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ABSTRACT17

The Collaboratory for the Study of Earthquake Predictability (CSEP) is an open and global community18

whose mission is to accelerate earthquake predictability research through rigorous testing of probabilistic19

earthquake forecast models and prediction algorithms. pyCSEP supports this mission by providing open-20

source implementations of useful tools for evaluating earthquake forecasts. pyCSEP is a Python package21

that contains the following modules: (1) earthquake catalog access and processing, (2) representations22

of probabilistic earthquake forecasts, (3) statistical tests for evaluating earthquake forecasts, and (4)23

visualization routines and various other utilities. Most significantly, pyCSEP contains several statistical24

tests needed to evaluate earthquake forecasts, which can be forecasts expressed as expected earthquake25

rat es in space-magnitude bins or specified as large sets of simulated catalogs (which includes candidate26

models for governmental operational earthquake forecasting). To showcase how pyCSEP can be used to27

evaluate earthquake forecasts, we have provided a reproducibility package that contains all the components28

required to recreate the figures published in this article. We recommend that interested readers work29

through the reproducibility package alongside this manuscript. By providing useful tools to earthquake30

forecast modelers and facilitating an open-source software community, we hope to broaden the impact31

of the Collaboratory for the Study of Earthquake Predictability (CSEP) and further promote earthquake32

forecasting research.33

INTRODUCTION34

The Collaboratory for the Study of Earthquake Predictability35

CSEP emerged from the need to place the research field on more robust methodological footing to help36

overcome the negative sentiment surrounding earthquake prediction efforts (e.g., Geller, 1997). CSEP37

formed as a collaboration to assess earthquake predictability and provide users of earthquake forecasts38

with confidence about forecast skill and performance (e.g., government agencies that issue operational39

earthquake forecasts; Jordan and Jones, 2010; Jordan et al., 2011; Marzocchi et al., 2014). Past efforts40

were stymied by a range of problems that resulted in a lack of both reproducibility (the inability to41

regenerate previously issued forecasts, predictions, or test results) and replicability (the inability to reach42

the same conclusion about a model’s predictive skill from different data; Stodden et al., 2018; National43

Academies of Sciences, Engineering, and Medicine and others, 2019). The peer-review process was44

frequently insufficient to ensure these necessary standards, an experience mirrored in other empirical45

research fields (Baker, 2016). Meaningful prospective evaluations require sufficient data, which may take46

several decades or more to collect in certain regions, especially for large earthquakes. CSEP’s multi-region47

approach and global experiments, which would not be possible without its international collaboration,48
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help alleviate this limitation (e.g., Bird et al., 2015). Although progress in forecast testing may be limited49

by time, even a few years of data help scientists to falsify certain hypotheses that are inconsistent with50

observations (Dekel and Feinberg, 2006).51

The main pillar of CSEP’s approach is the prospective testing of forecasts (i.e., against future52

observations) in reproducible and transparent forecast experiments carefully designed by the community.53

Prospective evaluations require that forecasts are unambiguously testable, with all model parameters,54

forecast specifications, and qualifying target data sources specified in advance, preferably before testing55

observations were made (Schorlemmer and Gerstenberger, 2007; Schorlemmer et al., 2018). This ensures56

a zero-degree-of-freedom, independent test of a model’s or algorithm’s performance.57

Starting in 2007, CSEP has managed testing centers that autonomously run prospective forecast58

experiments (Schorlemmer and Gerstenberger, 2007). In these, automated dispatchers run forecast models59

to generate forecasts and evaluate them against prospective data (Zechar et al., 2010). Testing centers60

existed in California, New Zealand, Italy, Japan, and China, and together hosted over 400 models and61

model versions in a variety of tectonic settings and at a global scale (e.g., Field, 2007; Marzocchi et al.,62

2014; Tsuruoka et al., 2012; Zechar et al., 2013; Taroni et al., 2018; Strader et al., 2018; Rhoades et al.,63

2018; Eberhard et al., 2012; Bayona et al., 2021). Through this major community effort, CSEP has64

provided new insights into the predictability of earthquakes, provided independent assessments of the65

predictive skills of a range of scientific hypotheses of seismogenesis, galvanised model improvements and66

motivated new research into evaluation methods (Schorlemmer et al., 2018).67

After a decade of operating the CSEP testing centers, it became apparent that the monolithic software68

design was too strongly entangled with the system architecture and data bookkeeping to support the new69

types of forecast experiments that the CSEP community would like to conduct (Schorlemmer et al., 2018).70

CSEP software has always been open-source and accessible; however, in practice, the code was difficult to71

use by individual researchers. Specifically, the testing center software coupled the evaluation routines with72

the system architecture making it difficult to use them outside of the testing center context. We developed73

pyCSEP as the first of many steps to modernize CSEP testing centers and experiments. Modern testing74

centers should use pyCSEP as a library, decoupling the testing center architcture from the evaluation75

routines. Additionally, they should follow modern open-science principles to ensure that experiment76

results are versioned and openly available to the public (e.g., Wilkinson et al., 2016). Testing centers77

are crucial for addressing the replicability of experimental results, because long-standing prospective78

experiments are required to capture the time-scales needed for model improvements and updates.79
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pyCSEP: A Python Toolkit for Earthquake Forecast Developers80

