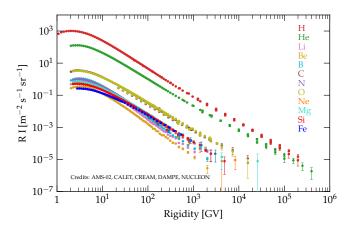
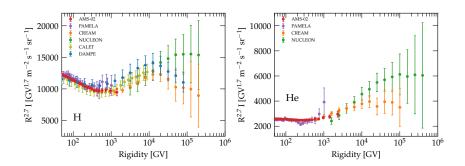
Recent Results in Galactic Cosmic Ray Physics and Their Interpretation

Carmelo Evoli


Gran Sasso Science Institute, L'Aquila (Italy)
INFN/Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy)

NOW 2022 @ Ostuni (Italy) September 7, 2022

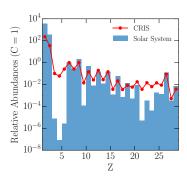
Galactic Cosmic Rays: unprecedented measurements



The spectrum of each isotope includes contributions from many different parents (both in terms of fragmentation and decays) giving to each observed isotope a potentially very complex history

Evoli (GSSI) Galactic Cosmic Ray Physics 07/09/2

Galactic Cosmic Rays: a decade of surprises!


PAMELA Coll., Science 2011; AMS-02 Coll., PRL 2015; CREAM Coll., ApJ 2017; NUCLEON Coll., JETP 2018; DAMPE Coll., Science 2019

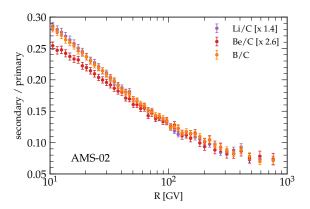
- Spectra of protons and helium are not a single power law below the knee → some physics kicking in?
- ▶ AMS-02 confirmed the same break for almost all nuclei
- ightharpoonup The softening at $R=p/Z\sim 10$ TV is observed by different experiments, first strong evidence in DAMPE
- ▶ The He spectrum (at Earth!) is slightly harder than that of protons

C. Evoli (GSSI) Galactic Cosmic Ray Physics 07/09/202

The cosmic-ray composition at $E \sim \text{GeV}$

ightharpoonup The average galactic grammage $\chi_{
m gal}$ can be directly inferred from this plot:

$$\frac{\rm B}{\rm C} \sim \chi_{\rm gal} \, \frac{\sigma_{C \to B}}{\langle m \rangle_{\rm ISM}} \sim 0.3 \to \chi_{\rm gal} \sim 5 \, \, {\rm g \, cm^{-2}}$$

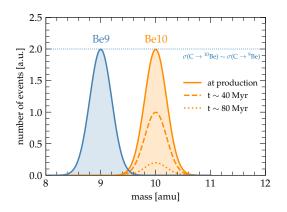

ightharpoons To be compared with the grammage X_d accumulated at each crossing of the gas disk $h\sim 100$ pc:

$$X_d \sim m_p n_{\mathrm{gas}} h \sim 10^{-3}\,\mathrm{g\,cm}^{-2} \ll X_{\mathrm{gal}}$$

Robust evidence of diffusive transport!

Evoli (GSSI) Galactic Cosmic Ray Physics 07/09/202

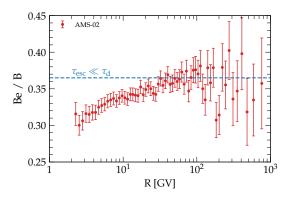
AMS-02 Coll., PRL 120, 021101 (2018)



Key points

Evidence of rigidity dependent grammage \rightarrow high-energy particles spend less time in our Galaxy than low-energy ones

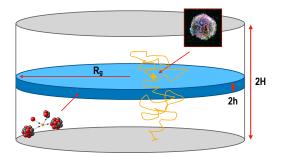
Cosmic-ray lifetime


Garcia-Munoz et al., ApJ (1977); PAMELA Collaboration, ApJ, Vol. 862, 141 (2018)

- $ightharpoonup^{10}$ Be is a eta^- unstable isotope decaying in 10 B with an half-life of ~ 1.5 Myr
- riangleright Similar production rates than other (stable) isotopes $\sigma_{ ext{Be}9} \sim \sigma_{ ext{Be}10}$
- ho Traditionally the ratio 9 Be/ 10 Be has been used as CR clock ightarrow however no measurements of this ratio at $E\gtrsim 1$ GeV/n

