
FACTORISATION OF Xn − α OVER FINITE FIELDS - II

Abstract. In this note, we are studying factorization in finite fields of poly-
nomials Xn − γ with factors grouping irreducible polynomials of same order.
We describe a method of calcul of these factors by induction.

1. Introduction

In the previous note [1] is studied factorization of polynomials Xn−γ into product
of irreducible polynomials in Fp[X]. We have seen that the polynomials Xn−γ with
γ going through all d-th primitive roots, all have the same distribution of orders
for their irreducible factors, and that the orders k present in this factorization are
the integers of the set Fn,d = Div(nd) \

⋃
l|d, l ̸=d

Div(nl) where Div(q) denotes the

divisors of q. So we have Xn−γ =
∏

k∈Fn,d

ϕk,n,γ where ϕk,n,γ is grouping all factors

of order k. The purpose of this note is to clarify the calculation of the polynomials
ϕk,n,γ by induction.

2. Definition of ψk,α

Let p be a prime integer, n an integer coprime with p and α ∈ F∗
p.

Let ξ be a primitive k-root i.e. ξ is in the group
(
Fp

)∗
and has order k. As (Fp)

∗

is a subgroup of
(
Fp

)∗
we can consider the morphism Z →

(
Fp

)∗
/ (Fp)

∗ defined by
s 7→ ξs. This morphism has a kernel of type rZ with r = inf{s ∈ N∗ | ξs ∈ (Fp)

∗}.
As a result ξr = α ∈ (Fp)

∗. Moreover, as ξ has order k, we can easily see
that rord(α) = k. Let lk be defined by lk = gcd(k, p − 1). We prove now that
ord(α) = lk: we have ord(α) | p− 1 because α ∈ (Fp)

∗, and we have ord(α) | k, so
ord(α) | lk hence ord(α) ≤ lk. In order to show lk ≤ ord(α), as ord(α) = k

r we have
lk ≤ ord(α) ⇐⇒ lk ≤ k

r ⇐⇒ r ≤ k
lk

. To prove the last inequality it suffices to
show that ξk/lk ∈ (Fp)

∗ because in that case, from the definition of r, we will have
r | k

lk
. It is the case because

(
ξk/lk

)lk
= 1 hence ord

(
ξk/lk

)
| lk so ord

(
ξk/lk

)
| p−1

and hence ξk/lk ∈ (Fp)
∗. As a result r = k

lk
and r only depends on k (and not on

ξ): let us denote it rk and we have k = rklk. The following proposition sums up
the above paragraph.

Proposition 1. Let k ̸= 0 be an integer. Let lk = gcd(k, p − 1) and rk = k
lk

. Let
ξ be a k-primitive root of Fp. Then we have

rk = inf{s ∈ N∗ | ξs ∈ (Fp)
∗},

ξrk = α ∈ (Fp)
∗ and ord(α) = lk.

We can now introduce the definition of the polynomial ψk,α.

Definition 1. For all integer k ̸= 0, let lk = gcd(k, p − 1) and rk =
k

lk
. For all

α lk-th primitive root, we define the polynomial ψk,α to be the product of all the
irreducible factors of the cyclotomic polynomial ϕk whose roots ξ verify ξrk = α
(if a root verify that, all the roots verify that too because they are conjugated via
Frobenius).
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In conjunction with proposition 1, the above definition gives the following proposi-
tion.

Proposition 2. Let k ∈ N∗, lk and rk as defined above. With notation P k for the
set of primitive k-roots,

(1) for all α ∈ P lk , ψk,α divides Xrk − α,
(2) ϕk =

∏
α∈P lk

ψk,α and hence for all α ∈ P lk , deg(ψk,α) =
φ(k)
φ(lk)

,

(3) for all α ∈ P lk , the polynomial ψk,α is irreducible if and only if

φ(lk)× ordZ∗
p
(p) = φ(k).

Let us prove the first point: the fact that ψk,α | Xrk − α is a direct consequence
of the definition of ψk,α. The second point is a direct result of proposition 1 and
the calculation of the degree is then the consequence of the following facts: there
are φ(lk) lk-primitive roots denoted α1, . . . , αφ(lk), all the ψk,αi

have same degree
(from [1]) and ϕk has degree φ(k). The third point comes from the well-known fact
that the minimal polynomials ϕξ of ξ ∈ P k are of degree the order ordZ∗

k
(p) of p in

the group Z∗
k.

