
Vol.:(0123456789)1 3

Data Science and Engineering
https://doi.org/10.1007/s41019-022-00189-1

RESEARCH PAPERS

A Risk Estimation Mechanism for Android Apps based on Hybrid
Analysis

Ha Xuan Son1 · Barbara Carminati1 · Elena Ferrari1

Received: 8 April 2022 / Revised: 9 June 2022 / Accepted: 6 July 2022
© The Author(s) 2022

Abstract
Mobile apps represent essential tools in our daily routines, supporting us in almost every task. However, this assistance
might imply a high cost in terms of privacy. Indeed, mobile apps gather a massive amount of data about individuals (e.g.,
users’ profiles and habits) and their devices (e.g., locations), where not all are strictly needed for app execution. According
to privacy laws, apps’ providers must inform end-users on adopted data usage practices (e.g., which data are collected and
for which purpose). Unfortunately, understanding these practices is a complex task for average end-users. The result is that
they install apps without understanding their privacy implications. To support users in making more privacy-aware deci-
sions on app usage, we propose a risk estimation approach based on an analysis of the app’s code. This analysis adopts a
hybrid strategy, exploiting static and dynamic code analyses. Static analysis aims at discovering which personal data an app
is collecting to determine whether the target app is asking more than required. This gives the first estimation of the app’s
risk level. In addition, we also perform a dynamic analysis of the target app’s code. This further analysis helps determining
whether the collected personal data is consumed locally on the mobile device or sent out to external services. If this happens,
the risk level has to be increased, as personal data are more exposed. To prove the proposal’s effectiveness, we run several
experiments involving different groups of participants. The obtained accuracy results are promising and outperform those
obtained with static analysis only.

Keywords Mobile apps · Privacy risk assessment · Hybrid analysis

1 Introduction

Mobile apps represent essential tools in our daily routines,
supporting us in almost every task. The market provides
apps offering services that vary from social media/enter-
tainment to health monitoring, just to mention a few. The
total number of installed Android apps in the market is
approximately 258B in 2022, which equates to 20–60 apps
per user’s device on average.1

The downside of these apps’ services is the high cost for
privacy individuals might need to pay. Indeed, mobile apps
gather a massive amount of information about individuals
(e.g., users’ profiles and habits) and their devices (e.g., loca-
tions). Some of these data are not strictly necessary for the
app’s functionality execution [1]. To limit the collection of
unnecessary information, new privacy laws have been issued
recently. As an example, EU GDPR2 introduces the data
minimization principle, which requires collecting and retain-
ing only the personal data necessary for the app’s purposes.

Although these efforts resulted in a reduced number of
access permissions required by apps [2], individuals are still
facing problems in fully understanding the privacy implica-
tions of permissions they grant to apps and thus the underly-
ing privacy risks. To cope with this issue, several research

Ha Xuan Son, Barbara Carminati and Elena Ferrari were
contributed equally to this work.

 * Ha Xuan Son
 sha@uninsubria.it

 Barbara Carminati
 barbara.carminati@uninsubria.it

 Elena Ferrari
 elena.ferrari@uninsubria.it

1 DiSTA, University of Insubria, 21100 Varese, VA, Italy

1 https:// finan ceson line. com/ number- of- mobile- app- downl oads/,
https:// www. stati sta. com/ stati stics/ 267309/ number- of- apps- on-
mobile- phones/.
2 The GDPR document is available at https:// edps. europa. eu/ data-
prote ction/ data- prote ction/ gloss ary/d_ en# data_ minim izati on.

http://orcid.org/0000-0002-7312-6769
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-022-00189-1&domain=pdf
https://financesonline.com/number-of-mobile-app-downloads/
https://www.statista.com/statistics/267309/number-of-apps-on-mobile-phones/
https://www.statista.com/statistics/267309/number-of-apps-on-mobile-phones/
https://edps.europa.eu/data-protection/data-protection/glossary/d_en#data_minimization
https://edps.europa.eu/data-protection/data-protection/glossary/d_en#data_minimization

 H. X. Son et al.

1 3

groups have recently started to investigate tools supporting
users in taking more privacy-aware decisions on app usage.
Some approaches estimate the privacy risk considering the
app’s requested permissions and the app’s description (see
Sect. 7 for more details). However, these solutions are not able
to detect those malicious apps that gain access to sensitive
data by exploiting side channels to bypass permissions [3].