Cosmic-ray lifetime

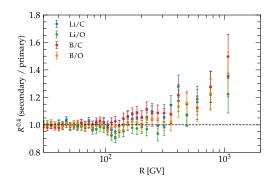
AMS-02 Coll., PRL 120, 021101 (2018); Evoli et al., PRD 101, 023013 (2020); Weinrich+, A&A 639, A74 (2020)



- Since ¹⁰Be decays to ¹⁰B the ratio Be/B is affected twice (excellent recent AMS-02 data!)
- ightharpoonup The observed ratio hints to a CR lifetime (\equiv from production to escape) of

$$t_{ extsf{esc}} \sim \mathcal{O}(100)\, ext{Myr} \gg rac{R_{ extsf{G}}}{c}$$

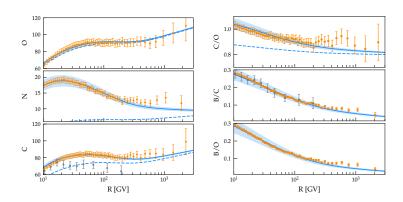
The Galactic halo model


Morrison, Olbert and Rossi, Phys. Rev (1954); Ginzburg and Syrovatskii (1964)

- Galactic CRs are accelerated in the disc h by SNRs and hence are injected with a spectrum $Q_s \propto p^{-\alpha}$ where $\alpha \geq 4$
- after injection, CRs propagate diffusively throughout the Galactic halo ($\sim 1D$) with a diffusion coefficient $D \propto p^{\delta}$ where $\delta \sim 1/3 - 1/2$
- Secondary production, e.g. LiBeB, takes place predominantly in the disc h where all the gas is confined.
- H is the diffusive halo size (free escape boundary) and R_d is the radius of the Galactic disc.
- Simplifying assumptions: symmetry, homogeneity, isotropy, stationarity, linearity, ...

◆□ ト ◆圖 ト ◆ 毫 ト ◆ 毫 ト

Galactic halo model predictions

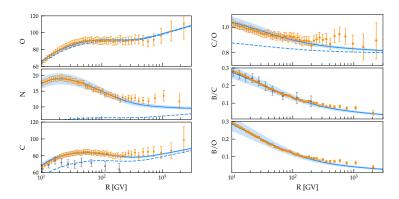

$$\frac{I_s(T)}{I_p(T)} \propto \chi(T) \propto \frac{H}{D(T)}$$

▷ Unstable secondary over stable secondary ratio:

$$\frac{I_s^*(T)}{I_s(T)} \propto \frac{\sqrt{D(T)}}{H^2} \leftarrow \text{break the degeneracy!}$$

CR phenomenology: secondary-over-primary ratios

Evoli et al., PRD 99 (2019); Weinrich et al., A&A 639 (2020)

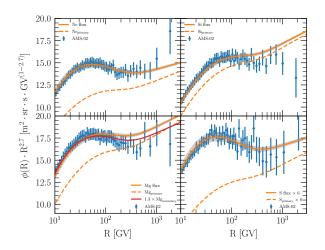


Driven by theoretical arguments, we model D(R) as a smoothly-broken power-law [Evoli et al., PRL 2018]:

$$D(R) = \underbrace{2v_A H} + \underbrace{\frac{\beta D_0 (R/\mathsf{GV})^{\delta}}{\left[1 + (R/R_b)^{\Delta \delta/s}\right]^s}}$$

CR phenomenology: secondary-over-primary ratios

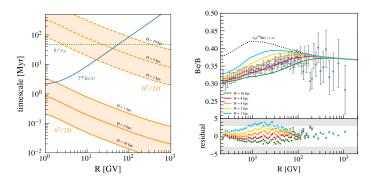
Evoli et al., PRD 99 (2019); Weinrich et al., A&A 639 (2020)



by fitting primary and secondary/primary measurements we infer the properties of galactic transport:

$$\delta \sim 0.54\,,~D_0/H \sim 0.5 imes 10^{28}\,{
m cm/s}^2$$
/kpc $,~\Delta \delta \sim 0.2\,,~v_A \sim 5\,{
m km/s}$

