FACTORISATION OF X" —a OVER FINITE FIELDS - II

ABSTRACT. In this note, we are studying factorization in finite fields of poly-
nomials X™ — v with factors grouping irreducible polynomials of same order.
We describe a method of calcul of these factors by induction.

1. INTRODUCTION

In the previous note [1] is studied factorization of polynomials X™ — ~ into product
of irreducible polynomials in F,,[X]. We have seen that the polynomials X™ —~ with
v going through all d-th primitive roots, all have the same distribution of orders
for their irreducible factors, and that the orders k present in this factorization are

the integers of the set F;, 4 = Div(nd)\ |J Div(nl) where Div(¢q) denotes the
1|d, l#£d
divisors of ¢. So we have X” —y =[] ¢ n,y Where ¢y, 4 is grouping all factors
kEFy, 4
of order k. The purpose of this note is to clarify the calculation of the polynomials
®k,n, by induction.

2. DEFINITION OF vy o

Let p be a prime integer, n an integer coprime with p and o € Fj.

Let £ be a primitive k-root i.e. £ is in the group (E)* and has order k. As (F,)"
is a subgroup of (F,)" we can consider the morphism Z — (F,)" / (F,)" defined by
s+ £°. This morphism has a kernel of type rZ with r = inf{s € N*|¢&* € (F,)"}.
As a result &" = a € (F,)". Moreover, as £ has order k, we can easily see
that rord(«) = k. Let I be defined by I = ged(k,p —1). We prove now that
ord(a) = ly: we have ord(a) | p — 1 because a € (F,)", and we have ord(a) | k, so
ord(a) | I hence ord(e) < lj. In order to show [, < ord(a), as ord(ar) = £ we have
Iy <ord(a) <= I < % — r< % To prove the last inequality it suffices to
show that ¢¥/tx ¢ (F,)" because in that case, from the definition of r, we will have
T | i It is the case because (fk/lk)lk =1 hence ord (£%/!%) | I so ord (€¥/1) | p—1
and hence ¢/ € (F,)". As a result r = f and r only depends on k (and not on
€): let us denote it 7, and we have k = ril;. The following proposition sums up
the above paragraph.

Proposition 1. Let k # 0 be an integer. Let Iy, = ged(k,p — 1) and rp = % Let
& be a k-primitive root of IF,. Then we have

re = inf{s € N*|£° € (F,)"},

& =a e (Fp)" and ord(a) = Iy

We can now introduce the definition of the polynomial vy, .

Definition 1. For all integer k # 0, let I, = ged(k,p — 1) and r, = lﬁ For all

a l-th primitive root, we define the polynomial vy o to be the productkof all the
irreducible factors of the cyclotomic polynomial ¢ whose roots £ verify £™ = «
(if a root verify that, all the roots verify that too because they are conjugated via
Frobenius).
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In conjunction with proposition 1, the above definition gives the following proposi-
tion.

Proposition 2. Let k € N*, I, and ), as defined above. With notation P* for the
set of primitive k-roots,

(1) for all « € P, 2y, o, divides X" — a,

(2) ¢ = Hl VYr.o and hence for all a € P, deg(vr o) = 5((li))’
a€EP'k

(3) for all a € P, the polynomial ¢y o is irreducible if and only if
@(l) x ordzs (p) = ¢(k).

Let us prove the first point: the fact that ¢ | X™ — « is a direct consequence
of the definition of v, . The second point is a direct result of proposition 1 and
the calculation of the degree is then the consequence of the following facts: there
are ¢(lg) lg-primitive roots denoted as, ..., ay(,), all the ¥, o, have same degree
(from [1]) and ¢y, has degree ¢(k). The third point comes from the well-known fact
that the minimal polynomials ¢¢ of £ € P¥ are of degree the order ordz: (p) of p in
the group Zj.

3. APPLICATION TO FACTORIZATION OF X" —

3.1. Indistinguishability of irreducible factors of i . Let n be an integer
and v € (F,)" of order d. Let us remark firstly that for all k-primitive root £ we
have ¢¢ | X™ — v if and only if £ = 7. In such a case, with r = 74, we have
from proposition 1 1 | 7 and v = &" = (€)™ = o™/, So by denoting P*
the k-th primitive roots and P¥ = {¢ € P*|("™ = a}, for all ( € P* we have
o= (" = o™ = 4 so ¢c | X™ —~. As a result we can conclude that
Yka | X™ — . The following proposition sums up the above paragraph.

Proposition 3. Let n € N*, v € (F,)". For all k € N* and a € (F,)", denoting
Py ={¢e PH|¢™ =a}
we have

(1) for all € € PE, if ¢ | X™ —~y then tpo | X — 7,
(2) Yk | X™ — 7 if and only if i | n and a™/™ = 4.

From the first point of this proposition we could say that the family of polynomials
(Xm — ’Y)neN,welF; doesn’t distinguish or doesn’t separate the irreducible factors of

the 7/”6,04-

3.2. Factorization by order grouping of X" — ~. Let us search now the fac-
torization of X™ — « as expected in the introduction. We have seen in [1] that
the polynomials X" — v for v € (F,)" have for irreducible factors the irreducible
factors of ¢y, for k € Div(nd)\ |J Div(nl) (recalling that d = ord(y)). From the
I|d, 1£d
first subsection above we can deduce that the polynomial X™ — ~ have as factors
polynomials of type 9y o for k € Div(nd)\ |J Div(nl). But from proposition 3
1|d, 1#d
we have ¢ | X™ — v if and only if r; | n and ™™ = ~. As a result, denoting
F,qi=Div(nd)\ | Div(nl), we have
U|d, 1#d

