
Symbolic Execution for Randomized Programs
Artifact Overview

Zachary Susag1, Sumit Lahiri2, Justin Hsu3, and Subhajit Roy4

1,3Cornell University
2,4IIT Kanpur

In this document you will find detailed instructions on how to acquire, build, and reproduce the ex-
periments found in the original paper.

1 Getting Started

1.1 Acquiring & Installing Plinko

We provide a prebuilt Docker image of our tool, Plinko, which contains all the necessary depedencies,
tools, benchmarks, and scripts to reproduce the results of all experiments done in the paper. As such, the
first step to get Plinko running is to first acquire Docker for your host operating system. We have only
tested the Docker image on MacOS and Linux running the amd64 architecture; however, we do not forsee
issues on Windows systems due to the compartmentalized nature of Docker. We do know that the Docker
will fail if run on Apple Silicon devices, unfortunately.

To install Docker, follow the instructions found at https://docs.docker.com/get-docker/. While
we will provide all necessary commands to get Plinko up and running, if you are unfamiliar with Docker,
we suggest skimming the official Docker guide found at https://docs.docker.com/get-started/.

You can check if docker is up and running on your system by running the following command from
your terminal.

$ docker run hello-world

1

https://docs.docker.com/get-docker/
https://docs.docker.com/get-started/

To acquire Plinko’s Docker image, create a container from the downloaded image, and get an inter-
active terminal from inside the container, execute the following in your terminal:

$ docker pull zsusag/plinko:latest

$ docker run --name oopsla535_plinko -it --ulimit='stack=-1:-1' zsusag/plinko:latest

This will place you in an interactive Bash terminal inside of the Docker container. All binaries should
already be compiled. The tests described later assume at least 16GB of RAM installed on the system, with
atleast a 4 core CPU along with 40GB or more disk space.

1.2 Kick-the-Tires Test

To make sure that everything is working properly, we will solve the Monty Hall problem as described in
Section 2 of the paper. An annotated copy of the code found in Figure 1 can be found in
~/experiments/kick the tires/montyhall.cpp. The goal of this experiment is to prove that the
probability of winning the car regardless of the choice of the door, given that the contestant chooses to
switch doors when asked, is 2/3.

To run the experiment through Plinko, simply run the associated Python script found in the ~/experiments
directory:

from terminal inside the docker.

$ cd ~/experiments

$./kick_the_tires.py

After a few seconds, the script will return a table displaying the name of the experiment, how long
KLEE took to analyze the program, how long Z3 took to solve the query, the total amount of time elapsed,
the number of paths explored in the program, and the number of random samples (or probabilistic symbolic
variables) encountered in the program. The table should look like the following:

Case Study KLEE (sec.) Z3 (sec.) Total (sec.) Paths Samples

---------------------- ------------ ------------ ------------ ------- ---------

Montyhall 2.37 0.02 2.39 4 2

2

Additionally, the output from Plinko will be displayed. In general, if the query is found to be true,
Plinko will output “Property verified!”. Otherwise, a counterexample and the computed probability of
the predicate, 𝜓 , being true will be displayed. In the case of the Monty Hall problem, you should see the
following:

Num PSVs: 2

Property verified!

Z3 evaluation: 0.02s

2 Detailed Evaluation of Plinko

To reproduce the results from the paper we have created Python scripts to automatically run the various
experiments performed in the paper. We assume that you run all the commands henceforth from the
interactive terminal attached to the docker container that we have shown in section §1.2 of this document.

In the ~/experiments directory, youwill find a script for each table/figure found in Section 6 of the pa-
per, namely Table 1 (table1.py), Table 2 (table2.py), Figure 6 (figure6.py), and Figure 8 (figure8.py).
To reproduce the Storm comparison experiments (both Freivalds’ Algorithm (results found on lines 878–
903) and Figure 7), storm comparison.py is used. All source code for the experiments can be found in
the correspondingly named directory, also in the ~/experiments directory.

We will now go through in detail how to use each script and how to interpret the results of them in
the order they appear in the paper.

2.1 Table 1

Table 1 provides performance metrics for each of the case studies presented in Section 4 of the paper run
on the stock version of Plinko. To reproduce this table in full, simply run the table1.py script from
within the ~/experiments directory:

from the ~/experiments directory in docker container.

