Towards an Open-Source Hardware Agnostic Framework for
Robotic End-Effectors Control

Davide Torielli*!, Liana Bertoni*, Nikos Tsagarakis* and Luca Muratore*
*Humanoids and Human Centered Mechatronics (HHCM)), Istituto Italiano di Tecnologia, Genova, Italy
TDepartment of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS),

University of Genova, Genova, Italy
{davide.torielli, liana.bertoni, nikos.tsagarakis, luca.muratore}@iit.it

Abstract— Nowadays a wide range of industrial grippers are
available on the market and usually their integration to robotics
automation systems relies on dedicated software modules and
interfaces specific for each gripper. During the past two decades,
more sophisticated end-effector modules that target to provide
additional functionality including dexterous manipulation skills
as well as sensing capabilities have been developed. The inte-
gration of these new devices is usually not trivial, requiring
the development of brand new, tailor-made software modules
and interfaces, which is a time consuming and certainly not
efficient activity. To address the above issue and facilitate
the quick integration and validation of the new end-effectors,
we developed the ROS End-Effector open-source framework,
which provides a software infrastructure capable to accom-
modate a range of robotic end-effectors of different hardware
characteristics (number of fingers, actuators, sensing modules
and communication protocols) and capabilities (with different
manipulation skills, such as grasping, pinching, or independent
finger dexterity) effectively facilitating their integration through
the development of hardware agnostic software modules, simu-
lation tools and application programming interfaces (APIs). A
key feature of the ROS End-Effector framework is that rather
than controlling each end-effector in a different and customized
way, following specific protocols and instructions data fields, it
masks the physical hardware differences and limitations (e.g.,
kinematics and dynamic model, actuator, sensor, update fre-
quency, etc.) and permits to command the end-effector using a
set of high level grasping primitives. The framework capabilities
and flexibility in supporting different robotics end-effectors are
demonstrated both in a kinematic/dynamic simulation and in
real hardware experiments.

I. INTRODUCTION

The realization of robotic end-effectors that can mirror the
performance of the human hands in terms of manipulation
dexterity and grasping strength, has been one of the major
challenges of the robotics research in the past few years.
As a result, diverse robotic end-effector principles have been
realized exploring different kinematics and actuation arrange-
ments, attempting to trade off the end-effector implementa-
tion complexity with its manipulation dexterity and grasping
strength capabilities. In particular, a wide range of industrial
grippers offering grasping functionality are available in the
market and usually their integration to robotics automa-
tion systems relies on customized software modules and
interfaces. In addition, some works on more sophisticated
end-effector modules, which target to provide dexterous
manipulation as well as sensing capabilities, have resulted to

a number of novel and more complex end-effectors, which
provide a broader set of manipulation skills [1].

The control of these more dextrous robotic hands has
been an attractive field for the robotics research community.
In neuroscience, several works [2], [3], have shown that,
in order to grasp an object, humans control their hands in
a configuration subspace that is considerably smaller than
the space generated by the amount of human hand degrees
of freedom (DoF). From these observations the concept of
synergies, which can be seen as the common patterns of
actuation of the human hand, has been introduced. Following
this idea, many studies in robotic grasping have focused on
exploiting the synergies for controlling robotic end-effectors.
Thanks to the dimensionality reduction of the controlling
space, the grasp planning is more efficient and more adapt-
able to various kinds of end-effectors [4]. In general, the
adoption of synergies in robotics sets the basis for the
development of frameworks to map human hand synergies
into robotics end-effectors ones, despite the possible different
kinematics. This mapping has been explored at different
levels, such as joint space [5] and Cartesian space [6]. For a
more comprehensive overview of the synergy-based works,
the reader can refer to [7].

At the same time, grasping and manipulation primitives
have been a fundamental basis for different studies. They
are usually identified as atomic elements that can 1) be used
to compose more complex actions and 2) be employed by
high-level grasping and manipulation interfaces to hide low-
level hardware details. The pioneered work by [8] classifies a
Manipulation Task Primitive by the relative motion between
two (rigid) parts. The goal of this work was to build a library
of robot capabilities in the manipulation domain, providing
a higher level of abstraction for more complex manipulation
tasks. In [9], the Manipulation Primitives are identified as
the high-level interfaces, which choose the control signals
for their sensor-based hybrid switched-system controller. In
[10], an abstract layer of Control Primitives is built as a
vocabulary, which can be coordinated using state machines
to describe complex actions.