3. Application to factorization of Xn − γ

3.1. Indistinguishability of irreducible factors of ψk,α. Let n be an integer
and γ ∈ (Fp)

∗ of order d. Let us remark firstly that for all k-primitive root ξ we
have ϕξ | Xn − γ if and only if ξn = γ. In such a case, with r = rk, we have
from proposition 1 rk | n and γ = ξn = (ξrk)

n/rk = αn/r. So by denoting P k

the k-th primitive roots and P k
α = {ζ ∈ P k | ζrk = α}, for all ζ ∈ P k

α we have
ζn = (ζr)

n/r
= αn/r = γ so ϕζ | Xn − γ. As a result we can conclude that

ψk,α | Xn − γ. The following proposition sums up the above paragraph.

Proposition 3. Let n ∈ N∗, γ ∈ (Fp)
∗. For all k ∈ N∗ and α ∈ (Fp)

∗, denoting

P k
α = {ξ ∈ P k | ξrk = α}

we have
(1) for all ξ ∈ P k

α , if ϕξ | Xn − γ then ψk,α | Xn − γ,
(2) ψk,α | Xn − γ if and only if rk | n and αn/rk = γ.

From the first point of this proposition we could say that the family of polynomials
(Xn − γ)n∈N,γ∈F∗

p
doesn’t distinguish or doesn’t separate the irreducible factors of

the ψk,α.

3.2. Factorization by order grouping of Xn − γ. Let us search now the fac-
torization of Xn − γ as expected in the introduction. We have seen in [1] that
the polynomials Xn − γ for γ ∈ (Fp)

∗ have for irreducible factors the irreducible
factors of ϕk for k ∈ Div(nd) \

⋃
l|d, l ̸=d

Div(nl) (recalling that d = ord(γ)). From the

first subsection above we can deduce that the polynomial Xn − γ have as factors
polynomials of type ψk,α for k ∈ Div(nd) \

⋃
l|d, l ̸=d

Div(nl). But from proposition 3

we have ψk,α | Xn − γ if and only if rk | n and αn/rk = γ. As a result, denoting
Fn,d = Div(nd) \

⋃
l|d, l ̸=d

Div(nl), we have

Xn − γ =
∏

k∈Fn,d

rk|n
αn/rk=γ

ψk,α(1)
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Let us remark that from [1], we know that if k ∈ Fn,d then there exists α such that
ψk,α|Xn − γ. As a result the condition rk | n is superfluous, and so we can write

Xn − γ =
∏

k∈Fn,d

αn/rk=γ

ψk,α

Let us remark that there might exist an order k with rk | n without ψk,α | Xn − γ

because for all α of order lk we will never have αn/rk = γ.
Finally, we can prove that among the three conditions under the product of equation
1 we can remove the condition k ∈ Fn,d: let us consider (k, α) such that rk | n and
αn/rk = γ. First of all, for all ξ ∈ P k

α , ξnd = (ξr)
n
r d

= α
n
r d = γd = 1 so

k | nd. Next ord(αn/rk) = ord(γ), but as ord(αn/rk) = lk/ gcd
(

n
rk
, lk

)
(recalling

that ord(α) = lk) then lk = d × gcd
(

n
rk
, lk

)
= gcd

(
nd
rk
, lkd

)
. As k = rklk then

lk = gcd
(
nd
k lk, dlk

)
= gcd

(
nd
k , d

)
lk and hence gcd

(
nd
k , d

)
= 1 i.e. nd

k is coprime
to d. This imply directly that k /∈

⋃
l|d, l ̸=d

Div(nl): else nl = km with d = lf and

f ̸= 1 hence nd = kfm and nd
k = fm is so not coprime with d. So we get the below

theorem.

Theorem 1. Let n be an integer, γ ∈ (Fp)
∗, then denoting

Fn,d = Div(nd) \
⋃

l|d, l ̸=d

Div(nl)

we have
Xn − γ =

∏
k∈Fn,d

αn/rk=γ

ψk,α =
∏
rk|n

αn/rk=γ

ψk,α.

4. Example

Let us compute by induction the polynomials ψk,α and the factorizations of some
polynomials Xn− γ in F7. The order of elements of (F7)

∗
= (Z/7Z) \ {0} are given

in the following table.

element 1 2 3 4 5 6
order 1 3 6 3 6 2

Let us now compute the polynomials ψk,α for various k.
• For the order k = 1 we have l1 = gcd(1, 6) = 1 so α = 1 and r1 = 1 hence
ψ1,1 = ϕ1 = X − 1.

