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1 Motivations

It is crucial for the scientific community to be concerned by the environmental impact of their
computing practices, especially in communities relying critically on large-scale simulations that
can only be ran on supercomputers. Additionally, in the current context of energy supply issues
and price surges, the impact of energy costs on operational budgets can rapidly lead to damages
to scientific programmes, in the eventuality price volatility goes well beyond what was projected
at the budgeting stage. It is therefore crucial to be aware of how efficiently a given computation
task can be performed, from the point of view of achieved computational work in units of energy
spent. Additionally, it is important to notice that different workflows and software will have different
energy profiles, and that finding energy-optimal hardware settings will be domain-specific in the
large majority of cases.

This study aims at studying and optimising the energy efficiency of lattice simulations, specif-
ically simulations based on the Grid library1, and targetted at the NVIDIA A100 GPU, integrated
into the ATOS BullSequana XH2000 system. This work was specifically targetted a the STFC DiRAC
supercomputer “Tursa”, however large systems with the same configuration are present in Europe,
specifically JUWELS Booster at Forschungszentrum Jülich2, and the future pre-exascale system
Leonardo at Cineca3. We expect the conclusions of this study applies to these systems as well.

2 Protocol

All the tests described in this study were performed on the STFC DiRAC supercomputer “Tursa” at
the University of Edinburgh. This system features 112 nodes with an NVIDIA RedStone board with
4 A100-40 GPUs, 2 AMD EPYC 7302 CPUs, 4 HDR200 network interfaces, and 1 TiB of host memory.
Nodes are integrated in ATOS BullSequana XH2000 racks. GPU nodes are spread across 5 racks, rack
0 contains 16 nodes, and racks 1 to 4 each contain 24 nodes.

2.1 Grid DWF benchmark

To simulate a typical lattice QCD calculation, we use the single-precision domain-wall fermion (DWF)
benchmarkBenchmark_dwf_fp32 included in the Grid library. This benchmark contains two succes-
sive phases where a random vector is multiplied a large number of times by a sparse matrix, and the
performance in MFlop/s over the whole sequence is measured. In the first phase, the sparse matrix
used is the hopping term of the DWF operator, and in the second phase the even-odd part of the
same operator is used. For the non-specialist, inversions of the DWF operator generally dominates
the compute time used in lattice QCD calculations using domain-wall fermions. These inversions
are generally performed using iterative Krylov solvers, and therefore the inversion cost comes
from a large number of multiplications by the operator, which depends on the chosen algorithm
and the condition number of the operator. Other choices for fermion operators are used in the
lattice community, and the DWF ones have the particularity that they act on a five-dimensional
space, increasing the intensity of the operation compared to four-dimensional formulations such as
Wilson fermions. The even-odd version of the operator is used in red-black preconditionned solvers.

1https://github.com/paboyle/Grid
2https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
3https://leonardo-supercomputer.cineca.eu/
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Finally, it is worth noting that a large majority of the Tursa system is currently used for lattice QCD
calculations using the DWF formulation, implemented using Grid.

We used the library at commit 188d2c7a4 and the benchmark was slightly modified to increase
by a factor 100 the number of matrix multiplications, in order to mitigate uncertainties due to the
coarse sampling of power monitoring tools. The modification of the benchmark is given by the
change below to be apply to the file benchmarks/Benchmark_dwf_fp32.cpp at line 194.
- int ncall =300;
+ int ncall =30000;

When using this benchmark, the global four-dimensional lattice volume can be specified using
the --grid command-line option. We chose two local lattice volumes for this study. The first volume
named “C0” is 24 × 24 × 24 × 12, it is named after a dataset used in production on Tursa, and
constitutes a problem size representative of most of the current calculations on this system. The
second local volume named “loc32” is 32 × 32 × 32 × 32, and is a good representation of larger
calculations to take place on this system in the next years. A larger local volume implies more
floating point operations to be performed by each node, and is expected to yield higher Flop/s. In all
cases the fifth dimension is fixed to 16 sites by the benchmark and is not distributed across nodes.

Finally, we compile and run Grid with the known performance-optimal settings that were deter-
mined during the technical commissioning of the system. Each node runs 4 MPI processes, optimally
pinned to cores and NUMA domains to maximise the access speed to the 4 GPUs. Additionally NVIDIA
GPUDirect RDMA was used for multi-node communications. The complete set of compilation and
runtime options can be found in the supplemental data associated with this report.