Strengthening the collaborative aspects of the CSEP community and increasing the sustainability of CSEP81

activities, requires a new and collaborative mode of software development with the goal of a flexible,82

open-source, and community-based processing toolkit. Building sustainable research software requires a83

community that bridges software engineers and scientists (Anzt et al., 2021). This open-source approach84

is ideal for research software, as it allows for transparent, extendable code development by the research85

community that is using the software. It allows practitioners of the code to implement new features and86

identify potential issues in the software, and become engaged with the development process creating a87

net benefit for all involved members. We conceived of the open-source pyCSEP toolkit to address this88

limitation and to create a software community to promote earthquake forecasting research.89

At its core, pyCSEP re-implements software running in CSEP testing centers as an open-source Python90

package, but is already rapidly expanding beyond this. pyCSEP is designed so researchers can evaluate91

earthquake forecasting models with minimal effort using a beginner-friendly, object-oriented interface.92

pyCSEP’s modular structure allows for easy extensibility (Fig. 1). We encourage researchers to contribute93

code directly to the toolkit. To enable reproducible research, we strive for collaboratively developed code94

that is readable, well documented, and, most importantly, vetted. The source code can be found in the95

GitHub repository for this project (see link in Data and Resources section). Savran et al. (2022) provides96

a brief overview of the motivation for developing pyCSEP. The review process for that article focuses97

on software development best-practices, and examines the software repository and documentation. This98

article complements the software focused publication by providing more thorough explanations of the99

functionality of the software and providing the accompanying reproducibility package.100

Software Development Principles101

We incorporate several best-practices used by many open-source software projects (e.g., Hunter, 2007;102

McKinney, 2010; pandas Development Team, 2020) into our development process. In the code repository,103

we use continuous integration (CI) tools to ensure all new code contributions build successfully and pass104

unit tests. CI tools trigger workflows in the software repository to run development tasks automatically.105

The CI tools also build and publish the online documentation (link in Data and Resources section).106

These workflows trigger automatically when changes are made to the ‘main’ branch of the repository,107

or when new contributions have been submitted as pull requests in GitHub. We follow the SemVer108

(https://semver.org) guidelines for software versioning. New releases are made available on PyPI and109

conda-forge and can be installed using the package managers pip or conda. Additionally, pyCSEP110

strives to meet the target best practices as proposed by the Computational Infrastructure for Geodynamics111

(link in Data and Resources section).112

4/30



Reproducibility of Forecasting Experiments113

In CSEP testing centers, experiment components (e.g., model software, input data, forecasts, target data,114

and test results) were stored on CSEP servers with no external access (Schorlemmer and Gerstenberger,115

2007). This approach ensured the integrity and reproducibility of the experiments, but required substantial116

data management and systems administration resources. The controlled environment of CSEP testing117

centers also made it difficult to share experimental results. The recent proliferation of freely available118

online data storage and management tools provide an effective alternative for storing experiment data119

and code. We encourage the use of these tools to create reproducibility packages (Krafczyk et al., 2021)120

for publications of earthquake forecasting experiments. A reproducibility package contains the software,121

data, and other experiment artifacts required to exactly reproduce published results. To illustrate this idea122

and provide an introduction to pyCSEP, we provide an example reproducibility package for this article123

(link in Data and Resources section).124

PYCSEP SOFTWARE125

pyCSEP provides an open-source implementation of several peer-reviewed statistical tests for evaluating126

probabilistic earthquake forecasts (Schorlemmer et al., 2007; Zechar et al., 2010; Rhoades et al., 2011;127

Werner et al., 2011; Savran et al., 2020). The design includes core classes that represent earthquake128

forecasts, catalogs, and spatial regions (Fig. 1). Higher-level functions using these classes are implemented129

to provide a simple interface to analyze forecasting models. Overall, the software design is modular to130

accommodate new forecast representations and evaluation types. Where possible, we integrate popular131

Python libraries such as numpy (Harris et al., 2020), matplotlib (Hunter, 2007), and pandas (pandas132

Development Team, 2020; McKinney, 2010) to allow users to easily include pyCSEP in existing scripts133

and workflows. pyCSEP also contains routines for working with and visualizing earthquake forecasts and134

catalogs. Also, general users of earthquake catalogs and gridded data sets may find useful utilities in the135

package.136

Getting started with pyCSEP137

The most straightforward way to install pyCSEP is using the conda package manager, and installing138

the most recent release from conda-forge. Users can obtain conda through the Anaconda or139

miniconda distributions. pyCSEP issues regular releases to PyPI and conda-forge. The latest140

release can be installed using:141

conda install --channel conda-forge pycsep142

The online documentation provides detailed installation instructions and examples that assist new143
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users through tasks such as evaluating grid- and catalog-based earthquake forecasts, working with catalogs,144

and various plotting tasks (link in Data and Resources section).145

Core Classes146

The following subsections present a more technical introduction to the core classes in pyCSEP (see Fig.147

