Goldbach's Conjecture — A Route to the Inconsistency of Arithmetic

Ralf Wüsthofen

Abstract. This paper proves an inconsistency in Peano arithmetic (PA) by showing that a strengthened form of the strong Goldbach conjecture as well as its negation can be derived. This contradiction is the consequence of two properties of a specific set which we use to reformulate the conjecture.

Notations. Let \mathbb{N} denote the natural numbers starting from 1, let \mathbb{N}_n denote the natural numbers starting from n > 1 and let \mathbb{P}_3 denote the prime numbers starting from 3.

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can be expressed as the sum of two different primes.

Theorem. Both SSGB and the negation ¬SSGB hold.

Proof. We define the set $S_g := \{ (pk, mk, qk) \mid k, m \in \mathbb{N}; p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \}.$

SSGB is equivalent to saying that every integer $x \ge 4$ is the arithmetic mean of two different odd primes and so it is equivalent to saying that all integers $x \ge 4$ appear as m in a middle component mk of S_g . So, by the definition of S_g we have

SSGB <=>
$$\forall x \in \mathbb{N}_4$$
 $\exists (pk, mk, qk) \in S_g$ $x = m$.
 $\neg SSGB <=> \exists x \in \mathbb{N}_4$ $\forall (pk, mk, qk) \in S_g$ $x \neq m$.

The set S_g has the following two properties.

First, the whole range of \mathbb{N}_3 can be expressed by the triple components of S_g ("covering"), because every integer $x \geq 3$ can be written as some pk with k = 1 when x is prime, as some pk with $k \neq 1$ when x is composite and not a power of 2, or as (3 + 5)k / 2 when x is a power of 2; $p \in \mathbb{P}_3$, $k \in \mathbb{N}$. So we have

(C)
$$\forall x \in \mathbb{N}_3 \quad \exists (pk, mk, qk) \in S_g \quad x = pk \quad \forall \quad x = mk = 4k.$$

A few examples of the covering:

```
x = 19: (19·1, 21·1, 23·1), (19·1, 60·1, 101·1)

x = 36: (3·12, 7·12, 11·12)

x = 38: (19·2, 21·2, 23·2)

x = 42: (3·14, 5·14, 7·14), (7·6, 9·6, 11·6)

x = 64: (3·16, 4·16, 5·16)

x = 10000: (5·2000, 6·2000, 7·2000).
```

Second, according to the statement SSGB, all pairs (p, q) of distinct odd primes are used in the definition of the set S_g ("maximality"). So we have

(M)
$$\forall p, q \in \mathbb{P}_3, p < q \quad \forall k \in \mathbb{N}$$
 (pk, mk, qk) $\in S_g$, where m = (p + q) / 2.

The proof is motivated by the following view.

There are two possibilities for S_g , exactly one of which must occur: Either there is an $n \in \mathbb{N}_4$ in addition to all the numbers m defined in S_g or there is not. The latter is equivalent to SSGB and the former is equivalent to $\neg SSGB$.

Since, due to (C), every n given by $\neg SSGB$ as well as every multiple nk, $k \in \mathbb{N}$, equals a component of some S_g triple that exists by definition, the covering of \mathbb{N}_3 by the S_g triples if n exists ($\neg SSGB$) is equal to that if n does not exist (SSGB). This causes a contradiction because in the case SSGB the numbers m defined in S_g take all integer values $x \ge 4$ whereas in the case $\neg SSGB$ they don't.

First of all, we note that each of the two properties (C) and (M) is a condition sine qua non for the proof, for the following reasons.

 \neg (C) immediately implies \neg SSGB, since an n ≥ 4 different from all S_g triple components pk, mk, qk is in particular different from all m in S_g.

The proof would no longer be possible if, for example, we omitted the factor k in the definition of S_g, because then the corresponding (C) could no longer be guaranteed.

Similarly, the property (M) rules out the possibility that there is an $n \ge 4$ different from all m (i.e. $\neg SSGB$) and n is the arithmetic mean of a pair of primes not used in S_g . Thus (M) excludes the possibility that $\neg SSGB$ applies due to a missing prime number pair. This means that the proof would no longer be possible here either if we left out any prime number pair in the formulation of SSGB and S_g .

We will now show that $((C) \land (M))$ leads to a contradiction.

We split S_g into two complementary subsets: For any $y \in \mathbb{N}_3$, $S_g = S_g + (y) \cup S_g - (y)$, with $S_g + (y) := \{ (pk, mk, qk) \in S_g \mid \exists \ k' \in \mathbb{N} \ pk = yk' \lor mk = yk' \lor qk = yk' \}$ and $S_g - (y) := \{ (pk, mk, qk) \in S_g \mid \forall \ k' \in \mathbb{N} \ pk \neq yk' \land mk \neq yk' \land qk \neq yk' \}.$

Let $n \in \mathbb{N}_4$ be given by $\neg SSGB$ as described above. Then, we have

(*)
$$\neg SSGB => S_g = S_g + (n) \cup S_g - (n)$$
.

More precisely, under the assumption $\neg SSGB$ with the associated n the set S_g can be written as the disjoint union of the following triples.