2.2 GPU frequency control and power monitoring

In this section we describe the different tools used in this study to control the GPU clock frequency
and monitor the power consumption of the system.

2.2.1 GPU frequency control

The frequency of the NVIDIA A100-40 GPU is variable, and can be limited to a maximum frequency
ranging from 210 MHz to 1410 MHz, by increments of 15 MHz. By default there is no limit in place
(which is equivalent to a limit of 1410 MHz). Frequency limits can be set using the NVIDIA SMI5

interface, which is part of the CUDA toolkit. NVIDIA SMI features a command-line interface, and for
example the command
nvidia -smi -ac 1215 ,1110

sets all GPUs of the current node with a clock limit of 1110 MHz, and a memory clock limit of
1215 MHz. On the A100-40 GPU the memory clock limit is not adjustable, and 1215 MHz is the only
authorised value. This command needs to be executed with root privileges. In all the benchmarks
performed in this study, the nvidia-smi command was used, invoked through sudo. When using a
large number of nodes, this process was automatised by retrieving the user password from a safe
location and piping it in the sudo command, and the resulting command was broadcasted using
SSH to all nodes.

We strongly advise against using the setup described here in production, as it would require
giving root privileges to users and storing passwords on the file system. Instead, one should expose

4https://github.com/paboyle/Grid/tree/188d2c7a4dc77807b545f5f2813cdb589b9e44ca
5https://developer.nvidia.com/nvidia-system-management-interface
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the GPU frequency limit as a user option in job scripts and configure the system appropriately. In
the case of the Slurm workload manager this can be done using the --gpu-freq option6.

2.2.2 GPU power monitoring

On a given node, the GPU power consumption in watts can be monitored using the NVIDIA SMI
interface described above. We used the command
nvidia -smi dmon -o DT

which performs real-time monitoring with the addition of timestamps to the output. We used the
maximum sampling frequency allowed by this tool, which is one sample per second (this is the
default setting). This tool can run with user permissions.

2.2.3 XH2000 rack power monitoring

We additionally used tools provided by ATOS to monitor power consumption in watts at the whole
rack level. The reported figures include all elements plugged on a specific rack, including network
equipment and full node consumption. These tools do not provide continuous monitoring at
regular interval, and we implemented a monitoring loop as part of the test scripts. We found that
the maximum achievable sampling frequency was around one sample every 7 seconds, and time
intervals between samples were recorded to take into account possible variations.

2.3 GPU frequency limit scan procedure

Here we describe the different steps of the two tests performed in this study. The benchmarks were
performed on 2 XH2000 racks, each containing 24 GPU nodes. The total 48 nodes are partitioned in
two 16-node jobs, named “16A” and “16B”, and two 8-node jobs, similarly named “8A” and “8B”.
These blocks are statically allocated to insure maximum interconnect performance, according to
the network layout established with ATOS during the validation of the system. The two racks used
were reserved for the test, and no other jobs were allowed to run on this partition. With this setup,
the test sequence is as follows

1. Start of the XH2000 rack monitoring loop. Each sample is collected approximately every 7
seconds, and is timestamped with the UNIX epoch at which the monitoring command was
invoked. The resulting measurement is inserted in an SQLite database.

2. Start of the clock frequency limit loops iterating over the 81 possible frequencies between
210 MHz and 1410 MHz.

3. The 4 jobs 8A, 8B, 16A, and 16B are submitted. Each job set the frequency limits on all nodes,
and monitor the GPU power draw of the master node using nvidia-smi dmon for the duration
of the execution. The result of each NVIDIA SMI output is parsed and stored in an individual
SQLite table.