1). Fig. 1 indicates how important methods and classes are related in the code, and can be used as a148

reference. We recommend interested readers to get started with pyCSEP by following the examples in149

the online documentation, and working through the reproducibility package (see Section Reproducibility150

Packages for this manuscript; link in Data and Resources section).151

Regions152

Regions are used to define the spatial cells of an earthquake forecast. In practice, they are used to bin, or153

discretize, an earthquake catalog into these spatial cells. Regions are fundamental in defining earthquake154

forecasts and preparing observed catalogs for evaluation (Fig. 1). In practice, a region represents a155

mapping between a list of spatial cells and spatial points. This mapping associates each point with its156

corresponding cell in the spatial region. There is a many-to-one relationship between points and spatial157

cells. Each point can only be associated with a single cell; however, a cell can contain many points.158

pyCSEP defines a standard region on a regular Cartesian grid whose cells have dimensions of 0.1◦×0.1◦159

in latitude and longitude. However, the dimensions of the cells are configurable within pyCSEP. To allow160

for easy interoperability with previous experiments, pyCSEP currently provides predefined regions for161

California (Fig. 2a), Italy (Fig. 2b) and the global testing region (not pictured). These can be accessed via162

simple function calls (e.g., california_relm_region(), see Fig. 1).163

pyCSEP provides a class named CartesianGrid2D to represent the standard region used in CSEP164

experiments (e.g., Schorlemmer and Gerstenberger, 2007; Taroni et al., 2018). CartesianGrid2D165

implements the mapping so points can be correctly associated with the corresponding Cartesian spatial166

cells. The class provides flexibility for creating different regions by supplying a list containing the167

lower-left origin of each cell by calling the from_origins() class method. The cells are defined168

such that the lower and left-most edges are inclusive. Functionality for non-regular grids is not currently169

implemented in the toolkit; however, the object-oriented implementation of the region class allows for170

non-regular grids to be easily accommodated in the future.171

Magnitude ranges are defined using a list containing the left bin edges, and require no additional172

classes. The magnitude bin edges should be made accessible through the magnitude member of the173

region classes. The regions.create_space_magnitude_region function provides a method174

to associate a discretized magnitude range with a particular spatial region.175
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Forecasts176

Currently, pyCSEP supports two types of probabilistic earthquake forecasts (see Fig. 1). First, we177

support grid-based forecasts that express expected rates of earthquakes within discrete space-time-178

magnitude bins (e.g., Schorlemmer and Gerstenberger, 2007). A grid-based forecast is defined by the179

GriddedForecast class. This class is composed of two main data attributes: 1) a 2D numpy array180

that stores expected rates in space-magnitude bins, and 2) a pyCSEP region class that defines the space-181

magnitude cells of the forecast. Standard CSEP gridded forecasts use the CartesianGrid2D to define182

this mapping. Each forecast is considered to span a discrete time period, where the expected rate is183

based on this period. Thus, time-dependent forecasts with multiple periods require individual instances of184

the GriddedForecast class. Additional methods such as target_event_rates() are provided185

by the forecast class, and allow the users to retrieve event rates as defined by the forecast. Grid-based186

forecasts can be loaded from disk using the load_gridded_forecast() function defined in the187

top-level package.188

The CatalogForecast class defines the second supported forecast type: catalog-based forecasts.189

This class represents forecasts that are defined by a list of earthquake catalogs (e.g., CSEPCatalog190

or UCERF3Catalog) and a region (e.g., CartesianGrid2D). The class provides an iterator imple-191

menting a user-defined set of catalog filters that apply automatically to each catalog in the forecast. Also,192

this implementation allows for working with large UCERF3-ETAS (or other) forecasts by loading the193

catalogs on demand. This is known as ‘lazy’ loading. CatalogForecast objects can be loaded from194

disk using the load_catalog_forecast() function defined in the top-level package. Fig. 3 shows195

an example of an UCERF3-ETAS forecast made during the 2019 Ridgecrest sequence. The reader will196

find examples of working with grid-based and catalog-based forecasts in the Tutorials section of the197

online documentation and the reproducibility package.198

Evaluations199

CSEP has lead research efforts into developing forecast evaluation methods, tests, and performance200

measures of probabilistic earthquake forecasts (e.g., Schorlemmer et al., 2007; Werner and Sornette, 2008;201

Zechar et al., 2010; Zechar and Jordan, 2010; Zechar and Zhuang, 2010; Rhoades et al., 2011; Werner202

et al., 2011; Marzocchi et al., 2012; Schneider et al., 2014; Gordon et al., 2015; Molchan et al., 2017;203

Savran et al., 2020, and many others). Different tests are used to address various hypotheses underlying204

the forecasts they are evaluating. pyCSEP currently contains a selection of consistency tests (comparing205

forecasts with data) and comparative tests (comparing models against each other on the basis of the data)206

for both grid-based forecasts and catalog-based forecasts. Different forecast formats require different207

evaluation methods. Grid-based forecasts use a set of evaluations that based on the Poisson likelihood208
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function (Schorlemmer et al., 2007; Zechar et al., 2010), whereas catalog-based forecasts build empirical209

distributions to sample the uncertainty contained within the forecast (Nandan et al., 2019; Savran et al.,210