(1) X"—y= ][] tra
k€EFy, a
rE|n
o™k =y
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Let us remark that from [1], we know that if k£ € F,, 4 then there exists « such that
Yo/ X™ — . As a result the condition 7 | n is superfluous, and so we can write

X" — Y= H wk,a

kGFn,d

an/rk, =~
Let us remark that there might exist an order k with ry | n without ¢ o | X™ —
because for all a of order I, we will never have o™/ = .
Finally, we can prove that among the three conditions under the product of equation
1 we can remove the condition k € F;, 4: let us consider (k,«) such that r | n and
™™ = ~. First of all, for all ¢ € PF, ¢nd = (fr)%d =ar? =44 =1 s0
k| nd. Next ord(a™/™) = ord(7), but as ord(a”/"*) = I,/ ged (Tﬂ lk) (recalling

)

that ord(a) = Ij) then Iy = d x ged (%,zk) = ged (f—g,lkd). As k = 7, then

l, = ged (%dlk,dlk) = ged ("Td,d) l;; and hence gecd (%d,d) =1 ie. %d is coprime

to d. This imply directly that k ¢ |J Div(nl): else nl = km with d = [f and
1d, 1#d

f # 1 hence nd = kfm and "Td = fm is so not coprime with d. So we get the below

theorem.

Theorem 1. Let n be an integer, v € (F,)", then denoting
Fq=Div(nd)\ | J Div(nl)

Ud, 1#d
we have
X" — Y= H wk,a = H wk,ow
k€EF, q ri|n
™/ Tk = a™/ Tk =~

4. EXAMPLE

Let us compute by induction the polynomials 9 o, and the factorizations of some
polynomials X™ —+ in F7. The order of elements of (F7)" = (Z/7Z)\ {0} are given
in the following table.

element 1
1

2 3 4 5 6
order 3 6

3 6 2

Let us now compute the polynomials v, o for various k.

e For the order kK = 1 we have [; = ged(1,6) =1 so a =1 and r; = 1 hence
Piai=¢p1=X -1

e For the order k = 2 we have Iy = gcd(2,6) = 2 so a = 6 and r2 = 1 hence
a6 = g2 =X — 6.

e For the order k = 3 we have I3 = gcd(3,6) = 3 so a € {2,4} and r5 = 1
hence 132 =X —2 and ¢34 = X — 4.

e For the order k = 4 we have Iy = ged(4,6) =2 so a = 6 and r4 = 2 hence
¢4,6 = ¢4 divides X2 — 6. But deg(¢4) = 30(4) =2s0 1l)476 = X2 — 6.

e For the order k = 5 we have [5 = ged(5,6) = 1 so a =1 and r5 = 5
hence 51 = ¢5 divides X% — 1. But X° — 1 = ¢5¢1 = ¢5 x (X — 1) so

ds ==L =14 X 4+ X2+ X3 4+ X4

e For the order k = 6 we have lg = gcd(6,6) = 6 so a € {3,5} and 16 =1
hence 963 =X — 3 and ¢s5 = X — 5.

e For the order k = 7 we have l; = ged(7,6) =1 so a =1 and r7 = 7 hence
as in the case £k = 5 we have 971 = ¢7 = 1+ X +...+ X6,
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e For the order k = 8 we have lg = gcd(8,6) = 2 so a = 6 and rg = 4 hence

¢876 = ¢8 divides X4 — 6. But deg(ng) = @(8) =4so0 '¢4,6 = X4 — 6.

e For the order k = 9 we have lg = gcd(9,6) = 3 so a € {2,4} and 19 = 3

hence 195 | X —2 and g 4 | X® — 4. But g 2 and tbg 4 have same degree
and multiplied give ¢g which has degree ¢(9) = 6 so they both have degree
3. As aresult g0 = X3 — 2 and g4 = X3 — 4.

For the order k = 10 we have l;o = ged(10,6) = 2 so a = 6 and r;9p = 5
hence 1106 = ¢1o divides X® — 6. But as Fs , = Div(10) \ Div(5) = {10, 2}
then X° — 6 = ¢10¢2 = ¢10 X (X + 1) so by euclidean division we get
Y106 =Xt - X3+ X2 - X + 1.

For the order k = 11 we have l1; = ged(11,6) = 1so a =1 and r; = 11
hence as in case k =5 we get ¢111 =1+ X +...+ X0

For the order k = 12 we have 112 = ged(12,6) = 6 so a € {3,5} and
r12 = 2 hence 123 | X2 — 3 and 125 | X? — 5. As in case k = 9 we have

deg(¥12,a) = @ =250 Y123 =X?—3and ¢¥1p5 = X? — 5.
For the order k = 13 we have l;3 = ged(13,6) = 1s0o a = 1 and 35 = 13
hence as in case k = 5 we get ¢131 = @13 = 1+ X +...+ X112

For the order k = 14 we have 134 = ged(14,6) = 2soa =6 and 14 = 7
hence 9146 = ¢14 divides X7 — 6. But as F; » = Div(14) \ Div(7) = {14, 2}
then X7 — 6 = ¢1uds = ¢14 x (X + 1) so by euclidean division we get
Yrug =X —X°+...—X+1.

For the order k = 15 we have I35 = ged(15,6) = 3so @ € {2,4} and r15 =5
hence 1152 | X5—2 and ¢154 | X°—4. But F5 3 = Div(15)\Div(5) = {15,3}
then X5 — 2 = ¢15,2¢374 (because 415/3 = 2) and X% —4 = w1574’(/)3)2 (be—
cause 2'%/3 = 4). As a result

X° -2 4 3 2

Y152 = ~ 1 =X*+4X°+2X* + X +4
5 _

Visa =y = X H2X° H4X7 4 X 42
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