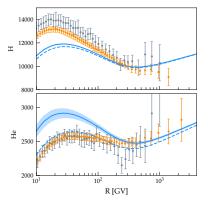
- $\,{\,>\hspace{-.4em}}\,$ All nuclei injected with $\gamma\sim4.3$
- ▷ All species are a mixture of a primary and a secondary component!
- Shaded areas show uncertainty from fragmentation cross sections [Genolini et al., PRC 2018]


Schroer, CE, and Blasi, PRD 2021

ightharpoonup Well compatible as a combination of a primary (dashed line) and a secondary contribution and an universal injection slope $\gamma \simeq 4.3$

The Beryllium-over-Boron ratio and the escape time

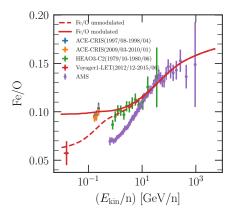
Evoli et al., PRD 101 (2020)



- ightharpoonup Traditionally the ratio 9 Be/ 10 Be has been used as CR clock ightharpoonup however no measurements of this ratio at $E\gtrsim 1$ GeV/n
- ightharpoonup Make sure that 10 Be decays outside the disc (hostile to CR transport) ightharpoonup at \gtrsim few GeV this is certainly the case
- ho Preference for large halos $H\gtrsim 5$ kpc [Weinrich et al., A&A (2020), Maurin et al., arXiv:2203.07265]
- \triangleright Notice that H and au_{esc} are mutual corresponding

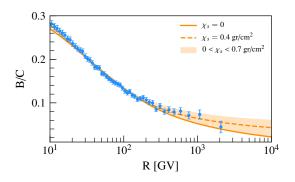
$$\boxed{\tau_{\rm esc}(10\,{\rm GV}) \sim \frac{H^2}{2D} \sim 50\,{\rm Myr}\left(\frac{H}{5\,{\rm kpc}}\right) \left(\frac{1.5\times10^{28}\,{\rm cm}^2/{\rm s/kpc}}{D_0/H}\right)}$$

The injection of light nuclei: proton and helium


Evoli et al., PRD 99 (2019)

- ho H is softer than nuclei, while He is harder: $\Delta\gamma\sim\pm0.05$
- ▶ At odds with what one would expect in the case of pure rigidity dependent acceleration [Serpico, ICRC 2015]
- ightharpoonup Problematic even for models of the difference between H and He injection based on the different A/Z at shocks [Hanuscht, Apj 2019]
- ▶ For He the problem arises from secondary production of ³He that populates the low-energy spectrum

The strange case of the Iron spectrum


Schroer, CE, and Blasi, PRD 2021

We found that AMS-02 data on Fe/O flux are hard to reconcile not only with the results of existing calculations of CR transport on Galactic scales, but also with the results of previous experimental endeavours.

Additional effects not included in this picture

Evoli et al., PRD 99 (2019)

- Second-order Fermi acceleration in the ISM [Ptuskin et al., 2006, ApJ 642; Drury & Strong, 2017, A&A 597]
- ▶ Shock re-acceleration of secondary nuclei [Blasi, 2017, MNRAS 471; Bresci et al., 2019, MNRAS 488]
- ▶ Grammage at the sources [D'Angelo et al., 2016, PRD 94; Nava et al., 2016, MNRAS 461; Jacobs et al., 2022, JCAP 05]
- Secondary production at the sources [Blasi, 2009, PRL 103; Mertsch & Sarkar, 2014, PRD 90]
- D ...

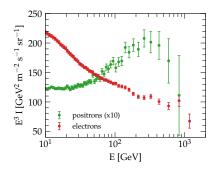
Hints on a flattering of the B/C have been whispered by DAMPE, NUCLEON...

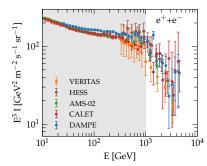
C. Evoli (GSSI) Galactic Cosmic Ray Physics 07/09/2022

From phenomenology to a more fundamental theory

Phenomenology accomplishments

- ▶ Very remarkable that such a simple approach provides explanation of data at few % level! [Schroer+, PRD 2021]
- ho Nuclei $Z \geq 6$ share the same source spectrum but different from H and He: critical issue for the SN paradigm? [see also Weinrich et al., A&A 2020]
- ▶ The (sharp!) break at ~300 GV is due to transport [Genolini+, PRL 119, 24 (2017)]
- ightharpoonup Transport at 10-100 GeV is diffusive with $\langle D \rangle \propto E^{-0.5}$ (and Kolmogorov-ish at higher energies)
- hd CRs fill a magnetized halo above and below the disk of size $H\gtrsim 5~{
 m kpc}$