2020). The Poisson assumption has been widely criticized (Lombardi and Marzocchi, 2010a; Werner and211

Sornette, 2008) and pyCSEP was designed to accommodate evaluation with different likelihood functions212

(Bayona et al., 2022). We explain the evaluation methods implemented in pyCSEP below. Evaluations for213

grid-based forecasts are implemented in the module poisson_evaluations, and for catalog-based214

forecasts in the catalog_evaluations module (Fig. 1). Examples on how to evaluate grid- and215

catalog-based forecasts are shown in the Tutorial section of the online documentation. We provide an216

in-depth explanation of the evaluations along with working code examples in the Electronic Supplement217

to this article.218

For grid-based forecasts, CSEP tests assess the consistency between the observed and the expected219

number, spatial, magnitude, and likelihood distributions of earthquakes, assuming that seismicity in220

space-magnitude cells is independent and Poisson-distributed (Zechar et al., 2010; Werner et al., 2011;221

Rhoades et al., 2011). In the following paragraphs, we provide a high-level overview of the test methods222

available for grid-based forecasts followed by a brief description of the consistency tests for catalog-based223

forecasts.224

Number test The number (N) test (Schorlemmer et al., 2007; Zechar et al., 2010) evaluates if the225

total number of observed earthquakes (Nobs) falls within the 95% predictive distribution of the forecast226

distribution, with the expected rate, Nfore, equal to the sum of forecasted rates in each space-magnitude bin.227

Fig. 4 shows the N-test result for time-independent forecasts from the Regional Earthquake Likelihood228

Model (RELM) experiment that were originally published by Zechar et al. (2013).229

Spatial test The spatial (S) test (Zechar et al., 2010) evaluates how well a forecast explains the spatial230

distribution of earthquakes. One first sums the expected rates in each spatial cell over the magnitude231

bins to isolate the spatial component of the forecast, and normalizes the resulting spatial rates to the232

total number of target observations. Next, one computes the (spatial) joint log-likelihood in each cell by233

evaluating the Poisson likelihood function in each cell, and summing the spatial log-likelihoods over the234

entire testing region. To assess whether this observed log-likelihood score could have been generated235

by the forecast, we obtain the distribution of spatial log-likelihood scores consistent with the forecast236

through simulation. In this and the following two tests, the number of simulated earthquakes is fixed to237

Nobs to remove the dependency on the forecasted rate. To assess the consistency between the observed238

locations and the spatial forecast, we examine where the observed value falls within the distribution of239

simulated values. This quantile score is equivalent to the p-value of a one-sided statistical test. In previous240

CSEP experiments, critical values of α = 0.01 or α = 0.05 were commonly chosen to reject the null241
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hypothesis that the forecast could have generated the observed locations. However, in practice, we use242

the consistency tests as diagnostic tools to indicate a degree of (dis)agreement between a forecast and243

observations during the testing period (e.g., Bayona et al., 2022). Fig. 4b shows the S-test evaluation for244

time-independent Italian forecasts (originally published by Taroni et al., 2018).245

Magnitude test The magnitude (M) test assesses the null hypothesis that the observed magnitude246

distribution is consistent with that of the forecast. Similarly to the S-test, the M-test (Zechar et al.,247

2010) first sums rates in each magnitdue bin over spatial cells and normalizes the forecast so that Nfore248

matches Nobs, thus isolating the magnitude distribution of the forecast. As with the S-test, the M-test then249

determines the quantile of the observed (magnitude) joint log-likelihood score in the distribution of joint250

log-likelihood scores simulated from the forecast. Observed scores in the tail of the model distribution251

indicate discrepancies between the forecast and data that might be scientifically interesting.252

Conditional likelihood test The conditional likelihood (cL) test (Werner et al., 2010, 2011) null253

hypothesis states that the observed locations and magnitudes are consistent with the forecast conditional254

on the number of observed earthquakes, i.e. the test checks the joint space-magnitude distribution against255

the forecast. First, one computes the observed joint log-likelihood score by summing bin-wise log-256

likelihood scores over all space-magnitude bins. In this evaluation, the forecast rates are not normalized257

to match the observed rate. Again, we assess where this score falls in the critical range of the simulated258

distribution of joint log-likelihood scores. Small quantile scores again indicate discrepancies. Effectively,259

the CL test represents a combination of the S and M tests.260

Comparative testing pyCSEP also provides comparative T- and W-tests (Rhoades et al., 2011) to

evaluate the relative performance of two models, based on information gain scores per earthquake:

IGPE =
1
N

N

∑
i=1

[Xi −Yi]−
NA −NB

N
, (1)

where N is the number of observed earthquakes, and Xi = lnA(ki) and lnYi = B(ki) are the log-likelihood261

scores obtained by model A and model B in the bin k in which earthquake i occurred, and NA and NB262

are the expected number of earthquakes according to forecast A and B, respectively. The T-test assesses263

whether the IGPE is statistically different from zero. Following Rhoades et al. (2011), one applies the264