4. Once all four jobs have completed, the test proceed with the next loop iteration.

5. Once the frequency loop is finished, the rack power monitoring is interrupted.
6https://slurm.schedmd.com/gres.html
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The whole procedure is repeated for both the C0 and loc32 problem sizes. Two comments are in
order. Firstly, one can notice that the GPU power monitoring is only running on the master node.
The workflow benchmarked here is exclusively using synchronous parallelism, and up to negligible
fluctuation all GPUs are expected to behave identically to the master node. Therefore we do not
expect that this approximation has any impact on our results. Secondly, in principle the 8-node
jobs and 16-node jobs can have different execution times depending on scaling efficiency. Here
we remind the reader that the local problem size is kept constant across jobs, so differences in
execution times are related to weak scaling efficiency. It is known that Tursa has close to perfect
weak scaling running Grid on these problem sizes for more than 8 nodes. In practice we observed
that the 8-node jobs were faster than the 16-node ones only by a negligible fraction of the execution
time, confirming the previous statement.

The whole set of run scripts and monitoring data is available as part of the supplemental data
released with this report.

3 Results

We present in this section the results obtained following the protocol described above.

3.1 Raw data examples

In this section, we give examples of the raw data captured by the two power monitoring tools
described in Sec. 2.2.

In Fig. 1, we show the GPU power draw and activity in function of the execution time, as recorded
by NVIDIA SMI. This example is for the two problem sizes, with a GPU clock limit of 1020 MHz. In
this figure, we clearly see the two phases of the benchmark, i.e. first the Dhop operator benchmark
followed by the DhopEO operator. The short periods of inactivity correspond to the required
initialisation sequences for the two phases, but the execution time is nonetheless dominated by
GPU activity. We also observe that the DhopEO phase is about 2 times faster than the Dhop one, this
is expected as the DhopEO sparse matrix operates on a checkerboarded lattice, which has half the
volume of the full one. We see that both operators generate a similar level of activity in the GPUs,
which is essentially the maximum level of activity for the loc32 problem size, and around 60% of
the maximum activity for C0. The smaller problem size C0 is more sensitive to bottlenecks from
the interconnect, and we are confident that this explains the lower activity levels. In Fig. 2, we plot
racks 1 and 2 power draw in function of time for a full scan of the 81 possible GPU clock frequency
limits. We clearly see the power draw increasing as we allow for higher frequencies.

Let us now discuss the data analysis to study how the power draw depends on the GPU clock
frequency limit.

3.2 Power consumption

The total energy E of a job is given by

E =
∫ tb

ta
dt p(t) , (1)
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Figure 1: Example of the GPU activity in function of the execution time on the master node of a
16-node job, with a clock limit of 1020 MHz. The upper plot is the activity for the C0 problem size,
and the lower plot for the loc32 size. The left vertical axis indicates the 4 GPUs power draw in watts
as measure by the NVIDIA SMI. The right vertical axis indicates the GPUs activity, 400% being the
maximum possible value.
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Figure 2: Rack power in function of the test time on individual racks, as measured by the ATOS
XH2000 monitoring tool. The upper plot is the activity for the C0 problem size, and the lower plot
for the loc32 size. In both cases, the test loop executes 81 sets of benchmarks populating the whole
2 racks, increasing the GPUs clock limit from 210 MHz to 1410 MHz by increments of 15 MHz.
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where ta and tb are respectively the start and end time of the job, and p(t) is the power draw at
time t. The average power draw p is then given by

p =
E

tb − ta
. (2)

In practice, we collect power samples at discrete values tn of the execution time. The NVIDIA SMI
time collects sample at each second, and we found it is sufficient to compute the average power as
the average of the power samples

pGPU ≃ 1
N

N

∑
n=1

pGPU(tn) , (3)

where t1 = ta and tN = tb. For the rack monitoring, the samples are collected at a lower frequency
(approximately every 7 seconds), and the interval between two samples potentially varies by a few
seconds. To take into account the irregularity of the measurements, and to mitigate the coarseness
of the sampling, we compute the energy using a trapezoidal rule

Erack ≃ 1
2

N−1

∑
n=1

(tn+1 − tn)[prack(tn+1) + prack(tn)] , (4)

where it is understood that the number of samples N and the sample times tn are different than in
the GPU case. The average rack power prack is then computed using Eq. (2).

In Fig. 3, we show the observed average power draw in function of the GPU clock limit. Thanks
to the two monitoring in place, we can deduce the average power draw of the non-GPU elements,
simply defined as

pnon-GPU = prack − pGPU . (5)

A first possible observation is that the rack average power measurement for the C0 size is noisier
than in the loc32 case. This is due to the coarseness of the rack power monitoring sampling and
the shorter execution time in the case of C0. Another more important observation is that in both
cases the change in power draw is essentially entirely due to the GPUs, and the non-GPU elements
consume a constant power of approximately 25 kW. Through a measurement of the power draw
with both racks idle, we found that this figure is also consistent with the idle power draw of the
non-GPU elements.