A more promising approach relies on investigating app
behavior by analyzing its source code. For instance, in [4]
we leverage on static analysis of the app’s code to determine
the usage of functions/constants used to collect personal
information. This determines the app behavior in terms of
data collection. Then, the app risk level is defined based on
the deviation of its behaviour w.r.t. the “regular” one, that is,
the usage of these functions/constants done by the majority
of apps with similar business goals.

In this paper, we extend the risk estimation proposed
in [4] by also taking into account the app behaviour w.r.t.
sharing of personal data to third-parties. More precisely, in
addition to determine the collected personal data via static
analysis (as [4] did), we also analyse the app at run-time, via
source’s code dynamic analysis, to determine whether the
collected personal data is consumed locally on the mobile
device or sent out to external services. If this happens, the
risk level has to be increased, as personal data are more
exposed. To take into account the app’s behaviour w.r.t both
data collection and sharing, in this paper, we propose a new
hybrid analysis-based risk measure. Moreover, to prove that
the hybrid analysis-based risk measure is more effective, we
run several experiments with the involvement of different
groups of participants (i.e., experts and crowd workers), by
comparing static and hybrid analysis-based risk measures.
The obtained results show that hybrid analysis received
better accuracy (i.e., varying from 83.4 to 87%) than static
analysis risk accuracy (i.e., varying from 78 to 80.7%).

The remainder of this paper is organized as follows.
Sect. 2 provides the modeling of app’s behavior w.r.t. data
collection, which is used by the considered risk measures.
Sections 3 and 4 introduce the static and hybrid analysis-
based risk measures. Details on implemented hybrid-based
approach are provided in Sect. 5. Section 6 presents experi-
mental results, whereas related work are discussed in Sec-
tion 7. Finally, Sect. 8 concludes the paper.

2 Modelling Apps behavior

Both static and hybrid approaches consider how much per-
sonal information a target app potentially collects during its
execution. The key idea is to estimate the risk by comparing
its behavior w.r.t. data collection (called app signature) with
the common behaviors of applications with a similar busi-
ness goal (called category signature).

2.1 App signature

To model the app’s behavior, we first determine which per-
sonal information it collects. For this aim, we rely on the
static analysis approach proposed in [4], where the app’s
source code is parsed to only consider those instructions
used to collect personal data. As described in [4], these
instructions have been selected by reviewing the Google-
supported APIs and choosing only those related to seven
types of personal data, namely: user location (e.g., city,
country), public places where users have been; media (e.g.,
users’ image, video, audio); connection (e.g., wifi name,
used to infer user location in case of public wifi, activity
on Bluetooth, NFC); hardware (e.g., camera, USB devices);
telephony (e.g., contacts info, phone number); user profile
(e.g., birthday, gender, name); and health and fitness data
(e.g., heart rate, step counts, body fat). In total, we identified
66 APIs, with 1360 classes and 13535 functions/constants.3.

Given an app a, its app signature is computed by con-
sidering the collection of each of the above-mentioned data
type separately. In particular, given a data type dt , the app
behaviour w.r.t. dt is defined as a vector Vdt

a
 of n elements,

where n is the number of functions/constants able to retrieve
information of type dt . An element in Vdt

a
 is set to 1 if a’s

source code contains the corresponding function/constant; 0,
otherwise. The final app signature is modelled as a set Sa of
seven vectors, one for each data type dt (i.e., Vlocation

a
 ; Vplaces

a ,
Vmedia
a

 , Vconnection
a

 , Vhardware
a

 , Vtelephony
a , Vprofile

a , Vhealth&fitness
a).

An example of a portion of app signature w.r.t. the
media data type for app1 is given in Fig. 1b, where it is
reported that app1 exploits the following functions/con-
stants: getDomain(), Authority, resume(), getMaxSpl(),
and getMinSpl().

2.2 Category Signature

To model the common behavior of applications with similar
business goals, in [4] we compute the app signature for a
selection of apps belonging to the same category and extract
from them a common pattern.

More precisely, given a category Cat the corresponding
category signature, denoted as SCat , consists of seven vec-
tors, one for each of the considered data type dt, denoted as
Vdt
Cat

 . Let A be the set of apps selected in Cat category, each
Vdt
Cat

 is generated such that: Vdt
Cat

[j] is 1 if at least 50% of the
corresponding elements in the signatures of apps in A is 1
(i.e., ‖{Vdt

a
[j] = 1 ∣ a ∈ A}‖ > 50%); 0, otherwise.