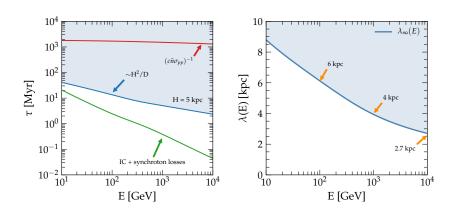

From phenomenology to a more fundamental theory


Phenomenology accomplishments

- ▶ Very remarkable that such a simple approach provides explanation of data at few % level! [Schroer+, PRD 2021]
- \triangleright Nuclei Z > 6 share the same source spectrum but different from H and He: critical issue for the SN paradiam? [see also Weinrich et al., A&A 2020]
- The (sharp!) break at ~300 GV is due to transport [Genolini+, PRL 119, 24 (2017)]
- Transport at 10-100 GeV is diffusive with $\langle D \rangle \propto E^{-0.5}$ (and Kolmogorov-ish at higher energies)
- CRs fill a magnetized halo above and below the disk of size $H \gtrsim 5$ kpc

- Clear separation between acceleration and transport?
- Physicality of halo boundaries at H? [Dogiel+, ApJ 2020]
- Role of anisotropic diffusion? \rightarrow maybe relevant for γ 's [Cerri+, JCAP 2017]
- ▶ What is the origin of the scattering centres? External turbulent cascade or self-generated? What is the role of ion-neutral damping? [Zirakashvili, NPB 2014; Evoli+, PRL 2018]
- Is it the grammage accumulated close to the sources relevant at high-energy? (Bykoy+, SSRy 2020)

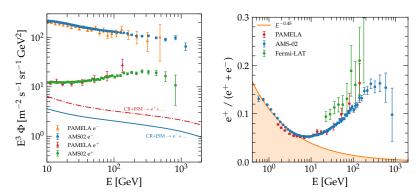
Galactic factories of cosmic electrons and positrons



Rationale

- ightharpoonup In recent years there has been a dramatic improvement in the measurement of the spectrum of e^\pm
- ▶ Significant progresses also in understanding galactic cosmic-ray transport
- We revised the prevailing approach in which leptons are the product of three classes of sources: secondary, SNR (e⁻)
 and PWN (pairs)
- Are the observed fluxes well fitted by what we know about the Galactic properties of these populations and their energetic budgets?

Nuclei and electron timescales

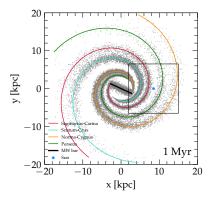

Evoli, Amato, Blasi & Aloisio, PRD 103, 8 (2021)

- ▶ Leptons lose their energy mainly by IC with the interstellar radiation fields (ISRFs) or synchrotron emission
- ▶ Milky Way is a very inefficient calorimeter for nuclei and an almost perfect calorimeter for leptons
- ightharpoons Translate losses into propagation scale: $\lambda \sim \sqrt{4D(E) au_{\mathrm{loss}}}
 ightarrow \mathrm{horizon}$

Secondary electrons and positrons

PAMELA coll., Nature 458 (2009); FERMI-LAT coll., PRD 95 (2017); AMS-02 coll., PRL 110 (2013); Orusa+, PRD 2022

- ightharpoonup AMS-02 local measurements of e^+ and e^- compared with secondary predictions $pp_{\rm ISM} o e^\pm$
- ightharpoonup It is not compatible with all leptons being secondary ightharpoonup we need a primary component for electrons
- ightharpoonup If e^+ are secondaries (and $lpha_p=lpha_e$) the positron fraction must be a decreasing function of E:


$$\longrightarrow \frac{e^+}{e^-} \propto E^{-\delta}$$

Requires a new hard source of positrons!

