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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic matter. 
Therefore, dark matter flow might possess the widest presence in our universe. The 
other form of flow, hydrodynamic turbulence in air and water, is without doubt the 
most familiar flow in our daily life. During the pandemic, we have found time to 
think about and put together a systematic comparison for the connections and 
differences between two types of flow, both of which are typical non-equilibrium 
systems. 

The goal of this presentation is to leverage this comparison for a better understanding 
of the nature of dark matter and its flow behavior on all scales. Science should be 
open. All comments are welcome.

Thank you! 

(all slides available at zenodo.org by searching “dark matter flow”)
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Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

7. Universal scaling laws and density slope for dark matter 
halos from rotation curves and energy cascade
https://doi.org/10.48550/arXiv.2209.033

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676

https://dx.doi.org/10.5281/zenodo.6569898
https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.02991
https://doi.org/10.48550/arXiv.2202.06515
https://doi.org/10.48550/arXiv.2202.07240
https://doi.org/10.48550/arXiv.2203.05606
https://doi.org/10.48550/arXiv.2203.06899
https://doi.org/10.48550/arXiv.2209.03313
https://dx.doi.org/10.5281/zenodo.6541230
https://doi.org/10.48550/arXiv.2109.09985
https://doi.org/10.48550/arXiv.2109.12244
https://doi.org/10.48550/arXiv.2110.13885
https://doi.org/10.48550/arXiv.2201.12665
https://doi.org/10.48550/arXiv.2110.05784
https://doi.org/10.48550/arXiv.2202.04054
https://doi.org/10.48550/arXiv.2110.03126
https://doi.org/10.48550/arXiv.2110.09676
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Overview
 Some fundamentals of dark matter research
 Basic concepts in hydrodynamic turbulence
 Dark matter flow (SG-CFD) vs. hydrodynamic turbulence

 Theory of dark matter flow
 Structural (halo-based) approach
 Statistical (correlation-based) approach

 Applications of dark matter flow
 Predicting dark matter particle properties
 Understanding the origin of MOND
 The baryonic-halo mass ratio and total baron faction
 Universal scaling laws and halo density slope
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Applications of dark 
matter flow



294

Universal scaling laws and scales 
for dark matter halos from rotation 

curves and energy cascade
Xu, Zhijie arXiv:2209.03313 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2209.03313

https://doi.org/10.48550/arXiv.2209.03313
https://doi.org/10.48550/arXiv.2209.03313
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Introduction
 Is there an asymptotic density slope for halos? 
 Why exists a nearly universal density profile? 
 Why different inner slopes 𝛾𝛾 exist in simulations?

 Standard CDM Models’ successes for large scale 
structure formation and evolution.

 Small scale challenges suggest missing pieces:
 Galaxy scale (<1Mpc)
 Core-cusp problem
 Missing satellite 
 Too-big-to-fail 
 Baryonic Tully-Fisher and MOND

 Core-cusp problem
 Dark matter halo density 
 Cored density (𝛾𝛾 =0) from observational data
 Cuspy density (𝛾𝛾 ~-1) from N-body simulations

 No consensus
 𝛾𝛾 =-1.0 in NFW profile
 𝛾𝛾 =-1.2   (Diemand & Moore 2011)
 𝛾𝛾 = −1.3 (Governato et al. 2010)
 𝛾𝛾 = −1.3 (McKeown et al. 2022)

( )r rγρ ∝

 Core-cusp solutions
 Within CDM framework

 Baryonic feedback processes
 Beyond CDM 

 Self-interacting dark matter

 What are the critical length or density scales for dark 
matter if exist? 

 What is the effect of self-interaction on these scales?
 What are the fundamental properties (mass, cross-

section etc.) of dark matter?

No matter collisionless or self-interacting



Length scale

Wavenumber

ε

or η

ε: dissipated 
by viscosity ν
into heat.

ε

Energy 
contained 

scale

296

Energy cascade in hydrodynamic turbulence

 There exist an inertial range with a scale-
independent rate of energy cascade (ε does not 
depend on eddy size l) for eddy size η< l <L. η is a 
dissipative scale determined by viscosity ν and ε.

 In inertial range, inertial force is dominant over 
viscous force. A general scaling for velocity 
structure functions Sm(r) for pairwise velocity ΔuL
can be identified:

( ) ( ) ( )',
mm

m L L LS r a u u u= ∆ = −

( )2 3 2 3
2 uS rε∝ −( ) ( ) 3 3m m

m uS r rε∝
m=2

Two-thirds law

Big whirls have little whirls, That feed on their velocity; 
And little whirls have lesser whirls, And so on to viscosity. 
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Mass/Energy cascade in dark matter flow (SG-CFD)
Little halos have big halos, That feed on their mass; 

And big halos have greater halos, And so on to growth  

Halo mass mh
H

al
o 

gr
ou

p 
m

as
s 

m
g=

m
hn

h

Injection at 
smallest scaleεm,εu

Propagation 
range

Deposition 
range

Dissipated 
to grow 
halos.

t

 Collisionless nature and long-range interaction. 