3 The API taxonomy tree is available at https:// github. com/ SonHa
Xuan/ Andro id- App- Risk- Estim ation/ tree/ master/ data/ Stati cAnal ysisP
arseT ree. json.

https://github.com/SonHaXuan/Android-App-Risk-Estimation/tree/master/data/StaticAnalysisParseTree.json
https://github.com/SonHaXuan/Android-App-Risk-Estimation/tree/master/data/StaticAnalysisParseTree.json
https://github.com/SonHaXuan/Android-App-Risk-Estimation/tree/master/data/StaticAnalysisParseTree.json

A Risk Estimation Mechanism for Android Apps based on Hybrid Analysis

1 3

An example of a portion of signature for the entertain-
ment category w.r.t. media data type is given in Figure 1(b).

3 Risk Estimation Based on Static Analysis

The key idea of the approach in [4] is to assess the risk of
an app a of category Cat, by comparing its behaviour (i.e.,
app signature Sa) with the behaviour extracted from the cor-
responding category (i.e., Cat’s signature, SCat). The rational
is that the lower is the deviation of Sa from SCat , the lower is
the risk that a collects unnecessary personal data. Thus, to
estimate the risk a function DF is needed to measure the dis-
tance between Sa and SCat , aka two vectors of 0/1 elements.
For this purpose, in [4] we did not exploit a vector distance,
like the Hamming distance. Indeed, this type of distance
only considers distributions of 0/1, without taking into
account the semantics of the corresponding API functions.
For example, apps with two very Hamming-similar signa-
tures (e.g., with only 1 bit of difference) may differ in using
only one function/constant that collects very different data.
In contrast, to consider the API’s semantics, [4] builds a
distinct taxonomy for each data type, by exploiting the hier-
archy of APIs used to collected the corresponding data. Fig-
ure 1a presents a portion of the taxonomy for the media data
type (media): the root node indicates the data type, first-level
nodes represent the considered APIs, whereas second-level
nodes model their classes. Finally, leaves indicate the func-
tions/constants, that is, the personal data item collected by
that function/constant. According to this representation, each
element in Vdt

a
 and Vdt

Cat
 corresponds to a leaf of the corre-

sponding dt taxonomy. Thanks to this taxonomy, the distance
between an element in Vdt

a
 and one in Vdt

Cat
 is computed by

exploiting a semantic similarity measure [5]. In particular,
given two elements Vdt

a
[i] and Vdt

Cat
[i] , the similarity measure

is exploited only when Vdt
a
[i] = 0 and Vdt

Cat
[i] = 1 . Indeed,

this is the only deviation meaningful for risk estimation,
since Vdt

a
[i] = 1 implies that a uses a function/constant (i.e.,

the one in the i-th position) to collect a piece of data that the
majority of apps in the same category Cat is not collecting
(i.e., Vdt

Cat
[i] = 0).4 In this case, to understand the importance

of the deviation, the collected data (i.e., those corresponding
to Vdt

a
[i] = 1) are compared with the most similar data item

collected by the majority of apps in the same category. First,
the data items usually required by the apps in the same cat-
egory are determined (i.e., those elements in Vdt

Cat
 with values

1). From these, the item that, based on dt taxonomy, is more
similar to the one required only by a, i.e., Vdt

a
[i] , is selected.

Hereafter, we refer to this item as the closest collected data
item of Vdt

a
[i] , denoted as ccd(Vdt

a
[i]).

Example 1 Let us consider Fig. 1a, representing a portion
of the media data type taxonomy, and the corresponding
portion of app1 ’s signature and its category signature given
in Fig. 1b. For simplicity, to each second-level nodes (i.e.,
classes) and leaves (i.e., functions/constants) we associate
a distinct letter used as index (e.g., “A” is associated with
android.media.tv.TVContentRanting).

Let us consider the 1-st element in app1 ’s signature (i.e.,
G). Since Vmedia

app1
[G] =1 and Smedia

ent
[G]=0, we need to find G’

Fig. 1 a Portion of the media
data type taxonomy; b an
example of app and category
signature

4 Note that also Vdt
a
[i] = 0 and Vdt

Cat
[i] = 1 represents a deviation.

However, it is not considered relevant in terms of risk estimation
since, in this case, a does not collect a data item that the majority
does.

 H. X. Son et al.

1 3

closest collected data item, (ccd(Vmed
app1

[G]). According to
Fig. 1a, this requires to search G’s closest collected data
among leaves in the subtree rooted at G’s father node (i.e.,
A), that is, H. The value of H is 0; therefore, we examine
other leaves by recursively traversing A’s parent (android.
media.tv). Here, we found B node with two leaves I and
J. Since J’s value is 1, ccd(Vmed

app1
[G]) is J.

