional Safety, 2011.

[46] ITU-T Focus Group on Aviation Applications of Cloud Computing for
Flight Data Monitoring. Existing and emerging technologies of cloud
computing and data analytics. 2016.

[47] A. Jahn, M. Holzbock, J. Muller, R. Kebel, M. de Sanctis, A. Rogoyski,
E. Trachtman, O. Franzrahe, M. Werner, and F. Hu. Evolution of
aeronautical communications for personal and multimedia services.
IEEE Communications Magazine, 2003.

[48] M. Kadar, G. Fohler, D. Kuzhiyelil, and P. Gorski. Safety-aware
integration of hardware-assisted program tracing in mixed-criticality
systems for security monitoring. In 2021 IEEE 27th Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2021.

[49] M. Kadar, S. Tverdyshev, and G. Fohler. System calls instrumentation
for intrusion detection in embedded mixed-criticality systems. In
CERTS, 2019.



[50] M. Kadar, S. Tverdyshev, and G. Fohler. Towards host intrusion
detection for embedded industrial systems. In 2020 50th Annual IEEE-
IFIP International Conference on Dependable Systems and Networks-
Supplemental Volume (DSN-S), 2020.

[51] G. Kasparaviciute, M. Thelin, P. Nordin, P. Söderstam, C. Magnus-
son, and M. Almljung. Online encoder-decoder anomaly detection
using encoder-decoder architecture with novel self-configuring neural
networks & pure linear genetic programming for embedded systems.
In Proceedings of the 11th International Joint Conference on Compu-
tational Intelligence, IJCCI 2019, page 163–171, Setubal, PRT, 2019.
SCITEPRESS - Science and Technology Publications, Lda.

[52] R. Kirner and P. Puschner. Obstacles in worst-case execution time
analysis. In Proceedings of the 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing, 2008.

[53] P. Kocher et al. Spectre attacks: Exploiting speculative execution. In
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[54] D. Kuzhiyelil, P. Zieris, M. Kadar, S. Tverdyshev, and G. Fohler.
Towards transparent control-flow integrity in safety-critical systems. In
ISC, 2020.

[55] C. Li and J.-L. Gaudiot. Online Detection of Spectre Attacks Using
Microarchitectural Traces from Performance Counters. In 2018 30th
International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD), 2018.

[56] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting unprotected I/O
operations in AMD’s secure encrypted virtualization. In Proceedings
of the 28th USENIX Conference on Security Symposium, 2019.

[57] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich. A survey
on anomaly detection for technical systems using lstm networks.
Computers in Industry, 131:103498, 2021.

[58] M. Lipp et al. Meltdown: Reading kernel memory from user space. In
27th USENIX Security Symposium, Baltimore, Aug. 2018.

[59] M. Lo, N. Valot, F. Maraninchi, and P. Raymond. Real-time on-Board
Manycore Implementation of a Health Monitoring System: Lessons
Learnt. In 9th European Congress on Embedded Real Time Software
and Systems (ERTS 2018), Toulouse, France, Jan. 2018.

[60] S. Longari, A. Cannizzo, M. Carminati, and S. Zanero. A secure-by-
design framework for automotive on-board network risk analysis. In
2019 IEEE Vehicular Networking Conference (VNC), 2019.

[61] J. Mattioli, P.-O. Robic, and T. Reydellet. L’intelligence artificielle au
service de la maintenance prévisionnelle. 07 2018.

[62] C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5: Cross-cores
cache covert channel. In DIMVA, 2015.

[63] S. Mekid. IoT for health and usage monitoring systems: mitigating
consequences in manufacturing under cbm. In 18th IEEE International
Multi-Conference on Systems, Signals & Devices (SSD), 2021.

[64] E. Mezzetti and T. Vardanega. On the industrial fitness of WCET
analysis. In Proceedings of the 11th International Workshop on Worst
Case Execution Time Analysis (WCET2011). 2011.

[65] H. Mun, K. Han, and D. H. Lee. Ensuring safety and security in can-
based automotive embedded systems: A combination of design opti-
mization and secure communication. IEEE Transactions on Vehicular
Technology, 2020.

[66] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing
architectures in avionics. European Dependable Computing Conference,
2012.

[67] OpenHW Group: Proven processor IP. https://www.openhwgroup.org/.
[Online].

[68] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual
Lifelong Learning with Neural Networks: A Review. Neural Networks,
113:54–71, 2019.

[69] S. Parkinson, P. Ward, K. Wilson, and J. Miller. Cyber threats
facing autonomous and connected vehicles: Future challenges. IEEE
Transactions on Intelligent Transportation Systems, 2017.