We now move to discussing the energy efficiency of the benchmarks, which is the core objective
of this study.

3.3 Energy efficiency

We start this section by showing the performances of the various benchmarks, as plotted in Fig. 4. A
number of observations can be made. Firstly, the performance observed at maximum clock limit
(the default setting) are in excellent agreement with Grid benchmarks performed in production and
during the technical commissioning of the system. Secondly, the Dhop and DhopEO performances
are very similar, and for the sake of simplicity we will call “average performances” the average of
the two operators. Thirdly, the A100 GPU has a peak performance of 19.5 TFlop/s7, which means the
GPU peak performance for this cluster is 78 TFlop/s/node. From this we can see that our benchmarks
achieve 6% and 13% of the peak performances, for the C0 and loc32 problem sizes, respectively.
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Figure 3: Average power draw in kilowatts, in function of the GPU clock limit. As previously, the
upper plot is for the C0 problem size, and the lower plot for the loc32 size.
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Figure 4: Measured performances in TFlop/s for the four different benchmarks, as a function of the
GPU clock limit.

This is considerable considering the operators involved are mainly bandwidth-bound, and is the
result of the high level of optimisation of the Grid routines.

Now, the energy efficiency of a given application can be measured as an amount of work per unit
of energy. Here we adopt the units used in the Green500 list8, i.e. GFlop/s/W, which is equivalent
to GFlop/J. In Fig. 5 we show the measured energy efficiency of the Grid benchmarks for the two
problem sizes. Firstly, as a reference Tursa is ranked 27 in the June 2022 Green500 list9, with an
energy efficiency of 21.431 GFlop/J. This figure is significantly higher than the ones shown here
because the Green500 benchmark is based on LINPACK, which has a much higher intensity than the
operators used here. Secondly, we start to observe that the default, maximum limit of 1410 MHz is
less energy-efficient than lower clock limits. This is emphasised further in Fig. 6, where we plot the
relative energy cost of the benchmarks in function of the GPU frequency limit. The notion of relative
cost is defined as the ratio to the energy consumed for the default limit of 1410 MHz. In Fig. 6 we
can read the optimal energy cost for the two problem sizes: with a clock limit around 1 GHz, a same
amount of work can be performed for an energy cost reduced by 16% and 24%, for respectively C0
and loc32. These gains are computely solely on the basis of energy costs, but clearly lower clock
speeds implies longer execution times, which might be undesirable by users. This tradeoff is the
topic of the next section.

4 Decision-making

In this section we discuss a strategy for decision-making regarding the tradeoff between perfor-
mances and energy costs mentionned in Sec. 3.3.

The issue at hand is a rather simple optimisation problem due to its low dimensionality. There
7https://www.nvidia.com/en-gb/data-center/a100/
8https://www.top500.org/lists/green500/
9https://www.top500.org/lists/green500/list/2022/06/
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Figure 5: Energy efficiency in GFlop/J, as a function of the GPU clock limit.
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Figure 6: Relative energy cost as a function of the GPU clock limit. Here by “relative” we mean as
the ratio to the measurements obtained at the maximal GPU clock limit of 1410 MHz.
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is one dimension of benefit, which is the floating-point performance, and one dimension of cost,
the total energy consumed by a fixed amount of work. In practice we want to minimise the energy
cost while maximising the performances. In Fig. 7 we represent a landscape of all possible options.
The result from this figure is very positive: it appears that the optimal energy settings lie in a region
where performances will be negatively affected by no more than 10%. Let us quantify that more
formally.

We propose to solve this problem using an ε-constraint optimisation on the performances.
This is equivalent to answering the following question: “what GPU frequency limit minimises the
energy cost, with a maximum negative impact on performances of ε relatively to the maximum clock
performances?”. In Fig. 9 we plot the GPU frequency limits solving this problem as a function of ε,
for the two problem sizes. This figure confirms what could be seen already in Fig. 5: if an impact on
performances of 10% is acceptable, then a frequency limit close to 1 GHz lead to an energy-efficient
setup for both problem sizes, achieving energy savings from 16% to 24%.