Once the closest collected data item of Vdt
a
[i] has been

determined, the risk level associated with the considered
deviation is given as the dissimilarity between Vdt

a
[i] and

ccd(Vdt
a
[i]) , in that more similar are the two data items less

risky is the usage of Vdt
a
[i] by a. Thus, the risk of an app a,

w.r.t a given data type dt, is computed as the sum of these
dissimilarities, only in case Vdt

a
[i] = 0 and Vdt

Cat
[i] = 1 , as the

following definition states.

Definition 1 Risk of an app w.r.t a data type [4]. Let a
be a target app and Cat be its category. Let dt be one of the
considered data types, and let Vdt

a
∈ Sa and Vdt

Cat
∈ SCat be the

vectors corresponding to dt in Sa and in Cat’s signature SCat ,
respectively. The risk of app a w.r.t. data type dt is estimated
as follows:

where df (Vdt
a
[i],Vdt

Cat
[i]) is computed as follows:

where

• ccd is the function returning the closest collected data
item of Vdt

a
[i]);5

• WP() is the Wu & Palmer similarity measure [6] used to
compute the semantic similarity between Vdt

a
[i] and its

closet collected data item.6

(1)DF
dt (a) =

∑
i∈Vdt

a
df (Vdt

a
[i],Vdt

Cat
[i])

‖Vdt
a
‖

{
1 −WP(Vdt

a
[i], ccd(Vdt

a
[i])) ifVdt

a
[i] = 1,Vdt

Cat
[i] = 0;

0 otherwise

In the following, we provide an example of risk computa-
tion w.r.t. a data type.

Example 2 Let us consider again app1 signature and the sig-
nature of the entertainment category given in Fig. 1a.
According to Example 1, the closest collected data item of
the first app1 signature’s element set to 1 (i.e., Vmedia

app1
[G] =1)

is node J. We therefore compute the Wu & Palmer similarity
v a l u e b e t w e e n n o d e s G a n d J (w i t h
lca = }}android.media.tv��) as follows:

app1 ’s signature has also four other elements with value 1,
namely I, P, Q, and R. Two of them (i.e., Q and R) have
the same value of the corresponding element in the enter-
tainment category signature, so their similarity value is
0. For the other two, that is, I and P, the closest collected
items are J and O, respectively. Therefore, WP(I, J) =
WP(P, O)=0.667.

The risk of app1 w.r.t media data type is then computed
as follows:

The risk of an app is then defined by combining the risk
values w.r.t each data type dt, as the following definition
explains.

Definition 2 Static risk of an app [4]. Let a be a target app
and Cat be its category. The static risk of a is defined as:

Example 3 Let us consider again app1 ’s signature presented
in Fig. 1a. Let’s assume that app1 collects only the media
data type (media). The risk of app1 wrt the media data type
computed in Example 2 is 0.111. The static risk of app1 is
therefore as follows:

WP(G, J) =
2 × depth(lca)

dist(G) + dist(J) + 2 × depth(lca)

=
2 × 1

2 + 2 + 2 × 1
= 0.333

DF
media(app1)

=
(1 − 0.333) + (1 − 0.667) + (1 − 0.667) + 0 + 0

12

= 0.111

(3)Riskstatic(a) =

∑
∀dt DF

dt (a)

7

Riskstatic(app1) =
DF

med(app1)

7
=

0.111

7
= 0.016

5 Starting from the leaf corresponding to Vdt
a
[i] in dt’s taxonomy,

ccd() traverses the taxonomy up to Vdt
a
[i] ’s father node f, and searches

among the leaves in the subtree rooted at f an item whose correspond-
ing value in Vdt

Cat
 is 1. This process is repeated till finding a data item

in Vdt
Cat

 with value 1 or reaching the root. In this latter case, ccd(Vdt
a
) is

set to the root element.
6 Given two nodes n1 and n2 of a taxonomy, Wu & Palmer similarity
measure is defined as:

where lca is the lowest common ancestor between n1 and n2 ,
depth(lca) is the length of the path from lca to the root of the tree,

(2)WP(n1, n2) =
2 ∗ depth(lca)

dist(n1) + dist(n2) + 2 ∗ depth(lca)

and dist(n1) (i.e., dist(n2)) is the length of the path from n1 to lca (i.e.,
n2 to lca).