$./table1.py

Each case study is run with a timeout of 10 minutes, so at most this script will take 80 minutes,
but in actuality should only take about 30 minutes. As the script is running, progress updates will be

3

printed to the terminal. When the script is completed, an ASCII version of the table will be written to
~/experiments/table1.txt and should look like the following:

Case Study KLEE (sec.) Z3 (sec.) Total (sec.) Paths Samples Concretizations

---------------------- ------------ ------------ ------------ ------- --------- -------------------------

Freivalds' 2 17 19 2 2 (n) = (2)

Freivalds' (Multiple) 6 253 259 8 21 (n,k) = (3,7)

Reservoir Sampling 14 81 95 127 6 (n,k) = (13,7)

Reservoir Sampling 509 0 509 4096 12 (n,k) = (13,1)

Monotone Testing 5 377 382 36 1 (n) = (27)

Quicksort 14 109 123 120 10 (n) = (5)

Bloom Filter 12 360 372 83 8 (m,epsilon) = (3,0.39)

Count-min Sketch 3 132 135 2 8 (n,epsilon,gamma) = (4,0.5,0.25)

Additionally, log files produced by Plinko for each case study are written to the table1 results

directory. Each log file should display the number of PSVs, whether the property was verified, and how
long the Z3 evaluation took. All case studies should show that they have been verified with the exception
of Bloom Filter, which produces a counter-example due to a bug in the implementation (as stated in the
paper). In particular, that log file (table1 results/bloom filter.log) should look like the following:

Num PSVs: 8

mergePathsWithProbs: 353.69s

sum_probs!0 -> (/ 44177.0 78125.0)

Z3 evaluation: 360.93s

2.2 Figure 6 (Psi Comparison)

Figure 6 presents performance results from our comparison against Psi on Freivalds’ algorithm, Monotone
Testing, and the Reservoir Sampling case studies. Due to the amount of data presented in this figure,
instead of providing a script to run all the settings (which would take many, many hours), we have instead
opted to allow the reviewer to select which case study to run and which concretizations to run the case
study with. Running figure6.py -h will provide a short summary of how to use the script, but we will
explain in greater detail below.

4

2.2.1 Freivalds’ Algorithm

To produce the results of Figure 6a which uses Freivalds’ Algorithm as a case study, run

from the ~/experiments directory in docker container.

$./figure6.py freivalds <k>

where <k> is the setting of 𝑘 , or the number of times Freivalds’ algorithm should be run to reduce the
false-positive probability. The value of 𝑛 is fixed to be 2. For example, if you wanted to run Freivalds’
algorithm with 𝑘 = 10 on Psi, Plinko, and Plinko with the algebraic simplifications optimization turned
on, run:

$./figure6.py freivalds 10

Progress statements will be printed as experiments are run. Upon the completion of the script, a table
will be printed giving the timing results for each system. The table should look like the following:

Freivalds' (FirstOff): (n,k) = (2,10)

System Time (sec.)

-------------------- -------------

Psi 20.08

Plinko 84.77

Plinko (Algebraic) 5.16

Additionally, all log files can be found in the figure6 results directory.
If you would only like to run an individual system (e.g., you only want to test Psi), you can provide

the --psi flag to the command:

$./figure6.py freivalds 10 --psi

To just run Plinko, use the --plinko flag, and to run Plinko (Algebraic), use the --plinkoAlg flag.

5

2.2.2 Monotone Testing

To produce the results of Figure 6b which uses Monotone Testing as a case study, run

$./figure6.py monotone-testing <n>

where <n> is the setting of 𝑛, or the cardinality of the domain of the function to be tested for monotonicity.
For example, if you wanted to run Monotone Testing with 𝑛 = 5 on both Psi and Plinko, run:

$./figure6.py monotone-testing 5

As with Freivalds’ algorithm, progress statements will be printed,a table will be produced when the
script has terminated, and log files will be written to the figure6 results directory. For the above
command, the table should look like the following:

Monotone Testing: (n) = (5)

System Time (sec.)

-------------------- -------------

Psi 600.00

Plinko 2.05

Again, if you would only like to test Psi, use the --psi flag, and if you would only like to test Plinko, use
the --plinko flag.

2.2.3 Reservoir Sampling

To produce the results of Figure 6c which uses Reservoir Sampling as a case study, run

$./figure6.py reservoir-sampling -n <n> -k <k>

where <n> is the setting of 𝑛 to use and <k> is the setting of 𝑘 to use. For example, if you wanted to run
Reservoir Sampling with 𝑛 = 9 and 𝑘 = 4 on both Psi and Plinko, you would run the following command:

6

$./figure6.py reservoir-sampling -n 9 -k 4

As with the other two case studies, progress statements will be printed, a table will be produced when
the script has terminated, and log files will be written to the figure6 results directory. For the above
command, the table should look like the following:

Reservoir Sampling: (n,k) = (9,4)

System Time (sec.)

-------------------- -------------

Psi 85.88

Plinko 7.95

Again, if you would only like to test Psi, use the --psi flag, and if you would only like to test Plinko, use
the --plinko flag.