A more radical approach can be taken in the eventuality a minimum level of power cut needs to
be insured, regardless of efficiency. We can look at such constraint by considering an ε-constraint
on the relative reduction of the median power draw against floating-point performances. This is
equivalent to answering the following question: “what GPU frequency limit maximises floating-
point performances while imposing a median power cut of at least ε relatively to the maximum
frequency power draw?”. Fig. 10 shows the solution of this optimisation problem. We can observe
that at most 30% of power reduction on all problem sizes, due to the constant power draw of
non-GPU elements, and the GPU idle draw (cf. Sec. 3.2 and Fig. 3).

5 Conclusion

In this study, we demonstrated that the default, maximum frequency setting of the NVIDIA A100
GPU is energy-inefficient for lattice calculations at problem sizes typically used in production, and
even more on larger problem sizes to be used in the short-term future. We determined that a GPU
frequency limit around 1 GHz yield 16% to 24% more energy-efficient calculations depending on the
problem size, which is substantial. These figures take into account all elements in the XH2000 racks,
and we also found comparing rack and GPU power measurements that the non-GPU elements have
a power draw similar to their idle draw independently of the GPU activity, and constitute essentially
half of the total power consumption.

To conclude, we strongly recommend computing centres to involve their users directly in assess-
ing the energy-efficiency of their workflows. High-performance computing hardware is generally
designed so that the highest level of performances is achieved under load, without direct consid-
erations for the energy efficiency. It is likely that in general the maximum “turbo” frequencies of
computing elements are energy-inefficient, albeit delivering higher performances. Informations
and incentives should be provided to users so that projects make a priority to assess their energy
efficiency. Possible strategies are for example to allocate kWh instead of wall-clock hours to projects,
and/or to include energy-efficiency as part of the projects technical assessment. In any case, it is
crucial to expose to users hardware settings which impact strongly the power draw, typically GPU
and CPU frequencies.

Finally, the methodology used here is generic and can be extended to other workflows. For
lattice simulations, it would be instructive to extend this study to other libraries beyond Grid, for
example the NVIDIA library QUDA10.

10https://github.com/lattice/quda

14 of 16

https://github.com/lattice/quda


Optimisation of lattice simulations energy efficiency

70

80

90

100

110

120

130

140

30 40 50 60 70 80 90 100

Re
la
tiv
e
en
er
gy
co
st
(%
)

Relative average performance (%)

size C0
size loc32

Figure 7: Relative energy cost versus the relative average performance for the two problem sizes.
Here by “relative” we mean as the ratio to the measurements obtained at the maximal GPU clock
limit of 1410 MHz.

50

60

70

80

90

100

30 40 50 60 70 80 90 100

Re
la
tiv
e
m
ed
ia
n
po
w
er
dr
aw

(%
)

Relative average performance (%)

size C0
size loc32

Figure 8: Relative median power draw versus the relative average performance for the two problem
sizes. Here by “relative” we mean as the ratio to the measurements obtained at the maximal GPU
clock limit of 1410 MHz.

15 of 16



Optimisation of lattice simulations energy efficiency

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

0 10 20 30 40 50

En
er
gy
-o
pt
im
al
GP
U
fre
qu
en
cy
(M
Hz
)

ε (%)

size C0
size loc32

Figure 9: Energy-optimal GPU frequency limits solving an ε-constraint on performances, i.e. the GPU
frequency that consumes the less energy while tolerating a maximum reduction of ε in performances
relatively to the maximum frequency setting.

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50

Pe
rfo
rm
an
ce
-o
pt
im
al
GP
U
fre
qu
en
cy
(M
Hz
)

ε (%)

size C0
size loc32

Figure 10: Energy-optimal GPU frequency limits solving an ε-constraint on median power draw
reduction, i.e. the GPU frequency that achieves the maximum performances while imposing a
median power draw cut of at least ε.

16 of 16


	Motivations
	Protocol
	Grid DWF benchmark
	GPU frequency control and power monitoring
	GPU frequency control
	GPU power monitoring
	XH2000 rack power monitoring

	GPU frequency limit scan procedure

	Results
	Raw data examples
	Power consumption
	Energy efficiency

	Decision-making
	Conclusion