Footnote 6 (continued)

A Risk Estimation Mechanism for Android Apps based on Hybrid Analysis

1 3

4 Risk Estimation Based on Hybrid Analysis

As described in the previous section, the risk estimation pro-
posed in [4] takes into consideration only the app behavior
w.r.t. data collection. With the hybrid approach, we acknowl-
edge that in addition to data collection is also relevant to
consider the data usage, particularly whether the collected
data are passed to third parties during the app execution. At
this aim, we exploit dynamic analysis to determine whether
the collected data are used only locally or embedded into
communication packets sent to external service (see Sect. 5
for more details). More precisely, given an app, for each
function/constant detected by the static analysis, we deter-
mine if the corresponding collected data are shared with
third parties, transferred to the app server, or elaborated
only locally. Then, the percentage of functions/constants
that transfer data outside is used as a weight to increase the
risk obtained through the static analysis. This is done at the
level of data type as the following definition explains.

Definition 3 Hybrid risk of an app w.r.t a data type . Let
a be a target app and dt be one of the considered data types.
Let Count(Vdt

a
= 1) be the number of elements in Vdt

a
 with

value equal to 1. Let Countoutside be the number of functions/
constants in Vdt

a
 that transfer data outside. The hybrid risk of

a w.r.t. data type dt is estimated as follows:

Example 4 Let us consider again app1 whose signature has
been given in Fig. 1a, and its risk w.r.t the media data type
(DF

media(app1)) computed in Example 2. Let us assume that
4 of the 5 functions used by app1 transfer data outside. The
risk of app1 w.r.t the media data type is as follows:

Once the hybrid risk value for each data type has been
computed, we can compute the hybrid risk of an app, as
follows.

Definition 4 Hybrid risk of an app. Let a be a target app.
The hybrid risk of a is defined as:

Example 5 Let us consider again app1 whose signature is
given in Fig. 1b, and let us assume that app1 shares only the
media data type. The hybrid risk of app1 is as follows:

(4)DF
dt
hybrid

(a) = DF
dt (a) +

Countoutside

Count(Vdt
a
= 1)

DF
media
hybrid

(app1) = DF
media(app1) +

4

5

= 0.111 + 0.8 = 0.911

(5)Riskhybrid(a) =

∑
∀dt DF

dt
hybrid

(a)

7

5 Implementation and Datasets

This section provides more details on the implemented
hybrid analysis. Moreover, we explain how we generate the
datasets used to validate the risk measures.

5.1 Hybrid Analysis

Given a target app a, we first perform the static analysis to
compute the app signature. For this aim, we retrieve the app
Java code by decompiling its Android apk files to retrieve
the app’s class files. Then, we parse the obtained code
to detect the invoked/declared APIs, classes, functions, and
constants, based on the keyword import and their activ-
ity scopes specified in ”{” … ”}”. This is done consider-
ing only functions/constants related to the seven selected
personal data types as described in Sect. 3.7 We then run
the dynamic analysis of the target app a, to determine the
data sharing behavior of each function/constant used by the
app. More precisely, based on Definition 3, we determine
for each data type dt, the number of functions/constants in
Vdt
a

 that transfer data outside (i.e., Countoutside) and the num-
ber of functions/constants that appear in app’s code (i.e.,
Count(Vdt

a
= 1)).

To compute Countoutside , we exploit the MobiPurpose
approach proposed in [7]. Using the approach in [7], we
obtain the runtime network traffic between an app a and
its server/third parties. The outcome of the network traffic
analysis is modeled as Key-Value (K − V) pairs, where
K is the type of transferred data (a.k.a data item) and V is its
value (see [7] for more details).

To determine Countoutside , we need then to associate each
transferred data (i.e., (K − V) pair) with a data type. For this
purpose, we analyze each function/constant of a data type
and, based on its returned value, we associate a possible data
item. Figure 2 shows the result of this process, that is, (a
portion of) data items associated with the seven considered
personal data types. We then link the data item in the K − V
pair to the corresponding functions/constants.

5.2 Datasets

To run the experiments, we build two datasets: the Training-
Set used to generate category signatures, and the TargetSet

Riskhybrid(a) =
DF

media
hybrid

(app1)

7
=

0.911

7
= 0.130

7 The static analysis code is available at https:// github. com/ SonHa
Xuan/ IEEE- Smart IoT.

https://github.com/SonHaXuan/IEEE-SmartIoT
https://github.com/SonHaXuan/IEEE-SmartIoT

 H. X. Son et al.

1 3

containing apps to be evaluated with the proposed risk
measures.