• For the order k = 2 we have l2 = gcd(2, 6) = 2 so α = 6 and r2 = 1 hence
ψ2,6 = ϕ2 = X − 6.

• For the order k = 3 we have l3 = gcd(3, 6) = 3 so α ∈ {2, 4} and r3 = 1
hence ψ3,2 = X − 2 and ψ3,4 = X − 4.

• For the order k = 4 we have l4 = gcd(4, 6) = 2 so α = 6 and r4 = 2 hence
ψ4,6 = ϕ4 divides X2 − 6. But deg(ϕ4) = φ(4) = 2 so ψ4,6 = X2 − 6.

• For the order k = 5 we have l5 = gcd(5, 6) = 1 so α = 1 and r5 = 5
hence ψ5,1 = ϕ5 divides X5 − 1. But X5 − 1 = ϕ5ϕ1 = ϕ5 × (X − 1) so
ϕ5 = X5−1

X−1 = 1 +X +X2 +X3 +X4.
• For the order k = 6 we have l6 = gcd(6, 6) = 6 so α ∈ {3, 5} and r6 = 1

hence ψ6,3 = X − 3 and ψ6,5 = X − 5.
• For the order k = 7 we have l7 = gcd(7, 6) = 1 so α = 1 and r7 = 7 hence

as in the case k = 5 we have ψ7,1 = ϕ7 = 1 +X + . . .+X6.
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• For the order k = 8 we have l8 = gcd(8, 6) = 2 so α = 6 and r6 = 4 hence
ψ8,6 = ϕ8 divides X4 − 6. But deg(ϕ8) = φ(8) = 4 so ψ4,6 = X4 − 6.

• For the order k = 9 we have l9 = gcd(9, 6) = 3 so α ∈ {2, 4} and r9 = 3
hence ψ9,2 | X3 − 2 and ψ9,4 | X3 − 4. But ψ9,2 and ψ9,4 have same degree
and multiplied give ϕ9 which has degree φ(9) = 6 so they both have degree
3. As a result ψ9,2 = X3 − 2 and ψ9,4 = X3 − 4.

• For the order k = 10 we have l10 = gcd(10, 6) = 2 so α = 6 and r10 = 5
hence ψ10,6 = ϕ10 divides X5 − 6. But as F5,2 = Div(10) \Div(5) = {10, 2}
then X5 − 6 = ϕ10ϕ2 = ϕ10 × (X + 1) so by euclidean division we get
ψ10,6 = X4 −X3 +X2 −X + 1.

• For the order k = 11 we have l11 = gcd(11, 6) = 1 so α = 1 and r11 = 11
hence as in case k = 5 we get ϕ11,1 = 1 +X + . . .+X10.

• For the order k = 12 we have l12 = gcd(12, 6) = 6 so α ∈ {3, 5} and
r12 = 2 hence ψ12,3 | X2 − 3 and ψ12,5 | X2 − 5. As in case k = 9 we have
deg(ψ12,α) =

φ(12)
2 = 2 so ψ12,3 = X2 − 3 and ψ12,5 = X2 − 5.

• For the order k = 13 we have l13 = gcd(13, 6) = 1 so α = 1 and r13 = 13
hence as in case k = 5 we get ϕ13,1 = ϕ13 = 1 +X + . . .+X12.

• For the order k = 14 we have l14 = gcd(14, 6) = 2 so α = 6 and r14 = 7
hence ψ14,6 = ϕ14 divides X7 − 6. But as F7,2 = Div(14) \Div(7) = {14, 2}
then X7 − 6 = ϕ14ϕ2 = ϕ14 × (X + 1) so by euclidean division we get
ψ14,6 = X6 −X5 + . . .−X + 1.

• For the order k = 15 we have l15 = gcd(15, 6) = 3 so α ∈ {2, 4} and r15 = 5
hence ψ15,2 | X5−2 and ψ15,4 | X5−4. But F5,3 = Div(15)\Div(5) = {15, 3}
then X5 − 2 = ψ15,2ψ3,4 (because 415/3 = 2) and X5 − 4 = ψ15,4ψ3,2 (be-
cause 215/3 = 4). As a result

ψ15,2 =
X5 − 2

X − 4
= X4 + 4X3 + 2X2 +X + 4

ψ15,4 =
X5 − 4

X − 2
= X4 + 2X3 + 4X2 +X + 2
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