For what concerns relevant software for end-effector mo-
tion analysis, planning and control, several tools have been
developed in the past years. Grasplt! [11] permits to plan
grasps of a variety of objects with different hands. It includes
grasp analysis routines and control algorithms to compute

the joint forces necessary to follow the trajectory generated.
Syngrasp [12] is a MATLAB toolbox which features several
functions to investigate the grasp properties including the 1)
controllable forces and object displacement, 2) manipulabil-
ity analysis, and 3) grasp stiffness and quality measures. The
above-mentioned software tools focus on the analysis and the
synthesis of grasps, but they do not target to actually abstract
the end-effector hardware. Therefore, while the development
of the above methodologies and tools have facilitated the
control of more complex and dexterous end-effectors, a
barrier that still prevents their integration is present, and a
wider use of these end-effectors is impeded by the lack of
effective software/control components and interfaces that can
permit to abstract the end-effector hardware, enabling the
efficient and transparent integration of these end-effectors in
industrial robotics and automation lines.

This work is inspired by the above observations and
proposes the ROS End-Effector software framework, which
leverages on the concept of primitive grasping actions, that
are automatically extracted from the end-effector hardware
and configuration models. These primitives are used to
synthesize grasping and manipulation actions, effectively
enabling to control the end-effector in a subspace of reduced
dimensionality by commanding a combination of the avail-
able grasping primitives instead of each individual joint, thus
hiding the hardware details of the end-effector in use. This
concept is detailed in Section [III}

The main contribution of the proposed framework is there-
fore that it effectively facilitates the integration of different
end-effectors by leveraging on a number of novel hardware
agnostic software modules that provide end-effector abstrac-
tion to the higher control layers of a robotic system through
the following unique features:

o Automatic extraction of end-effector motions given the
kinematic model and configuration of the end-effector,

o Automatic synthesis of primitive grasping actions given
the available end-effector motions and its hardware
configuration, e.g., the number and location of the
fingers and their possible interactions and motions com-
binations.

o Simulation tools and high-level APIs for the end-
effector module based on the synthesized available
grasping actions.

The framework functionalities in abstracting and con-
trolling different robotics end-effectors are demonstrated in
simulation experiments using a number of different end-
effectors including the SCHUNK SVH [13] (kinematic-
only visualization), Robotiq 2F-14qﬂ Robotiq 3Fﬂ and the
qb SoftHand’] Validations with real hardware have been
successfully conducted on the HERI II hand [14] demonstrat-
ing the capabilities of the ROS End-Effector framework to

Ihttps://robotiqg.com/products/
3-finger—-adaptive-robot-gripper

“https://robotiqg.com/products/
2f85-140-adaptive-robot-gripper

Shttps://gbrobotics.com/products/
gb-softhand-research/

Find Actions GRASPING

<<parse>>

<<parse>>
—_——_——— $

- L ®
Universal ROS End-Effector ROS Ereeeig

End-Effector
Interface

| O) @
Parser -
| primies
Interfaces

Action
Commands
<<parse>>
| URDF/SROF F K
| |
HERI II hand Dummy hand
Other
= = ® | hands/gripper

<<implement>>

<<implement>>

<<implement>>
1

«interface>> - — —

Hardware
Abstraction
Layer

Ll —

Fig. 1. Scheme of the ROS End-Effector Framework. At the top, the
Find Actions node in the offline phase generates the Grasping Actions
from the end-effector URDF and SRDF files. In the online phase, the
generated Grasping Actions are parsed by the Universal ROS End-Effector
node, which will communicate with the end-effector in use through the
End-Effector Interface and the specific Hardware Abstraction Layer (HAL)
implemented for the end-effector in use. The Dummy hand block represents
any simulated hand in RViZ and/or Gazebo (the SCHUNK SVH hand is
shown as an example).

seamlessly abstract and control end-effectors of very diverse
physical hardware and configurations in terms of automatic
generation and usage of the grasping primitives.

The rest of the paper is structured as follows.
Section [briefly introduces the ROS End-Effector frame-
work. Section [[II] describes the methodology for the extrac-
tion of grasping actions and primitive motions. Section [[V]
discusses the grasping action command, while Section [V
presents the hardware abstraction layer (HAL). Finally,
Section [Vl presents validation studies of the proposed frame-
work and Section [VII draws the conclusions and future work
plans.