We exploit the dataset used in [4], which was obtained
by downloading in November 2019, some apps from the
first 10% of the most-downloaded apps list.8 In particular,
those apps whose APK files were available in the app mar-
ket.9 This resulted in 21,784 apps, out of which 18,098 were
successfully decompiled (83.08%) for running the static
analysis approach presented in [4]. The resulting apps were
then divided into two disjoint datasets: the TrainingSet with
16,266 apps (90%) and TargetSet with 1,832 target apps
(10%). W refer the interested reader to [4] for more details
on this dataset.

More recently, in November 2021, before running the
dynamic analysis, we updated the TargetSet by removing
those apps that became unavailable in Play Store since
November 2019. We removed 453 apps, resulting thus a
TargetSet with 1,379 apps.

To run the dynamic analysis on apps in the TargetSet,
we used 3 smartphones with different version of Android
OS (i.e., 7, 10, and 12). We run each app from a minimum
of 3–5 mins as maximum, depending on the device’s hard-
ware and the OS version. Not all apps in the TargetSet have
generated traffic. This is due to three main reasons: (i) the
app works offline; (ii) our dynamic analysis tool did not gen-
erate any input that activates requests to the servers; (iii)
the app requires login (e.g., Whatsapp) preventing the tool
from using the service. During this test, we captured 145,656
packets over seven days. Among those, we removed the traf-
fic with empty-body requests, resulting thus in a final dataset
of 92,561 packets. All the collected data are presented in our

proof-of-concept prototype available at: https:// github. com/
SonHa Xuan/ Andro id- App- Risk- Estim ation.

6 Experiments

The purpose of the experiments is to validate our hybrid risk
measure and compare it with the static one proposed in [4],
by comparing the risk estimations with those provided by
users. To collect user risk evaluation, we developed a web
application through which participants to the experiments
provide their feedback and risk estimation based on a three-
step survey. In the first step, participants read some informa-
tion related to the target app, namely: the app’s description,
features, and category. In the second step, participants are
asked to rate whether they feel necessary that the target app
collects and/or shares a given data item. This is done for
each data item (e.g., address, image, audio, video) collected
and/or transferred by the app. Participants can express their
opinion based on a five-level scale, ranging from Very
unnecessary to Very necessary. This step ensures
that each participant carefully considers which data items
are indeed collected/shared by the target app and thus makes
a conscious judgment of the app’s risk level. Moreover, the
collected information is used to verify the quality of partici-
pant feedback, in that, we manually inspected all feedback
to check consistency between associated risk levels and col-
lected labels to remove possible random answers.

The last step requires participants to select a risk level
for the target app. The level is selected as a grade from a
five-point Likert scale, Very low –Very high.10 As a

Fig. 2 A portion of the seven personal data types

10 We used a five-point Likert scale since it is a good settlement
between required users’ effort and response quality [8].

8 https:// www. appbr ain. com/ stats/ google- play- ranki ngs/.
9 APK files have been downloaded at https:// apkpu re. com/.

https://github.com/SonHaXuan/Android-App-Risk-Estimation
https://github.com/SonHaXuan/Android-App-Risk-Estimation
https://www.appbrain.com/stats/google-play-rankings/
https://apkpure.com/

A Risk Estimation Mechanism for Android Apps based on Hybrid Analysis

1 3

further quality check, we requested each participant to write
a short motivation for the selected risk level. The duration
of each survey is about 30 minutes.

The following sections describe the participants involved
in the experiments and the obtained results.

6.1 Participants

We utilized two groups of participants to better evaluate the
performance of our measures and how these are influenced
by user characteristics. The first group consists of expert
users. These are 59 experts working in the Computer Sci-
ence field, in both academic (40 users) and industrial insti-
tutions (19 users) in different countries (e.g., USA, Italy,
Switzerland, Germany, Sweden, France, Cyrus, Greece,
Vietnam, Morocco, and Singapore). Among 40 participants
working in academic institutions, 14 are lecturers/profes-
sors, whereas the others are Ph.D. students and post-docs.
For the participants working in industry, they are junior and
senior developers. Participants have an average age of 29.5
(from 25 to 34).