The Green function formalism

Lee, ApJ, 1979; Ptuskin+, APPh 2006; Delahaye+, A&A 2010; Mertsch, JCAP 2011; Blasi & Amato 2011; Mertsch, JCAP 2018

$$n(t_{\odot}, E, \vec{r}_{\odot}) = \iiint dt_s \, dE_s \, d^3\vec{r}_s \, \delta(\Delta t - \Delta \tau) \frac{\mathbf{G}_{\vec{r}}(E, \vec{r}_{\odot} \leftarrow E_s, \vec{r}_s) \mathcal{Q}(t_s, E_s, \vec{r}_s)}{\mathcal{Q}(t_s, E_s, \vec{r}_s)}$$

At high-energy release the assumption of smooth and continuous injection ightarrow studying fluctuactions

4 □ ▶ 4 ₫ ▶ 4 ₹ ▶ 4 ₹ ▶ 9

C. Evoli (GSSI) Galactic Cosmic Ray Physics

Primary lepton sources

Hooper+, JCAP 2009; Grasso+, APh 2009; Delahaye+, A&A 2010; Blasi & Amato 2011; Manconi+, PRD 2020; Evoli, Amato, Blasi & Aloisio, PRD 2021

SNR primary electrons

- $\,\,{}^{\smile}\,$ Electrons released by SNRs with efficiency $\epsilon \sim 0.1\%$ in burst-like events
- \triangleright Following DSA, the injection spectrum is a power law with an intrinsic cutoff at ~ 40 TeV (cooling dominated)

$$Q_{\rm SNR}(E) = Q_0 \left(\frac{E}{E_0}\right)^{-\gamma} e^{-\frac{E}{E_0}}$$

PWN primary pairs

- e[±] pairs are created in the pulsar magnetosphere become part of the relativistic wind into which pulsars convert
 most of their rotational energy → the only sources showing direct evidence for PeV particles [ByKov+, Space Sci. Rev. 2017]
- Continuous injection after the bow-shock phase
- ho γ /X-ray emissions by these objects are described by a flat spectrum (with $1 < \alpha_L < 2$) at low energies, which then steepens to $\sim E^{-2.5}$ beyond \sim few hundred GeV [Bucciantini+, MNRAS 2011]:

$$Q_{\mathrm{PWN}}(E,t) = Q_0(t) \mathrm{e}^{-E/E_{\mathrm{C}}(t)} \times \begin{cases} (E/E_{\mathrm{b}})^{-\gamma_{\mathrm{L}}} & E < E_{\mathrm{b}} \\ (E/E_{\mathrm{b}})^{-\gamma_{\mathrm{H}}} & E \geq E_{\mathrm{b}} \end{cases}$$

Cutoff is associated to the potential drop [Kotera,JCAP2015]

$$E_{\mathrm{c}}(t) \sim 3\,\mathrm{PeV}\,\left(rac{P_0}{0.1\,\mathrm{S}}
ight)^{-2}rac{1}{1+t/ au_0}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

The break in the pulsar spectrum

Principe et al., A&A 640, A76 (2020), H.E.S.S. Collaboration, A&A 621, A116 (2019)

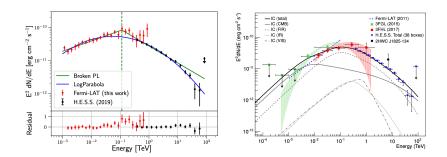
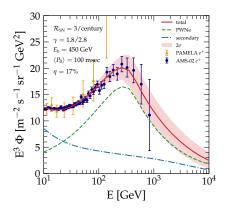
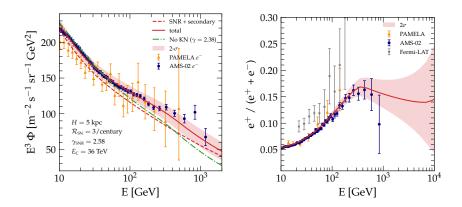



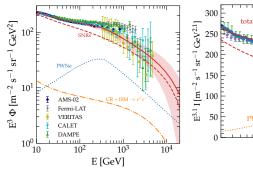
Figure: Combined spectra of PWN HESS J1825-137 (left) and HESS J1825-137 (right) with the spectral measurements obtained Fermi-LAT data (from \sim GeV to \sim TeV) and the H.E.S.S. data for the $\gtrsim 100$ GeV energy range