II. ROS END-EFFECTOR FRAMEWORK

The ROS End-Effector’s framework is composed by two
main components:

e An offline component, where the end-effector capa-
bilities are automatically extracted, under the form of
primitive grasping actions.

e An online component, where the end-effector can ex-
ecute tasks by receiving grasping actions commands,
abstracting the low level hardware details.

An overview of the framework is depicted in Fig. [T] while
the details of the above two components are discussed in the
next sections.

https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://qbrobotics.com/products/qb-softhand-research/
https://qbrobotics.com/products/qb-softhand-research/

Fig. 2. Primitive grasping actions extracted for SCHUNK SVH. From left
to right, in the first row: Trig (index), TipFlex (middle), FingFlex (index),
and PinchTight (thumb and middle). In the second row: PinchLoose (index
and little), MultiPinchTight_3 (thumb, index and ring), SingleJointMulti-
pleTips_3 (which uses the finger_spread joint joint to move the index, ring,
and little fingers), and another SingleJointMultipleTips-3 (which uses the
thumb_opposition joint to move the thumb, ring, and little fingers).

III. OFFLINE COMPONENT: PRIMITIVE GRASPING
ACTIONS EXTRACTION

A primitive grasping action is a collection of fingers
movements, which are specific for each end-effector and
permit to perform the grasping of an object.

The information contained in a primitive grasping action
essentially is:

o The grasping action name.

« The main end-effector’s elements involved in the grasp-

ing action, e.g., a trig performed with the index finger.

o The position set-points of the actuators, which describe

the particular end-effector’s pose associated with the
grasping action.

Furthermore, when commanding a primitive grasping ac-
tion, a certain 0% — 100% scaling value can be set to scale
the position set-points of the actuators and perform a partial
closure of the fingers.

A. Automatic Extraction of the Primitive Grasping Actions

A primitive grasping action is an atomic motion of the
end-effector’s elements, that can not be decomposed into
simpler actions.

As anticipated before, the offline component of the ROS
End-Effector explores the robot model to automatically ex-
tract the primitives grasping actions. The framework aims
to be flexible when a new end-effector must be controlled,
so it requires only two configuration files representing the
robot: the Unified Robot Description Format (URDF) and the
Semantic Robot Description Format (SRDF), both commonly
used in ROS. The former is the standard format to describe
the robot model in ROS; the latter adds some information
that is not included in the URDF format, like defining the
fingers as kinematic chains composed by links and joints,
and selecting the non-actuated joints as passive.

We divide the primitive grasping actions into three main
categories. The trig-type primitives (which include Trig,

TipFlex, and FingFlex) are dedicated to move a single
finger or a phalanx toward the palm. The pinch-type prim-
itives (which include PinchTight, PinchLoose, and Multi-
PinchTight N) are suitable for precise grasps. With them,
the fingertips move towards each other to pick narrow or
little objects. The last category include the SingleJointMulti-
pleTips_N primitive, where a single actuator moves N (> 2)
fingertips.

A Trig primitive grasping action performed with a finger
is possible if there is at least one actuator dedicated to move
only that finger, closing the whole finger toward the palm. If
a single finger is moved by more than one actuator, the end-
effector has additional motion capabilities that we embed in
the FingFlex and TipFlex primitives. Each one takes only an
actuator of the finger, the former selects the first actuator met
in the finger kinematic chain (from the palm to the fingertip),
the latter the last one. When operated, these actuators usually
flex the entire finger and the last phalange, respectively. We
extract these trigs primitives because they are useful for
synthesizing the composed grasping actions, as it is explained
in Section [II=Bl

For the pinch-type primitives, a collision checking is
performed, thanks to the Movelt collision checker, which is
based on Flexible Collision Library (FCL) [15]. A PinchTight
with two fingers is possible in an end-effector, if two finger-
tips can move toward each other until they get in contact,
permitting to pinch very small objects. If some fingertips
pairs can move toward each other but without colliding at
the end (e.g., because some structural hand constraints stop
them before), we embed this characteristic in a PinchLoose,
instead of a PinchTight. The reason is that this kind of move-
ment can still be useful to pinch and grasp objects of bigger
size. We also consider the MultiplePinchTight N primitive
grasping action, which is a PinchTight but performed with
N > 2 fingertips. It is important to notice that a pinch-
type primitive grasping action can not be decomposed into
Trigs, because it is not always true that two or more separate
Trigs can establish contacts between fingertips or make them
to move towards each other. When commanding the pinch-
type primitives, the 0% — 100% scaling value can be set
accordingly to the dimension of the object to be pinched.