2.3 Storm Comparison (Lines 863–919)

We additionally compare Plinko against Storm, a probabilistic model checker on Freivalds’ algorithm
and Reservoir Sampling. Due to the amount of data presented in this figure, instead of providing a script
to run all the settings (which would take many, many hours), we have instead opted to allow the re-
viewer to select which case study to run and which concretizations to run the case study with. Running
storm comparison.py -h will provide a short summary of how to use the script, but we will explain in
greater detail below.

As an aside, recall from the paper that we had to restrict the input domain of the matrices for Freivalds’
algorithm, and the input array for reservoir sampling, to be {1, . . . , 𝑁 }. When we refer to 𝑁 , we are
referring to the maximum element of the input domain that you would like to test for Storm.

2.3.1 Freivalds’ Algorithm

To test Freivalds’ algorithm against Storm and Plinko, run the following command:

7

from the ~/experiments directory in docker container.

$./storm_comparison.py freivalds <N>

where <N> is the maximum element that a value in the matrix can be. For this experiment, we restrict
ourselves to just 2x2 matrices with Freivalds’ algorithm run only once (𝑛 = 2, 𝑘 = 1).

For example, if you wanted to restrict the input domain to be {1, 2}, and to test against Storm and
Plinko, you would run the following command:

$./storm_comparison.py freivalds 2

We do note that regardless of the setting of 𝑁 , Plinko will use full 32-bit ints for verification, not
{1, . . . , 𝑁 }.

Progress statements will be printed as experiments are run. Upon the completion of the script, a table
will be printed giving the timing results for both tools. The table should look like the following:

Freivalds' (AllOff): (n,k) = (2,1)

System Time (sec.)

-------------------- -------------

Plinko 3.63

Storm 3.00

Additionally, all log files can be found in the storm comparison results directory.
If you would only like to run an individual system (e.g., you only want to test Storm), you can provide

the --storm flag to the command:

$./storm_comparison.py freivalds 2 --storm

To just run Plinko, use the --plinko flag (when using this flag you can elude the setting of 𝑁)

8

2.3.2 Reservoir Sampling (Figure 7)

To test Reservoir Sampling against Storm and Plinko, run the following command:

$./storm_comparison.py reservoir-sampling -n <n> -N <N>

where <n> is the length of the input array from which the sample will be created from, and <N> is the
maximum element that a value in the input array can be. For this experiment, we restrict ourselves to just
the case where 𝑘 = 1 (i.e., the produced sample contains but a single element).

For example, if you wanted to restrict the input domain to be {1, . . . , 6}, and you wanted to set 𝑛 = 5,
you would run the following command:

$./storm_comparison.py reservoir-sampling -n 5 -N 6

As with Freivalds’ algorithm, Plinko will always be run with an input domain of 32-bit ints regardless of
the setting of 𝑁 .

Upon the completion of the script, a table will be printed giving the timing results for both tools. The
table should look like the following:

Reservoir Sampling: (n,k) = (5,1)

System Time (sec.)

-------------------- -------------

Plinko 2.02

Storm 37.00

Additionally, all log files can be found in the storm comparison results directory.
If you would only like to run an individual system (e.g., you only want to test Storm), you can provide

the --storm flag, and if you only want to test Plinko you can provide the --plinko flag.

2.4 Table 2

Table 2 provides performance metrics of the three variations of specifying that 𝐴 × 𝐵 ≠ 𝐶 in the query
for Freivalds’ algorithm when 𝑛 = 2 and the elements of the matrices are drawn from the space of 32-bit

9

ints. To reproduce the results of Table 2, simply run the following command from the ~/experiments
directory:

from the ~/experiments directory in docker container.

$./table2.py

As the script is running, progress updates will be printed to the terminal. When the script is completed,
an ASCII version of the table will be written to ~/experiments/table2.txt and should look like the
following:

Case Study KLEE (sec.) Z3 (sec.) Total (sec.) Paths

---------------------- ------------ ------------ ------------ -------

AllOff 3 0 3 2

SomeOff 2 27 29 2

FirstOff 2 2 4 2

Additionally, log files produced by Plinko for each case study are written to the table2 results

directory. Each log file should display the number of PSVs, whether the property was verified, and how
long the Z3 evaluation took.

2.5 Figure 8

Figure 8 presents performance metrics comparing the default, unoptimized version of Plinko against
Plinko with the formula sharing optimization (denoted as “Sharing”) and Plinko with the algebraic sim-
plifications optimization (denoted as “Algebraic”) on Freivalds’ algorithm, Reservoir Sampling, Monotone
Testing, andQuicksort.

Due to the amount of data presented in this figure, instead of providing a script to run all the settings
(which would take many, many hours), we have instead opted to allow the reviewer to select which case
study to run and which concretizations to run the case study with. Running figure8.py -h will provide
a short summary of how to use the script, but we will explain in greater detail below.