Student’s t-test to the IGPE score of forecast A over forecast B. We consider forecast A to be significantly265

more skillful than forecast B if the IGPE is positive and the confidence interval based on the Student’s266

t-distribution does not include zero. Conversely, if the IGPE is negative and the confidence interval does267

not include zero, forecast B is significantly more informative than model A. If the confidence interval268

includes zero, we consider differences in the score to be statistically insignificant. Fig. 5 shows T-test269
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results for Californian and Italian forecasts, which were originally published by Zechar et al. (2013) and270

Taroni et al. (2018), respectively.271

Testing catalog-based forecasts For catalog-based forecasts, pyCSEP provides (1) a number (N) test272

that compares the (non-Poissonian) number distribution from the forecasts against the observed number273

of earthquakes; (2) a magnitude (M) test that compares the sum of bin-wise differences in the incremental274

magnitude distribution; (3) a spatial (S) test that compares the geometric mean of the target event rates; and275

4) a pseudo-likelihood test based on a statistic that resembles the likelihood of a continuous point-process276

(Savran et al., 2020). These tests are essentially analogues of the aforementioned consistency tests, but277

they relax the Poissonian assumption. For a full description of these evaluations and their application to278

UCERF3-ETAS forecasts made during the 2019 Ridgecrest earthquake sequence in California, see Savran279

et al. (2020). In Fig. 6, we show an example of the N-test and S-test for a single seven-day UCERF3-ETAS280

forecast made immediately after the occurrence of the M7.1 mainshock of the Ridgecrest sequence. The281

catalog-based evaluations are available in the catalog_evaluations module in pyCSEP.282

Plotting and Other Utilities283

Along with the routines for statistical tests, pyCSEP provides a thin wrapper around the matplotlib (Hunter,284

2007) and cartopy (Met Office, 2015) plotting libraries to provide functions that visualize test results,285

catalogs, and spatial forecast maps (Fig. 7). We aim to keep the plotting capabilities both easily accessible286

for early users (i.e., by calling simple methods within most of pyCSEP core classes) and customizable287

enough to provide journal-quality figures, including: text formatting, legend and colormap editing, spatial288

grids, and preparing multi-panel figures. The implementation provides access to cartopy’s projection289

capabilities as well as basic maps, along with various (or user-defined) web-service tiled maps. We intend290

to keep the plotting functions modular, so that multiple outputs can be combined in single figures, and to291

preserve the plots if the user requires post-processing of the data or results (as shown in Fig. 7).292

REPRODUCIBILITY PACKAGES293

CSEP forecasting experiments have run in testing centers, which provide a controlled environment that294

prevents any access and modification of ongoing experiments. Because pyCSEP now provides the ability295

to configure bespoke earthquake forecasting experiments, we anticipate that researchers will be interested296

in using these methods to evaluate their own forecasts. We encourage researchers that use pyCSEP in297

their publications to follow the approach outlined by Krafczyk et al. (2021) and provide a reproducibility298

package for their publication.299

A reproducibility package is a structured set of code, data, and other files that are required to recreate300

all figures and tables within a manuscript. To illustrate this principle, we provide a reproducibility301
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package for this manuscript. The entry point of the reproducibility package is a script with the following302

responsibilities: (1) retrieve and verify data artifacts from Zenodo; (2) create a Docker image with the303

version of pyCSEP, and its dependencies, used for this publication; and (3) run a program to reproduce the304

figures from this article. Once the reader obtains the reproducibility package, there is a single command305

to reproduce all of the figures from this paper. We encourage users to try and run the reproducibility306

package for this manuscript (link for the reproducibility package in the Data and Resources section).307

PYCSEP COMMUNITY308

The pyCSEP efforts aim to strengthen the community of earthquake scientists with an interest in fore-309

casting. We intend to unite researchers interested in all aspects of earthquake forecasting from model310

development to testing and evaluation to make the process of forecast testing as transparent and accessible311

as possible. Fig. 8 is a screenshot from our first community workshop, held (virtually) in March 2021312

for modelers involved in the project RISE (‘Real-time earthquake rIsk reduction for a reSilient Europe’,313

financed by the European Commission’s Horizon 2020 program. The workshop introduced forecast314

developers to the pyCSEP toolkit, helped to identify where improvements and extensions could be made,315

and invited modelers to contribute. It was held over three sessions, with the first introducing pyCSEP316

testing, the second allowing modelers to present their current forecasting work, and the third focusing on317

a hands-on tutorial session. The workshop brought together modelers and model testers to understand the318

needs of both groups and familiarize all participants with the testing and visualization options currently319

available in the toolkit. This was later followed by a workshop on contributing to the pyCSEP project320

through GitHub to familiarize interested users with open-source community software development.321

Two tutorials were created for the workshop to demonstrate the process of model testing with pyCSEP322

for grid-based and catalog-based forecasts. The tutorials are in the form of interactive Jupyter notebooks323