The SingleJointMultipleTips_N primitive has been intro-
duced to include movements that do not fit in the above
primitive grasping actions. For example, it is suitable to
consider the characteristic of some heavily under-actuated
end-effectors (like the gb SoftHand) to close all the fingers
together with a single actuator.

The Table [l summarizes the features of each primitive
grasping action considered in this work, while in Fig. 2]
some of them are performed by SCHUNK SVH in a RViZ
kinematic simulation.

B. Custom Grasping Actions

After the primitive grasping actions are extracted, the
fundamental motions of the end-effector can be performed
and simple objects can be grasped. The primitives grasping
actions may be not enough though alone and more complex

TABLE I Table which recaps the characteristics of the primitive grasping actions.

Name Main Element(s) Involved Description Constraints
Trig A finger Move all finger’s actuators toward At least one actuator dedicated only
their bounds to the finger

TipFlex A finger Move the last actuator of the finger At least two actuators dedicated
toward its bound only to the finger

FingFlex A finger Move the first actuator of the finger At least two actuators dedicated
toward its bound only to the finger

PinchTight Two ﬁngers Collision between two fingertips

PinchLoose Two fingers Movement of two fingertips towards each other but without collision

MultiPinchTight N N(>3) fingers Collision between three or more fingertips

SingleJointMultipleTips_N An actuator

Move an actuator (that influences The actuator must influence the

N(>2) fingertips) toward its bound position of N(>2) fingertips

finger’s movements may be necessary. Hence, we introduced
the possibility of defining three kinds of custom grasping
actions: composed, user-defined and timed.

Composed grasping actions are defined as the composi-
tion of other grasping actions, hence the resultant actuators
set-points will be the composition of all the selected inner
grasping actions. For example, we can combine more primi-
tives from the trig category to bend only particular fingers or
phalanges to adapt optimally to the object to grasp, as done
in the last image of Fig.[d]and in the second image of Fig. [5]

User-defined grasping actions are instead created from
scratch, hence not built starting from other grasping actions.

Timed grasping actions are a collection of grasping actions
executed in sequence. They can be exploited to reach a pre-
grasping pose before actually grasp the object (as in Fig. [)),
or to execute a sequence of sub-tasks (like grasping and
triggering an electric drill, as shown in Fig. [3).

The ROS End-Effector framework provides C++ API
methods and ROS services to define the custom grasping
actions.

IV. ONLINE COMPONENT: COMMANDING THE
GRASPING ACTIONS

The grasping actions introduced in Section [[II[can be
selected and combined during the execution of a task. ROS
End-Effector is in charge to forward the request to the end-
effector as actuator set-point positions. During the initial-
ization, the framework parses the model and all the avail-
able grasping actions (primitive, composed, user-defined, or
timed) for the end-effector in use. From this point on, the
grasping action commands can be sent to the end-effector.

A grasping action command is composed essentially by
two fields: the name of the action and the 0% — 100%
scaling value, to perform partial movements of the fingers.
To command a primitive grasping action (even if this is
part of a composed or timed grasping action), an additional
information is necessary. This is the key to recognize which
particular primitive is requested among the ones with the
same name. For the Trig we must specify the finger’s name;
for the pinch-type primitives the names of the fingers that

moves toward each other; for the singleJointMultipleTips_N
the name of the actuator which moves the N fingers.

A grasping action command must be sent as a message
through ROS actions, which are named communication chan-
nels over which nodes exchange commands and feedback
about action completion.

V. HARDWARE ABSTRACTION LAYER

The communication with the real and simulated robotic
end-effectors is performed by the ROS End-Effector Hard-
ware Abstraction Layer (HAL).

This layer permits to hide the low level details of the end-
effector, like specific hardware components, protocols, and
data fields. This generalizes the way the references are sent
to the robotic end-effector and makes it simple and safe to
send a command despite all the possible different hardware
components.