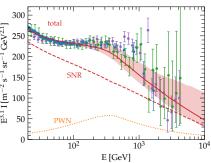
Pulsars as positron galactic factories


Evoli, Amato, Blasi & Aloisio, PRD 2021

- ightharpoonup AMS-02 data requires an efficiency of conversion: $\sim 20\%$ of the energy released after the Bow-Shock phase ($t_{\rm BS} \simeq 56$ ky) although degenerate with $\langle P_0 \rangle$.
- riangle The required slopes $\gamma\sim1.8/2.8$ are very steep with respect to values we usually infer from γ -rays [Torres+, JHEA 2014]
- ▶ Shaded areas: 2-sigma fluctuations due to cosmic variance (CDF)
- ► HAWC has detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars [HAWC coll., Science 358, 2017] showing similar efficiencies

The electron spectrum from SNRs

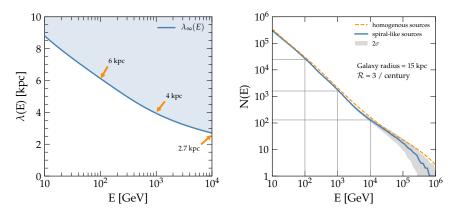

Evoli, Amato, Blasi & Aloisio, PRD 2021



- ightharpoons Existence of a fine structure at ~ 42 GeV ightharpoons result of KN effects in the ICS on the UV bkg [Evoli+, PRL 2020]
- ightharpoonup Electrons require a spectrum steeper than protons by $\sim 0.3
 ightarrow$ puzzling!
- riangle The only aspect that is different between e⁻ and p is the loss rate o negligible inside the sources unless B is very strongly amplified [Diesing & Caprioli, PRL 2020; Cristofari+, A&A 2021]
- ▶ Expected flatness of the high-energy positron fraction!

The total lepton flux

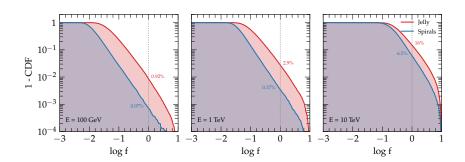
Evoli, Amato, Blasi & Aloisio, PRD 2021


Cosmic Ray Positrons From Pulsars?

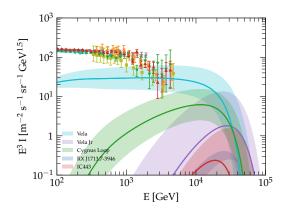
Take home message

- ▶ What's new here? Still the most promising explanation with few puzzles to be addressed
- Considerable research activity has been directed toward understanding exactly how pulsars generate their observed emission → converge to a unified picture?
- ▶ Alternative astrophysical explanations still viable, e.g., acceleration of secondary positrons within cosmic-ray sources [Mertsch+, PRD 2021]
- ightharpoonup Dark matter interpretation strongly constrained by γ -rays, $ar{p}$, CMB, ...

Counting the sources of leptons in the Galaxy


Evoli, Blasi, Amato & Aloisio, PRD 2021

- Most SN explosions are located in star-forming regions which cluster inside the spiral arms and in the Galactic bar with a Galactic rate of $\mathcal{R}=1/30$ years
- ightharpoonup The sources that can contribute to the flux at Earth at a given energy E are


$$N(E) \sim \mathcal{R} \tau_{\rm loss}(E) \frac{\lambda_e^2(E)}{R_g^2}$$

Evoli+, PRD 2021

- Regularly invoked to explain features in the CR spectrum.
- ho f=1 shows when 1 source contributes to local flux at least as much as all others added together.
- Assuming Spiral pattern and standard properties for transport \to at ~ 1 TeV chances of f>1 are $\sim 0.01\%$ for nuclei and $\sim 0.4\%$ for leptons (Genolini+, A&A 2017)

The identification of a dominant source might be just behind the corner

- Prediction for the electron flux at the Earth from individual (known) nearby sources assuming the same efficiency and parameters as for the rest of the Galactic population
- ightharpoonup A dominating source, presumably Vela, might be the main contributor above $\sim 10\,\text{TeV} o$ to be tested soon by DAMPE and CALET

voli (GSSI) Galactic Cosmic Ray Physics 07/09/2022

Thank you!

Carmelo Evoli

- GRAN SASSO SCIENCE INSTITUTE
- ✓ Via Michele Iacobucci, 2, L'Aquila (Italy)
- mailto: carmelo.evoli@gssi.it
- @carmeloevoli
- carmeloevoli
- **s** e.carmelo
- 0000-0002-6023-5253
- 🚣 💢 slides available at:

https://zenodo.org/communities/carmeloevoli_talks

C. Evoli (GSSI)