(Kluyver et al., 2016) that provide a template for the key steps of model testing with pyCSEP. Both324

tutorials use real forecasts and catalog data similar to the examples in this paper. The tutorials are325

available on the pyCSEP online documentation (link in Data and Resources section), which also includes326

an installation guide, and a detailed user guide that covers the core concepts to details need to extend327

pyCSEP functionality.328

Open Call for Developers329

The workshops highlighted that pyCSEP greatly benefits from an active engagement of its community.330

Sustaining the development is a community effort and new contributions are essential to extend and331

improve pyCSEP’s utility. In this regard—and to leverage the open-source development approach—we332

welcome researchers and developers to join our community and to contribute new ideas and methods333
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(e.g., advanced evaluation capabilities, more robust tests, more efficient testing, etc.). Within the GitHub334

repository, these contributions can be introduced in the form of ‘pull requests’ (i.e., suggested code335

changes, improved documentation), or ‘issues’ (e.g., comments or suggestions about technical and336

scientific approaches). The contributions are transparent and the community can discuss them together.337

The pyCSEP community additionally meets in regular (developer) calls to coordinate contributions more338

interactively (e.g., by reviewing source code and new ideas).339

CONCLUSION340

pyCSEP is an open-source Python package that provides routines for evaluating probabilistic earthquake341

forecasting models that are expressed as earthquake rates in discrete space-magnitude cells and simulation-342

based forecasts consisting of synthetic earthquake catalogs. pyCSEP also includes utilities for visualizing343

forecasts and earthquake catalogs, and configuring earthquake forecasting experiments. The implementa-344

tion follows best-practices for open-source software development including documentation and continuous345

integration to build and test new code contributions. In CSEP, we are adopting a software development346

process that encourages contributions from researchers. To date we have received contributions that have347

added new evaluation methods and improved plotting capabilities. We advocate that publications involving348

pyCSEP are accompanied by reproducibility packages. Additionally, we have started a workshop series to349

train researchers on using pyCSEP and collaborating in open-source development. In 2021, we hosted350

two workshops teaching users how to use pyCSEP and to work collaboratively in GitHub. We encourage351

all interested users to visit the online documentation and the code repository to learn more about pyCSEP.352

DATA AND RESOURCES353

The pyCSEP software can be found on GitHub at https://github.com/SCECCode/pycsep354

and the documentation can be found at https://docs.cseptesting.org. The reproducibility355

package for this manuscript can be found at https://doi.org/10.5281/zenodo.6626265356

and the data can be found at https://doi.org/10.5281/zenodo.5777992. Best-practices357

from Computational Infrastructure for Geodynamics (CIG) can be found at https://geodynamics.358

org/software/software-bp. The link to GitHub actions documentation can be found at https:359

//docs.github.com/en/actions. The RISE project website can be found at http://www.360

rise-eu.org. Map-tiles for plotting maps can be found at https://maps.stamen.com. All361

websites were last accessed on 24 June 2022.362
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List of Figures520

Figure 1: Schematic of the pyCSEP classes and code structure showing the core classes521

of pyCSEP. For a complete description of the software, please see the online522

documentation (pyCSEP Developers, 2021).523

Figure 2: (a) Time-independent grid-based forecasts for the HELMSTETTER model for524

California (Helmstetter et al., 2007), and (b) the MELETTI model for Italy525

(Group, 2004). The colormap reflects the logarithm of the expected rate of526

M4.5+ earthquakes in 0.1◦×0.1◦ spatial bins over a five year period. The red527

circles depict locations of observed earthquakes during the five-year evaluation528

period. Earthquakes are shown atop the HELMSTETTER forecast from 01529

January 2006 through 01 January 2011, and atop the MELETTI forecast from 01530

January 2010 through 01 January 2015.531

Figure 3: Select realizations (synthetic catalogs) from a week-long UCERF3-ETAS fore-532

cast generated during the 2019 Ridgecrest, California, sequence. The forecast533

starts immediately following the M7.1 mainshock. Catalogs are chosen based on534

their percentile in the forecasted number distribution: (a) shows the 5th percentile,535

(b) shows the median, (c) shows the 75th percentile, and (d) shows the 99.9th
536

percentile catalog. Individual earthquakes are represented by red circles, and the537

background image shows the expected rate of M2.5+ earthquakes aggregated538

in 0.025◦× 0.025◦ spatial bins (i.e. the ensemble average over the simulated539

catalogs).540
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Figure 4: (a) N-test results for the HELMSTETTER (Helmstetter et al., 2007), BIRD LIU541