 Long-range gravity requires a broad spectrum of 
halos to be formed to maximize system entropy. 

 A continuous cascade of mass/energy from smaller to 
larger mass scales with a scale-independent rate of 
mass transfer εm and εu in a certain range of mass 
scales (propagation range). 

 The mass/energy cascade is an intermediate 
statistically steady state for non-equilibrium systems 
to continuously maximize system entropy. 

 The maximum entropy distribution of dark matter flow.
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Mass/Energy cascade in dark matter flow (SG-CFD)
 Collisionless, no dissipation range in SG-CFD. 
 The smallest length scale of inertial range is not limited by viscosity. 
 This enable us to extend the scale-independent εu down to the smallest scale, where quantum 

effects become important
 Dark matter flow exhibits scale-dependent flow behaviors for peculiar velocity, i.e. a constant 

divergence flow on small scales and an irrotational flow on large scales.
 The constant divergence flow shares the same even order kinematic relations with those of 

incompressible (divergence free) flow. This hints to similar scaling laws holds for dark matter. 

Dissipation 
scale η

Integral 
scale L

Cascade (inertial range ε)Molecular 
scale

Cascade (propagation range εm,εu)Quantum 
scale

deposition 
range

Hydrodynamic 
Turbulence

Dark 
matter flow

(η is not present for 
dark matter flow)

mL
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Constant (time and scale independent) rate of 
energy cascade

The time variation of specific kinetic and potential energies 
from N-body simulation.

pK tε= − u

7
5yP tε= u

Power-law for 
Peculiar 

kinetic energy

Power-law for 
potential energy

Power-law time evolution for energy in terms 
of rate of energy cascade εu:

2 2
70

3
0

3 4.6 10
2

p
u

K u m
t t s

ε −= − = − ≈ − ×

Also see detail analysis for inverse kinetic 
energy cascade.
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The two-thirds law on small scales from N-body 
simulations

( ) ( )2 32 * 2 3
2 2 22lp lp

r sS r u S r r rβ− = = ∝

( ) ( ) ( )2 32 * 2 3
2 2 22 ,0lp n n

n n L n sS r u K u r r rβ− ∆ = ∝

( ) ( ) ( ) ( ) 1
2 1 1 22 1lp lp lp

n nS r n S r S r r+ = + ∝

( ) ( )2 2 3 * 3 2
2 22lp

r rv S r aβ=

( )
2 2 32 2 2r r r

u r
r

v v vv
r r v r

ε− = = =

Extend all the 
way to the 

smallest scale

Acceleration

Odd order moment (generalized stable clustering 
hypothesis):

Even order (two-thirds law):

Second order (two-thirds law):

Introduce a velocity scale:

Turnaround 
time

Variation of normalized reduced longitudinal 
structure function and two-thirds law
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Testing -4/3 law from rotation curves
( ) 32u rv rε− =

2 3 1 5 3
r r um G rα ε −=

2
r rv Gm r∝

Constant 
energy cascade
Virial theorem

2 3 1 4 3
r r u G rρ β ε − −=

All relevant quantities determined 
by G, scale r and εu :

Mass:

Density:

Velocity: ( )1 3

r s uv rγ ε=

Time: 1 3 2 3
r ut rε −∝

Halo scale rs radius and core density ρs
fitted from rotation curves

-4/3 law is confirmed by rotation curves!
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Constant rate of cascade from galaxy rotation curves

( )2
s r s s

v Gm r r= ( )
3
s

u
s s

v
r

ε
γ

− =

6.83sγ ≈

 Confirm the existence of a constant 
rate of cascade;

 Dispersion from spatial intermittence 
of energy cascade;

 Halos in different local environment 
may have different εu

 Dwarf galaxies tends to have smaller 
εu  due to tidal stripping.
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Relevant scales for self-interacting dark matter
3
0l ur u ε= −The largest length scale:

The smallest length scale:
( ) 1r r rm v tρ σ =

( )2
s r s s

v Gm r r=

( ) 3
u s s sv rε γ− = Constant 

energy cascade

Virial theorem
Elastic scatter 

( )54 6
um G mη ε σ−=

All relevant quantities determined by 
G, cross-section σ/m and εu :

Mass:
Density:

Length: ( )32 3
ur G mη ε σ−=

( ) 42 3
u G mηρ ε σ −−=

Maximum core size: 1r r agev t
m
σρ =

( )
1max

2100c
u age

r kgG t kpc
m m

ε
σ

−= − ≈

The smallest 
structure

How is 
structure 

generated?

Opposite 
to 

turbulence!
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Relevant scales for collisionless dark matter
3
0l ur u ε= −The largest length scale:

The smallest length scale:

( )2
s r s s

v Gm r r=

( ) 3
u s s sv rε γ− = Constant 

energy cascade

Virial theorem
Uncertainty principle

All relevant quantities determined by 
G, Planck constant h and εu :

2X X Xm v l⋅ = 

( )
1

5 4 129 10X um G GeVε∝ − ≈

( )
1

133 10X ul G mε −∝ − ≈

Mass scale:

Length scale:

( )
1

2 2 5 79 10X ut G sε −∝ ≈Time scale:

What is behind εu?