ROS End-Effector sends the actuator references to the
HAL component, and not to the end-effector directly. It is
the HAL, implemented specifically for the end-effector in
use that is responsible for the low level details, like how
to communicate with the motors. Given a new end-effector,
a new HAL must be implemented deriving the ROS End-
Effector C++ abstract class EEHal. This additional work is
kept as simple and fast as possible for the user. The user has
only to define the communication with the robot-side, while
the communication toward the ROS End-Effector main node
is already implemented in the EEHal class. In practice, only
two methods are necessary, a sense() to receive end-effector’s
data, and a move() to send actuator commands to the robotic
end-effector.

We have implemented a DummyHAL suitable to exploit
our framework to communicate with any simulated robotic
end-effectors in Gazebo, the de facto ROS simulator.

Another HAL is included to communicate with the real
HERI II hand, which uses the EtherCATE] protocol. For this
specific HAL, we have exploited XBot2 software middle-
ware, the successor of the XBot framework [16].

4https://www.ethercat.org/en/technology.html

https://www.ethercat.org/en/technology.html

Fig. 3. All the tested end-effectors (in simulation and/or with real hardware)
from left to right: SCHUNK SVH, HERI II, qb SoftHand, Robotiq 3F,
Robotiq 2F-140.

VI. VALIDATION AND TESTING

The framework flexibility and adaptability to different end-
effectors, from simple grippers to complex human-like hands
(Fig. B), are validated both in simulation and on real end-
effectors as reported in Fig. {] and Fig. [

The SCHUNK SVH is a complex humanoid hand with
9 actuators and 20 DoF. The large number of possible
fingers movements in this hand permitted us to validate
the automatic extraction of primitive grasping actions. Some
resulting hand’s poses are shown in Fig. 2] Furthermore,
other tests with more complex grasping actions (i.e., com-
posed and timed grasping actions) have been conducted.
We have created a particular timed grasping action called
“timed_wide_grasp”, with the goal of enveloping a disk.
Due to the particularity of this object’s shape and to the
SCHUNK SVH kinematics, the fingers must be set in a
particular “pre-grasping” pose, before closing the fingers
around the disk. So, we can not perform a unique action
but we need to execute the action sequentially. The first one,
“Fing_Spread”, spreads the index, the middle and the little
fingers. The second one, “Opposition”, moves the thumb
and the right part of the hand (which is attached to the
ring and the little fingers) towards each other. These are
two SingleJointMultipleTips_3 primitives: each one has one
dedicated actuator linked to three fingers. The last inner
action, “TipFlexes”, is a composed grasping action. For the
particular object’s geometry, we want the thumb to close (i.e.,
performing a Trig), and the fingertips of index and middle
fingers to flex a bit (i.e., performing two TipFlex). Therefore
we have composed these three primitives to create this last
inner action. The execution of this timed grasping action is
visible in Fig.]

Simpler end-effectors, like Robotiq 2F-140, Robotiq 3F,
and gb SoftHand have been tested, too. The first robot is
a 2-pad gripper with a single actuator to close the pads.
The second has three fingers and two actuated movements: a
spreading of the two adjacent fingers and a grasping which
closes all the fingers. The third has an humanoid hand shape
but with a single actuator that powers all five fingers. As for
the SCHUNK SVH, primitive grasping actions have been
extracted, custom grasping actions defined, and all of them
tested. This time the dynamic simulation (done with Gazebo)
was available.

Experiments with real hardware have been conducted with
the HERI II hand, configured with three fingers and a thumb
opposed to them. Each finger is moved by a dedicated

actuator, through a cable-driven tendon linked to all its
phalanges. As shown in the sequences of Fig. 5] we have
created a timed grasping action, “drill” to grasp and to trig
the switch of an electric drill. We have defined it inserting
three inner grasping actions. The first closes two long fingers
and the thumb, to grasp the drill’s handle but maintaining
the trigger button free. The second performs a Trig with the
remaining long finger to push the trigger, activating the drill’s
rotation. The last is the same Trig as before but with an
intensity value of zero: this causes the finger to come back
to its natural position, releasing the trigger button.

In all the above described experiments, the ROS End-
Effector framework was able to automatically extract the
primitive grasping actions for the end-effector in use (either
very complex or a simple gripper) and allowed the user to
successfully define custom grasping actions based on the
primitives ones, simply using the high-level API provided
by the framework. Both the simulation (either only kinematic
with RViZ or also dynamic with Gazebo) and real hardware
cases were validated and the user was able to command the
different end-effectors in a fully agnostic fashion with respect
to the hardware in use: in fact, the requested grasping tasks
were carried out just commanding a set of grasping actions
without specifying any motor position or current reference
for the motors of the end-effector. This proves the portability
and the ease of integration and usage on new robotic end-
effectors of the proposed framework: the grasping tasks
executed during the validation of the ROS End-Effector were
successful and permitted to obtain a stable grasp for different
kinds of objects, using different kinds of end-effectors.