[70] P. Puschner and A. Burns. Guest editorial: A review of worst-case
execution-time analysis. Real-Time Systems, 2000.

[71] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-297:
Software, electronic, integrated modular avionics (IMA) development
guidance and certification considerations.

[72] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-178B:
Software considerations in airborne systems and equipment certification,
1992.

[73] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-254:
Hardware considerations in airborne systems and equipment certifica-
tion, 1992.

[74] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-326:
Airworthiness security process specification, 2010.

[75] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-356:
Airworthiness security methods and considerations, 2015.

[76] RISC-V International. https://riscv.org/. [Online].
[77] H. Sahbi, S. Deschamps, and A. Stoian. Frugal Learning for Inter-

active Satellite Image Change Detection. In 2021 IEEE International
Geoscience and Remote Sensing Symposium IGARSS, pages 2811–2814.
IEEE, 2021.

[78] S. Sayeed, H. Marco-Gisbert, I. Ripoll, and M. Birch. Control-flow
integrity: Attacks and protections. Applied Sciences, 2019.

[79] J. Schmidhuber. Deep learning in neural networks: An overview. CoRR,
abs/1404.7828, 2014.

[80] H. Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th
ACM Conference on Computer and Communications Security, 2007.

[81] M. Spisak. Hardware-Assisted Rootkits: Abusing Performance Counters
on the ARM and X86 Architectures. In Proceedings of the 10th USENIX
Conference on Offensive Technologies, 2016.

[82] R. Strackx, F. Piessens, and B. Preneel. Efficient isolation of trusted
subsystems in embedded systems. In International Conference on
Security and Privacy in Communication Systems, 2010.

[83] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal war in
memory. In 2013 IEEE Symposium on Security and Privacy, 2013.

[84] P. Toillon, P. B. Champeaux, D. Faura, W. Terroy, and M. Gatti. An
optimized answer toward a switchless avionics communication network.
In 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC),
2015.

[85] C. Trippel, D. Lustig, and M. Martonosi. MeltdownPrime and Spec-
trePrime: Automatically-synthesized attacks exploiting invalidation-
based coherence protocols, 2018.

[86] L. Uhsadel, A. Georges, and I. Verbauwhede. Exploiting Hardware
Performance Counters. In 2008 5th Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2008.

[87] D. W. F. L. Vilela, A. D. P. Lotufo, and C. R. Santos. Fuzzy artmap
neural network ids evaluation applied for real ieee 802.11w data base.
In International Joint Conference on Neural Networks (IJCNN), 2018.

[88] X. Wang, Y. Yang, and Y. Han. Enforcing security for real-time
multicore embedded system. In 2018 IEEE 4th Information Technology
and Mechatronics Engineering Conference (ITOEC), pages 1551–1556.
IEEE, 2018.

[89] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic. The RISC-V
instruction set manual, 2014.

[90] R. Wilhelm et al. The worst case execution time problem, overview of
methods and survey of tools. ACM Trans. Embed. Comput. Syst., 2008.

[91] C. Wolf. Formal verification with symbiyosys and yosys-smtbmc. URL
http://www.clifford.at/papers/2017/smtbmc-sby/slides.pdf, 2017.

[92] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space: High-speed
covert channel attacks in the cloud. In Proceedings of the 21st USENIX
Conference on Security Symposium, Security’12, 2012.

[93] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. R. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In 19th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Apr. 2013.


	Introduction
	Safety Practices
	Security Practices

	Impact of multi-core architecture on Safe & Secure systems
	Trends in Safe & Secure Systems

	Current Monitoring in Safe & Secure Systems
	Control Flow Integrity (CFI)
	System call instrumentation
	Hardware-assisted CFI

	HIDS for Avionics
	NIDS for Safety-Critical Networks
	HW/SW characterization for Aerospace systems with performance counters
	Online monitoring with PMCs
	Miscellaneous Monitoring techniques
	AI usage in Monitoring

	The future of Monitoring in Safe & Secure Systems
	Multi-level aspects
	The Requirements for Communalizing Monitoring Information
	Trace collection
	Classification/detection
	Exploiting monitoring for side channel attacks

	Open Hardware in Safe & Secure Systems and the benefits of low-level monitoring
	RISC-V ecosystem
	Safety & Security in the context of Open Hardware systems
	Benefits of Open Hardware on Monitoring

	Opportunities for AI-based HIDS/HUMS

	Conclusion & Future Works
	References