2.5.1 Freivalds’ Algorithm

To produce the results of Figure 8a which uses Freivalds’ Algorithm as a case study, run

10

from the ~/experiments directory in docker container.

$./figure8.py freivalds <k>

where <k> is the setting of 𝑘 , or the number of times Freivalds’ algorithm should be run to reduce the
false-positive probability. The value of 𝑛 is fixed to be 2. For example, if you wanted to run Freivalds’
algorithm with 𝑘 = 9 on Plinko, Plinko (Sharing), and Plinko (Algebraic), run:

$./figure8.py freivalds 9

Progress statements will be printed as experiments are run. Upon the completion of the script, a table
will be printed giving the timing results for each system. The table should look like the following:

Freivalds' (FirstOff): (n,k) = (2,9)

System Time (sec.)

-------------------- -------------

Plinko 18.82

Plinko (Algebraic) 4.15

Plinko (Sharing) 100.88

Additionally, all log files can be found in the figure8 results directory.
If you would only like to run an individual system (e.g., you only want to test Plinko), you can provide

the --plinko flag to the command:

$./figure8.py freivalds 9 --plinko

To just run Plinko (Sharing), use the --plinkoSharing flag, and to run Plinko (Algebraic), use the
--plinkoAlg flag.

2.5.2 Reservoir Sampling

To produce the results of Figure 8b which uses Reservoir Sampling as a case study, run

11

$./figure8.py reservoir-sampling -n <n> -k <k>

where <n> is the setting of 𝑛 to use and <k> is the setting of 𝑘 to use. For example, if you wanted to
run Reservoir Sampling with 𝑛 = 10 and 𝑘 = 4 on all variants of Plinko, you would run the following
command:

$./figure8.py reservoir-sampling -n 10 -k 4

As with the other scripts, progress statements will be printed, a table will be produced when the script has
terminated, and log files will be written to the figure8 results directory. For the above command, the
table should look like the following:

Reservoir Sampling: (n,k) = (10,4)

System Time (sec.)

-------------------- -------------

Plinko 14.61

Plinko (Algebraic) 69.62

Plinko (Sharing) 14.11

Again, if you would only like to test Plinko, use the --plinko flag, if you would only like to test Plinko
(Algebraic), use the --plinkoAlg flag, and if youwould only like to test Plinko (Sharing) use the --plinkoSharing
flag.

2.5.3 Monotone Testing

To produce the results of Figure 6c which uses Monotone Testing as a case study, run

$./figure8.py monotone-testing <n>

where <n> is the setting of 𝑛, or the cardinality of the domain of the function to be tested for monotonicity.
For example, if you wanted to run Monotone Testing with 𝑛 = 20 on all variants of Plinko, run:

12

$./figure8.py monotone-testing 20

As with the other scripts, progress statements will be printed,a table will be produced when the script
has terminated, and log files will be written to the figure8 results directory. For the above command,
the table should look like the following:

Monotone Testing: (n) = (20)

System Time (sec.)

-------------------- -------------

Plinko 18.07

Plinko (Algebraic) 31.75

Plinko (Sharing) 13.16

Again, if you would only like to test Plinko, use the --plinko flag, if you would only like to test Plinko
(Algebraic), use the --plinkoAlg flag, and if youwould only like to test Plinko (Sharing) use the --plinkoSharing
flag.

2.5.4 Quicksort

To produce the results of Figure 6d which uses randomizedQuicksort as a case study, run

$./figure8.py quicksort <n>

where <n> is the setting of 𝑛, or the length of the array to be sorted. For example, if you wanted to run
Quicksort with 𝑛 = 3 on all variants of Plinko, run:

$./figure8.py quicksort 3

As with the other scripts, progress statements will be printed,a table will be produced when the script has
terminated, and log files will be written to the figure8 results directory. For the above command, the
table should look like the following:

13

Quicksort: (n) = (3)

System Time (sec.)

-------------------- -------------

Plinko 2.07

Plinko (Algebraic) 2.09

Plinko (Sharing) 2.06

Again, if you would only like to test Plinko, use the --plinko flag, if you would only like to test Plinko
(Algebraic), use the --plinkoAlg flag, and if youwould only like to test Plinko (Sharing) use the --plinkoSharing
flag.

14

	Getting Started
	Acquiring & Installing Plinko
	Kick-the-Tires Test

	Detailed Evaluation of Plinko
	Table 1
	Figure 6 (Psi Comparison)
	Freivalds' Algorithm
	Monotone Testing
	Reservoir Sampling

	Storm Comparison (Lines 863–919)
	Freivalds' Algorithm
	Reservoir Sampling (Figure 7)

	Table 2
	Figure 8
	Freivalds' Algorithm
	Reservoir Sampling
	Monotone Testing
	Quicksort