VII. CONCLUSION AND FUTURE WORKS

This work presented ROS End-Effector, an open-source
software framework which permits to control robotic end-
effectors in an agnostic fashion by means of grasping actions,
effectively abstracting the low level hardware details of the
robotic hand in use.

The software integration of a new end-effector can be
facilitated by an offline automatic component which extracts
the primitive grasping actions from the end-effector config-
uration files. Thanks to these primitives, it is possible to
control the end-effector immediately both in simulation or in
the real hardware. Moreover, for complex end-effector and
objects, additional custom grasping actions can be defined:
composed grasping actions can be easily defined summing
the primitives extracted and other previously defined ac-
tions; user-defined grasping actions, can be constructed from
scratch. Moreover, thanks to the so-called timed grasping
actions, an ordered sequence of grasping actions can be
executed with a certain timing between each other.

Once a grasping action is defined, it can be sent to the
ROS End-Effector framework, which will “translate” it to
low level commands for the robotic hand in use, by means
of the hardware abstraction layer.

The hardware abstraction layer interface is provided to
help the user to integrate a new end-effector into the ROS
End-Effector framework, keeping its effort at minimum.

timed_wide_grasp timed_wide_grasp

timed_wide_grasp timed_wide_grasp

Fingerspread Opposition TipFlexes FingerSpread Opposition TipFlexes

03-TipFlexes-02 0~ Fingerspread - 0.7

| i00% | 0% %

0-Opposiion - 1.4 03 TipFlexes ~02

0~ Fingerspread -0 o-owotien=14 i
0% 0% %

Fingerspread | Opposition TipFlexes FingerSpread | Opposition TipFlexes

0-Opposition 1.4 0~ Fingerspread 07 | 0-Opposition-14 |

[oo] 0% T T

03~ TipFleres ~02

0~ Fingerspread 0.7 | 03~ TipFlexes -02

SEND SEND

Fig. 4.

SEND SEND

A timed grasping action, “timed-wide_grasp” executed by SCHUNK SVH. The executions of its inner grasping actions (“FingerSpread”,

“Opposition”, and “TipFlexes”) are enlightened with the blue loading bars. The numbers above the blue loading bar indicate the seconds to wait before

and after an inner grasping action.

drill drill

drill drill

GRASP3f Trigon TrigOff GRASP3F Trigon Trigoff

0~ GRASP3f -0 3-Trigon-0 4-Trigoff -0 0-GRASP3f~0 3-Trigon-0

] 0% 0%

4-Trigoff -0

0% 0% 0%

GRASP3f Trigon TrigOff GRASP3f Trigon TrigOff

0~ GRASP3f~0 3-Trigon -0

[___osx | o%

4-Trigoff -0 0~ GRASP3f -0 3-Trigon -0

4-TrigOff -0

SEND [SEND [y

Fig. 5.

In any case, the framework is ready to be used with
any simulated robotic end-effector thanks to the available
DummyHAL.

The framework flexibility and adaptability have been
tested in simulation with various robotic hands, from com-
plex humanoid hands (SCHUNK SVH, kinematic only vi-
sualization), to simpler grippers (Robotiq 2F-140, Robotiq
3F, gb SoftHand). Tests with real hardware have been
conducted with HERI II. The C++ code of ROS End-Effector
is available open-source at https://github.com/
ADVRHumanoids/ROSEndEf fector| with the Apache-
2.0 License. In a parallel work [17] we have developed
methods for the so-called grasp synthesis. Given an object
and an end-effector, the task is to find how to grasp it
and to integrate this into the ROS End-Effector framework.
This will permit to define automatically the suitable set of
grasping actions which will consider both the object shape
and the end-effector used to grasp the object.

SEND [y (SEND

A timed grasping action, “drill” executed by HERI II.

ACKNOWLEDGMENTS

This work was supported by the European Union’s Hori-
zon 2020 research and innovation programme [grant numbers
732287 (ROS-Industrial) and 101016007 (CONCERT)] and
the Italian Fondo per la Crescita Sostenibile - Sportello “Fab-
brica intelligente”, PON 1&C 2014 - 2020, project number
F/190042/01-03/X44 RELAX. The authors want to thank
Diego Vedelago and Stefano Carrozzo for the support with
the experiments on the HERI II hand and Arturo Laurenzi
for the guidance and the support in the implementation of
the software architecture.