The second group of participants was selected to ensure
the involvement of a good number of participants of different
nationalities, ages, and educational levels. At this purpose,
we exploit the Microworkers crowdsourcing platform11 for
the enrollment of participants (called workers), by selecting
only those with the best rating in the Microworkers platform.
We received 131 participants’ feedback; however, we used
only 92 of them, because 30 workers do not pass our qual-
ity checks (e.g., the worker used answer automation tools);
whereas, 9 workers do not join our second experiment, that
is, the one to evaluate our risk estimation based on hybrid

analysis. The participants are from different countries (e.g.,
UK, Italy, India, Spain, Portugal, USA), with an average
age of 28.6 (from 18 to 52). They have different educational
levels (e.g., student, bachelor) and profile (e.g., accountant,
teacher, manager). 58% of the participants have a bachelor
degree or equivalent, whereas 6% of them have a master
degree or a Ph.D. Workers were paid $6 USD for each suc-
cessful feedback.

6.2 Evaluation of Crowdsourcing‑Based
Participants

We first compare the static and hybrid risk levels of the
crowdsourcing-based dataset (cfr. Definition 4) with the risk
level provided by the participants. For each each risk level
(i.e. Very Low (VL), Low (L), Neutral (N),
High (H) and Very High (VH)), we compute the F1
score, accuracy (Ac), precision (Pr) and recall (Re) (see [4]
for more details on the adopted metrics). Table 1 presents the
results for both experiments. Generally, the accuracy of risk
levels generated by the hybrid analysis (83.46%) is higher
than that of the static analysis (78.04%).

6.3 Evaluation of Expert‑Based Participants

Table 2 presents the results obtained by comparing our the
static and hybrid risk measures with the risk levels provided
by the expert participants. For both groups, the experiments
reported in Table 2 confirms that the hybrid risk measure
is in line with the participants’ feedback, with an accuracy
higher than that of the crowdworkers, i.e., static analysis
(80.78 vs.78.04%) and hybrid analysis (87.03 vs. 83.46%),
respectively.

Comparing the experiments’ results for both datasets (i.e.,
Tables 1 and 2), we observe that the accuracy is improved

Table 1 Precision (Pr), Recall
(Re), F1, and Accuracy (Ac)
scores for the crowdsourcing-
based dataset

Static risk measure Hybrid risk measure

VL L N H VH VL L N H VH
Pr 71.0% 80.1% 87.7% 76.3% 77.1% 79.5% 84.0% 95.0% 82.5% 88.3%
Re 73.1% 84.8% 67.6% 74.6% 79.4% 86.1% 77.8% 76.0% 75.0% 94.2%
F1 72.0% 82.4% 76.3% 75.4% 78.3% 82.7% 80.8% 84.4% 78.6% 91.1%
Ac 78.04% 83.46%

Table 2 Precision (Pr), Recall
(Re), F1, and Accuracy (Ac)
scores for the expert-based
dataset

Static risk measure Hybrid risk measure

VL L N H VH VL L N H VH
Pr 80.3% 82.3% 76.3% 78.5% 83.0% 84.2% 86.1% 91.1% 84.6% 95.1%
Re 76.8% 83.2% 70.3% 76.3% 89.0% 91.4% 93.9% 78.5% 89.2% 95.6%
F1 78.5% 82.8% 73.2% 77.4% 85.9% 87.7% 89.9% 84.3% 86.8% 95.4%
Ac 80.78% 87.03%

11 https:// www. micro worke rs. com/.

https://www.microworkers.com/

 H. X. Son et al.

1 3

by the hybrid risk measure for both the participant groups.
We explain this improvement by the fact that the hybrid
risk measure provides participants with more information
to assess the app’s risk level. Indeed, we noticed crowd-
workers assign the Neutral rating when they lack the
knowledge/background to assess the risk level of target
apps. This has been confirmed by also analysing the partici-
pant’s comments. As an example, let us consider comments
provided by crowdworker Crow48 for a given app. In the
experiment on the static risk measure he/she commented:
“It is not enough information to conclude whether the app
is risky or not. Neutral is my choice for this app” => Neu-
tral. Whereas, in the experiment on hybrid risk measure,
he/she commented: “I see this app not very reliable, I would
not share my data”=> High. A further example is from an
expert participant, i.e. Expert12, that in the experiment on
static risk measure commented: “...I don’t understand what
this app is expected to do...”=> Neutral; whereas, in the
experiment on hybrid risk measure he commented, for the
same app: “This app does not appear, based on its descrip-
tion, to require advanced access to the phone to function
properly. The fact that it requires so many permissions is
therefore troubling. Several access categories do not seem
directly related to what the app does. Specifically, telephony
and media access should not be necessary based on the app
description...” => High.