The smallest 
structure for 

self-interacting DM
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Uncertainty principles & energy cascade

For fully collisionless dark matter:
1) A unique "symmetry“ between x and v in phase space: 
 At given x , particles can have multiple v (multi-stream)
 With given v, particles can be at different x
 NOT possible for non-relativistic baryons

2) Due to the long-rang gravitational interaction, 
 Fluctuations (uncertainty) in x
 Fluctuations (uncertainty) in v
 Fluctuations (uncertainty) in a

3) Two pairs of conjugate variables:  
 Position x and momentum p 
 Momentum p and acceleration a

Position (x), Velocity (v = dx/dt), Acceleration (a = dv/dt)

( ) ( )1
2

ipxx p e dpψ ϕ
π

∞

−∞

= ∫ 



( ) ( )1
2

Xipa

X

p a e daµϕ µ
πµ

∞

−∞

= ∫

𝜓𝜓 𝑥𝑥Wave function for position:
Wave function for momentum: 𝜑𝜑 𝑝𝑝

Wave function for acceleration: 𝜇𝜇 𝑎𝑎

2x pσ σ ≥  2p a Xσ σ µ≥

22 2 37.44 10X X um kg m sµ ε −= − = × ⋅

u X X X Xm a vε µ= =

Uncertainty principles:

Postulated uncertainty principle for a and p
leads to the constant rate of energy cascade:
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Universal halo density from energy cascade
Reduced spatial/ 

temporal coordinate: 
( ) ( )

( )
( )

,
s h

c t rrx r t
r t r t

= =

( ) ( ) ( )
( )

,r h

F x
m r t m t

F c
=Function F(x) for 

enclosed mass at given r: 

( ) ( ) ( ) ( )
( )

3 '

2 3 2

,1,
4 4

r h
h

h

m r t m t c F x
r t

r r r x F c
ρ

π π
∂

= =
∂

Halo 
density: 

F(x)Radial flow uh(x) Density ρh

( ) ( ) ( )2

2

, ,, 1 0h rh
r r t u r tr t

t r r
ρρ  ∂∂  + =

∂ ∂

Radial 
continuity 
equation:

( ) ( ) ( )
( )'

lnln ln
ln ln ln

s h
h r

s

F c F xr mtu x u x
r t t t F x

 ∂ ∂ ∂
= = + −  ∂ ∂ ∂   

Radial flow 
equation:

( ) ( ) ( ) 2ln 1 1F x x x x x= + − + ∝NFW:
( ) ( ) ( ) 33 3 ,2F x x xαα α α= Γ −Γ ∝Einasto:

( )F x x c=Isothermal:

( )ln , ln
ln ln ln 2lnln

ln

r sh s

h

s h

m r tu r
x t t

r ux
t x

ργ

∂∂ ∂
+ −∂ ∂ ∂ ∂= = −

∂∂ −
∂

Density 
slope:

Density slope is dependent on
 Gradient of radial flow (spatial variation)
 Mass accretion (time variation) 

( ) 5 32 3 1,r s u sm r t G rε −∝

Fully virialized 
halos (or halo core)

0hu ≡

Stable clustering 
hypothesis

Energy 
cascade

4 3γ = − ( ) 4 3
h r rρ −∝
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Evolution of halo density profile
 Nearly universal density profile for 

fully virialized halos with uh=0;

 Asymptotic density slope γ=-4/3;

 Simulated halos have different slope 
due to uh and mass accretion

 Halos in different local environment 
may have different γ

 A modified Einasto profile is 
proposed to reflect different slopes γ
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Summary and keywords

 Smalls scale challenges suggest missing pieces in our current understandings of dark matter

 Review inverse mass and energy cascade in dark matter flow with a constant rate εu

 Energy cascade leads to a 2/3 law for kinetic energy ∝ r2/3 on scale 𝑟𝑟, as confirmed by N-body simulation   

 Energy cascade leads to a -4/3 law for halo density ∝ r-4/3 on scale 𝑟𝑟, as confirmed by rotation curves.  

 The largest halo scale is determined by u0
3/ εu 

 The smallest halo scale is dependent on the nature of dark matter:
 Collisionless dark matter: rη ∝ (Gh εu)1/3 , where h is Planck constant
 Self-interacting dark matter: rη ∝ G-3 εu

2 (σ/m)3, where (σ/m) is cross-section

 Asymptotic density slope -4/3 for virialized halos with vanishing radial flow

 Simulated halos have different slope due to radial flow and mass accretion

Small scale challenge Two-thirds law Four-thirds law
Core-cusp Density slope Uncertainty principle
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Backup Slides
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 zhijiexu@hotmail.com
 Zhijie.xu@pnnl.gov
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 Zhejiang University 

Civil Engineering
 National University of Singapore 

Structural Engineering
 Rensselaer Polytechnic Institute 

Mechanical Engineering
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 Computational Scientist
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