- (i) S_g triples of the form (pk = nk', mk, qk) with k = k' in case n is prime, due to (C)
- (ii) S_g triples of the form (pk = nk', mk, qk) with $k \neq k'$ in case n is composite and not a power of 2, due to (C)
- (iii) S_g triples of the form (3k, 4k = nk', 5k) in case n is a power of 2, due to (C)
- (iv) all remaining S_g triples of the form (pk = nk', mk, qk), (pk, mk = nk', qk) or (pk, mk, qk = nk')

and

- (v) S_g triples of the form (pk \neq nk', mk \neq nk', qk \neq nk'), i.e. those S_g triples where none of the nk' equals a component.
- So, $S_g+(n)$ is the union of the triples of the above types (i) to (iv) and $S_g-(n)$ is the union of the triples of type (v).

Now, we define

$$S_1 := \{ (pk, mk, qk) \in S_g \mid \neg SSGB \text{ holds } \}$$

$$S_2 := \{ (pk, mk, qk) \in S_g \mid SSGB \text{ holds } \}.$$

So, by (*) we obtain

(1)
$$\neg SSGB => S_1 = S_g = S_g + (n) \cup S_g - (n)$$
.

Since $S_g+(n) \cup S_g-(n)$ is independent of n, we can write

(1')
$$\forall y \in \mathbb{N}_3 \quad \neg SSGB \implies S_1 = S_g = S_g + (y) \cup S_g - (y).$$

Under the assumption SSGB there is no n as above. Therefore, under this assumption, we can choose an arbitrary $y \in \mathbb{N}_3$ such that $S_g = S_g + (y) \cup S_g - (y)$. So, we obtain

(2)
$$\forall y \in \mathbb{N}_3$$
 SSGB => $S_2 = S_g = S_g + (y) \cup S_g - (y)$.

We will make use of the following trivial principle.

If two sets of (possibly infinitely many) x-tuples are equal, then the sets of their corresponding i-th components are equal; $1 \le i \le x$.

To this end, for each $k \in \mathbb{N}$ we define

$$M(k) := \{ mk \mid (pk, mk, qk) \in S_g \}$$

$$M_1(k) := \{ mk \mid (pk, mk, qk) \in S_1 \}$$

$$M_2(k) := \{ mk \mid (pk, mk, qk) \in S_2 \}.$$

Then, applying the principle above to the middle component of the triples (pk, mk, qk), (1') and (2) imply

$$\forall \ k \in \mathbb{N} \quad \forall \ y \in \mathbb{N}_3 \quad \neg SSGB \ \Rightarrow \ M_1(k) = M(k) = \{ \ mk \mid (pk, \ mk, \ qk) \in \ S_g + (y) \cup S_g - (y) \ \}$$

Λ

$$\forall \ k \in \mathbb{N} \quad \forall \ y \in \mathbb{N}_3 \qquad \text{SSGB } \Rightarrow \text{ } M_2(k) = M(k) = \{ \ mk \mid (pk, \, mk, \, qk) \in \text{ } S_g + (y) \cup S_g - (y) \ \}.$$

We set M := M(1), $M_1 := M_1(1)$ and $M_2 := M_2(1)$. So we get

$$\forall y \in \mathbb{N}_3$$
 $\neg SSGB \Rightarrow M_1 = M = \{ m \mid (p, m, q) \in S_g+(y) \cup S_g-(y) \}$

(3) ^

$$\forall y \in \mathbb{N}_3$$
 SSGB => M₂ = M = { m | (p, m, q) \in S_g+(y) \cup S_g-(y) }.

On the other hand, under the assumption SSGB the numbers m defined in S_g take all integer values $x \ge 4$ whereas under $\neg SSGB$ they don't. Therefore, we have

(4.1) SSGB =>
$$M_2 = M = N_4$$

and

(4.2) ¬SSGB =>
$$M_1 = M \neq N_4$$
.

Since for every $y \in \mathbb{N}_3$ $S_g+(y) \cup S_g-(y)$ equals S_g , we have that for every $y \in \mathbb{N}_3$ the set $\{ m \mid (p, m, q) \in S_g+(y) \cup S_g-(y) \}$ is the same in both implications of (3) and thus the set M is equal to that set.

Therefore, from (3) and (4.1) we obtain

$$(\neg SSGB \Rightarrow M_1 = M = N_4 \land SSGB \Rightarrow M_2 = M = N_4),$$

and from (3) and (4.2) we obtain

$$(\neg SSGB \Rightarrow M_1 = M \neq N_4 \land SSGB \Rightarrow M_2 = M \neq N_4).$$

This implies

$$(\neg SSGB \Rightarrow M_1 = N_4 \land SSGB \Rightarrow M_2 = N_4)$$

$$(\neg SSGB \Rightarrow M_1 \neq N_4 \land SSGB \Rightarrow M_2 \neq N_4).$$

Also, we have SSGB => M_1 = { } and ¬SSGB => M_2 = { }. Together with (4.1) and (4.2), this yields

(6) SSGB
$$\iff$$
 M₂ = \mathbb{N}_4

and

(7)
$$M_1 \neq N_4$$
.

Then, due to (6) and (7), (5) becomes

$$(\neg SSGB \Rightarrow FALSE \land TRUE)$$

Λ

(TRUE
$$\land$$
 SSGB => ¬SSGB).

And this yields (SSGB $\land \neg$ SSGB).