(Bird and Liu, 2007), and EBEL (Ebel et al., 2007) earthquake forecasts for542

California. The markers depict the number of M4.95+ earthquakes during543

the 2006–2010 RELM evaluation period. The green square indicates that this544

number falls within the 95% range of the forecast number distribution (solid545

bar), whereas red circles indicate inconsistencies between the forecast and ob-546

servations. Thus, the observed number of earthquakes is consistent with the547

HELMSTETTER model, whereas the BIRD LIU and EBEL models overesti-548

mate seismicity in the region. (b) Results of the S-test for the LOMBARDI549

(Lombardi and Marzocchi, 2010b), MELETTI (Group, 2004) and WERNER-550

M1 (Werner et al., 2010) forecasts for Italy. The markers represent the spatial551

joint log-likelihood of each model. The green square indicates that the spatial552

distribution forecasted by the LOMBARDI model is consistent with the spatial553

distribution of observed seismicity at a 0.01 significance level. Red circles554

indicate that the observed locations are inconsistent with the spatial forecasts by555

the MELETTI and WERNER models. In both panels, significance levels of the556

test are chosen from the original publication of these results (i.e., Taroni et al.,557

2018; Zechar et al., 2013).558

Figure 5: (a) T-test results comparing the BIRD LIU and EBEL forecasts with the bench-559

mark HELMSTETTER forecast (horizontal dashed line) in California. Red560

circles indicate information gains of the forecasts (here both negative) and561

vertical red bars show 95% confidence intervals. These results indicate that562

HELMSTETTER is significantly more informative than BIRD LIU and EBEL563

during the evaluation period. (b) Results of the T-test for the LOMBARDI and564

WERNER forecasts with respect to the MELETTI reference forecast (horizontal565

dashed line), in Italy. White circles display information gains of the forecasts566

and vertical gray bars represent 95% confidence intervals. The horizontal dashed567

line falls within both confidence intervals, indicating that these models are as568

statistically informative as the MELETTI benchmark model.569
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Figure 6: (a) Expected rate of M2.5+ events within 0.025◦× 0.025◦ spatial cells from570

a week-long UCERF3-ETAS forecast. The expected rates are computed by571

averaging over the simulated catalogs. The red circles show the locations of572

the 827 events observed during the forecast period. (b) N-test result for this573

UCERF3-ETAS forecast. The histogram shows the forecast number distribution574

with the two-sided 5% critical region highlighted red. The number of observed575

events, ω , is depicted as the dashed line, which falls near the mode of the forecast576

distribution, indicating consistency. δ1 equals the fraction of catalogs in the577

forecast that predict at least as many earthquakes as the observations, and δ2578

denotes the fraction of catalogs that contain at most the number of observed579

earthquakes. (c) S-test for the UCERF3-ETAS forecast. The histogram shows580

the distribution of simulated scores, computed by assigning each earthquake an581

expected rate based on the bin-wise values in (a) and computing the geometric582

mean over each catalog in the forecast. The two-sided 5% critical region is583

highlighted red. We compute the same statistic from the observed catalog, and584

show the value, ω , using the dashed line. The score, γ , shows the quantile where585

the observed value falls in the forecast distribution.586

Figure 7: Example of the spatial plotting capabilities of pyCSEP through a thin-wrapper587

over cartopy. (a) A quick basemap can be obtained from the default plotting588

arguments that uses map tiles by Stamen Design (link in Data and Resources589

section). (b) On top of the basemap, two post-processed forecasts (the ratio590

between them over a given range of magnitudes). (c) The observed catalog591

within the same magnitude range, with auto-scaled symbols according to their592

magnitudes. These functions are intended to be used with pyCSEP classes and593

provide a simple way of visualizing spatial earthquake forecasts and catalogs.594

Figure 8: A screenshot of the participants at the virtual pyCSEP training workshop in595

March 2021 hosted by the RISE project.596
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FIGURES597
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.regions
.CartesianGrid2D
● indexed list of 
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.Polygon
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nates and (indexed) spatial cells

Polygon .from_origins()
    .california_relm_region()
    .italy_csep_region()
    .global_region()
    .create_aftershock_region()

.CSEPCatalog
● region
● list of earthquakes

Stores an earthquake 
catalog; provides 
import/export, 
plotting, filtering, and 
binning functions

.load_catalog()
 (custom loader)
 load_catalog()
 query_comcat()
 load_stochastic
 _event_set()

.forecasts

.GriddedForecast

Stores a gridded forecast; 
provides plotting and counting/
summing over the grid

.CatalogForecast
● region
● list of CSEPCatalog 
● start & end time

Stores a catalog-based forecast; 
provides plotting and counting/
summing over the catalogs

.get_expected_rates()

load_gridded_forecast()

load_catalog_forecast().catalogs

.poisson_evaluations

.number_test()

.magnitude_test()

.spatial_test()

.likelihood_test()

.conditional_likelihood_test()

.paired_t_test()

.w_test()

.EvaluationResult
● distribution of test statistic
● statistic from observations
Stores the result of an 
evaluation and allows to plot it

● region
● 2D spatio-magnitude array
● start & end time

Legend

Creation methods

Spatial cell

● coordinates

.number_test()

.magnitude_test()

.spatial_test()

.pseudolikelihood_test()

.calibration_test()

.catalog_evaluations

associate associate

provide observations provide model output
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Creation methods

Consistency tests (model vs. catalog)

Comparative tests (models vs. model)