REFERENCES

[1] C. Piazza, G. Grioli, M. Catalano, and A. Bicchi, “A Century of
Robotic Hands,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 2, no. 1, pp. 1-32, 2019.

M. Santello, M. Flanders, and J. Soechting, “Postural hand synergies
for tool use,” The Journal of neuroscience : the official journal of the
Society for Neuroscience, vol. 18, pp. 10105-10115, 1998.

E. Bizzi and V. C. Cheung, “The neural origin of muscle synergies,”
Frontiers in Computational Neuroscience, vol. 7, p. 51, 2013.

[2]

[3]

https://github.com/ADVRHumanoids/ROSEndEffector
https://github.com/ADVRHumanoids/ROSEndEffector

[4]

[5]

[6]

[7]

[8]

[10]

M. Ciocarlie, C. Goldfeder, and P. Allen, “Dimensionality reduction
for hand-independent dexterous robotic grasping,” 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, vol. 20,
pp. 3270-3275, 2007.

M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous
robotic grasping,” International Journal of Robotics Research, vol. 28,
pp. 851-867, 2009.

A. Peer, B. Stanczyk, and M. Buss, “Haptic telemanipulation with
dissimilar kinematics,” 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005.

M. Santello, M. Bianchi, M. Gabiccini, E. Ricciardi, G. Salvietti,
D. Prattichizzo, M. Ernst, A. Moscatelli, H. Jorntell, A. M. Kappers,
K. Kyriakopoulos, A. Albu-Schiffer, C. Castellini, and A. Bicchi,
“Hand synergies: Integration of robotics and neuroscience for under-
standing the control of biological and artificial hands,” Physics of Life
Reviews, vol. 17, pp. 1-23, 2016.

J. D. Morrow and P. K. Khosla, “Manipulation task primitives for
composing robot skills,” in Proceedings of International Conference
on Robotics and Automation, vol. 4, 1997, pp. 3354-3359.

T. Kroger, B. Finkemeyer, and F. M. Wahl, “Manipulation primitives
— auniversal interface between sensor-based motion control and robot
programming,” in Robotic Systems for Handling and Assembly, 2011,
pp. 293-313.

J. Felip, J. Laaksonen, A. Morales, and V. Kyrki, “Manipulation
primitives: A paradigm for abstraction and execution of grasping and
manipulation tasks,” Robotics and Autonomous Systems, vol. 61, no. 3,
pp. 283-296, 2013.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic
grasping,” IEEE Robotics and Automation Magazine, vol. 11, no. 4,
pp. 110-122, 2004.

M. Malvezzi, G. Gioioso, G. Salvietti, and D. Prattichizzo, “SynGrasp:
A MATLAB toolbox for underactuated and compliant hands,” IEEE
Robotics and Automation Magazine, vol. 22, no. 4, pp. 52-68, 2015.
S. W. Ruehl, C. Parlitz, G. Heppner, A. Hermann, A. Roennau,
and R. Dillmann, “Experimental evaluation of the schunk 5-Finger
gripping hand for grasping tasks,” 2014 IEEE International Conference
on Robotics and Biomimetics, pp. 2465-2470, 2014.

Z. Ren, N. Kashiri, C. Zhou, and N. G. Tsagarakis, “HERI II: A Robust
and Flexible Robotic Hand based on Modular Finger design and Under
Actuation Principles,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2018, pp. 1449-1455.

J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in 2012 IEEE International
Conference on Robotics and Automation, 2012, pp. 3859-3866.

L. Muratore, A. Laurenzi, E. Mingo Hoffman, and N. G. Tsagarakis,
“The XBot real-time software framework for robotics: From the
developer to the user perspective,” IEEE Robotics and Automation
Magazine, vol. 27, no. 3, pp. 133-143, 2020.

L. Bertoni, D. Torielli, Y. Zhang, N. G. Tsagarakis, and L. Muratore,
“Towards a generic grasp planning pipeline using end-effector specific
primitive grasping actions,” 2021 IEEE International Conference on
Advanced Robotics, 2021.

https://www.researchgate.net/publication/357617819