Figure 1. Schematic of the pyCSEP classes and code structure showing the core classes of pyCSEP. For
a complete description of the software, please see the online documentation (pyCSEP Developers, 2021).
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Figure 2. (a) Time-independent grid-based forecasts for the HELMSTETTER model for California
(Helmstetter et al., 2007), and (b) the MELETTI model for Italy (Group, 2004). The colormap reflects the
logarithm of the expected rate of M4.5+ earthquakes in 0.1◦×0.1◦ spatial bins over a five year period.
The red circles depict locations of observed earthquakes during the five-year evaluation period.
Earthquakes are shown atop the HELMSTETTER forecast from 01 January 2006 through 01 January
2011, and atop the MELETTI forecast from 01 January 2010 through 01 January 2015.
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Figure 3. Select realizations (synthetic catalogs) from a week-long UCERF3-ETAS forecast generated
during the 2019 Ridgecrest, California, sequence. The forecast starts immediately following the M7.1
mainshock. Catalogs are chosen based on their percentile in the forecasted number distribution: (a) shows
the 5th percentile, (b) shows the median, (c) shows the 75th percentile, and (d) shows the 99.9th percentile
catalog. Individual earthquakes are represented by red circles, and the background image shows the
expected rate of M2.5+ earthquakes aggregated in 0.025◦×0.025◦ spatial bins (i.e. the ensemble average
over the simulated catalogs).
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Figure 4. (a) N-test results for the HELMSTETTER (Helmstetter et al., 2007), BIRD LIU (Bird and
Liu, 2007), and EBEL (Ebel et al., 2007) earthquake forecasts for California. The markers depict the
number of M4.95+ earthquakes during the 2006–2010 RELM evaluation period. The green square
indicates that this number falls within the 95% range of the forecast number distribution (solid bar),
whereas red circles indicate inconsistencies between the forecast and observations. Thus, the observed
number of earthquakes is consistent with the HELMSTETTER model, whereas the BIRD LIU and EBEL
models overestimate seismicity in the region. (b) Results of the S-test for the LOMBARDI (Lombardi
and Marzocchi, 2010b), MELETTI (Group, 2004) and WERNER-M1 (Werner et al., 2010) forecasts for
Italy. The markers represent the spatial joint log-likelihood of each model. The green square indicates
that the spatial distribution forecasted by the LOMBARDI model is consistent with the spatial distribution
of observed seismicity at a 0.01 significance level. Red circles indicate that the observed locations are
inconsistent with the spatial forecasts by the MELETTI and WERNER models. In both panels,
significance levels of the test are chosen from the original publication of these results (i.e., Taroni et al.,
2018; Zechar et al., 2013).
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Figure 5. (a) T-test results comparing the BIRD LIU and EBEL forecasts with the benchmark
HELMSTETTER forecast (horizontal dashed line) in California. Red circles indicate information gains
of the forecasts (here both negative) and vertical red bars show 95% confidence intervals. These results
indicate that HELMSTETTER is significantly more informative than BIRD LIU and EBEL during the
evaluation period. (b) Results of the T-test for the LOMBARDI and WERNER forecasts with respect to
the MELETTI reference forecast (horizontal dashed line), in Italy. White circles display information
gains of the forecasts and vertical gray bars represent 95% confidence intervals. The horizontal dashed
line falls within both confidence intervals, indicating that these models are as statistically informative as
the MELETTI benchmark model.
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Figure 6. (a) Expected rate of M2.5+ events within 0.025◦×0.025◦ spatial cells from a week-long
UCERF3-ETAS forecast. The expected rates are computed by averaging over the simulated catalogs. The
red circles show the locations of the 827 events observed during the forecast period. (b) N-test result for
this UCERF3-ETAS forecast. The histogram shows the forecast number distribution with the two-sided
5% critical region highlighted red. The number of observed events, ω , is depicted as the dashed line,
which falls near the mode of the forecast distribution, indicating consistency. δ1 equals the fraction of
catalogs in the forecast that predict at least as many earthquakes as the observations, and δ2 denotes the
fraction of catalogs that contain at most the number of observed earthquakes. (c) S-test for the
UCERF3-ETAS forecast. The histogram shows the distribution of simulated scores, computed by
assigning each earthquake an expected rate based on the bin-wise values in (a) and computing the
geometric mean over each catalog in the forecast. The two-sided 5% critical region is highlighted red. We
compute the same statistic from the observed catalog, and show the value, ω , using the dashed line. The
score, γ , shows the quantile where the observed value falls in the forecast distribution.

28/30



Figure 7. Example of the spatial plotting capabilities of pyCSEP through a thin-wrapper over cartopy.
(a) A quick basemap can be obtained from the default plotting arguments that uses map tiles by Stamen
Design (link in Data and Resources section). (b) On top of the basemap, two post-processed forecasts (the
ratio between them over a given range of magnitudes). (c) The observed catalog within the same
magnitude range, with auto-scaled symbols according to their magnitudes. These functions are intended
to be used with pyCSEP classes and provide a simple way of visualizing spatial earthquake forecasts and
catalogs.
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Figure 8. A screenshot of the participants at the virtual pyCSEP training workshop in March 2021
hosted by the RISE project.
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