The F1 score of the last two classes (High, Very
high) is also increased in the hybrid risk setting, especially
the Very high class. The explanation for this improve-
ment is that the participants become aware of the app sharing
behaviour, and this increases the assigned risk level. As an
example, the expert participant Expert2 commented: “They
transfer data regarding WiFi so they can infer the location.
For their use case, they only need internet connection”. This
aligns well with our hybrid analysis approach, i.e., the more
data are shared, the higher the risk (cfr. Def. 1).

7 Related Work

In the following, we review existing proposals for risk analy-
sis of mobile apps. We organize the surveyed approaches
based on the adopted techniques.

7.1 Risk Estimation Based on App Metadata
Analysis

Several studies detect malicious behavior by analyzing app’s
metadata available on the Android market (e.g., app descrip-
tion, requested permissions, rating). For instance, Sarma
et al. [9] and Peng et al. [10] used probabilistic models to
detect malicious apps by comparing the app’s functionali-
ties with its required permission. Similarly, Wu et al. [11]

developed a framework exploiting deep learning to detect
correlations between the app’s description and the requested
permissions. These correlations assist users in determining
whether an app description is accurate. Besides permissions,
Chia et al. [12] employed app popularity, user evaluations,
and external community ratings to define an app privacy
risk. Unfortunately, metadata does not always precisely
describe the app actual behaviour w.r.t. personal data col-
lection. Indeed, many studies (e.g., [13]) shown that apps
can utilise more permissions than what they state in their
metadata. To cope with this limitation, static analysis has
been used to analysis apps’ behaviour.

7.2 Risk Estimation Based on Static Analysis

Literature offers several proposals exploiting static analysis
to examine app’s permissions. As an example, Felt et al.
[14] determine whether an Android app is over-privileged
by analysing the Android Manifest.xml file, search-
ing for those permissions that are rarely used. Moreover,
Moutaz et al. [15] and Jianmao et al. [16] considered a set
of 30 permissions labeled by Google LLC as dangerous,12
and marked apps using these permissions as risky. Enck
et al. [17] proposed a system that identifies if an app uses a
dangerous combination of permissions. To this end, authors
manually defined a set of permission combinations, such
as WRITE_SMS and SEND_SMS, representing a risk. Via
static analysis, they then labelled an app as malicious if it
makes use of these combinations. All the above-mentioned
approaches determine the app’s risk depending only on its
requested permissions. However, malicious apps could cir-
cumvent the permission system and gain access to protected
data by applying side channels [3], such as employing device
sensors to uniquely identify users [18], or using the MAC
address of the WiFi access point to infer user’s location [19].

To overcome this issue, similarly to this proposal, some
studies proposed to exploit static analysis of app’s code to
detect the APIs/libraries usage rather than only simply per-
mission requests. As an example, the approaches proposed
by [20–23] assumed an API/library secure (i.e., “regular”)
when it is used by several apps (as an example, more than
60% in [21]). On this basis, these proposals cluster apps
based on their APIs/libraries usage. They label an app as
not risky if it belongs to a cluster, that is, the app exploits
API/libraries commonly used, or risky if it is an outlier.
For instance, Backes et al. [20] focus only on third party
libraries to detect risky apps (aka, outlier). Wang et al. [21]
considered the APIs exploited by apps of the same category
to define regular usage and detect risky apps. Whereas,

12 The list of dangerous permission is available at: https:// devel oper.
andro id. com/ refer ence/ andro id/ Manif est. permi ssion.

https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission

A Risk Estimation Mechanism for Android Apps based on Hybrid Analysis

1 3

leveraging on machine learning classifiers, Zhang et al. [22]
developed APIGraph to model app’s API usage, for malware
detection.

Static analysis has been exploited also by Zhuo et al. [24],
and Abhishek et al. [25] to generate a graph representing
the data flow among API/classes and the possible data col-
lection. In particular, these approaches build two distinct
graphs, the first considering a set of malicious apps and the
second one based on a set of apps considered safe. Then,
by comparing the two graphs, authors are able to identify
whether an app has to be considered dangerous.

However, the main limitation of the above-mentioned
approaches is that they provide a binary label (i.e., risky/not
risky) for apps, which might not be so practical in assisting
users in their decisions.

To cope with this limitation, in [4] we proposed a risk
assessment approach able to assign a risk level to a mobile
app leveraging on static analysis. As explained also in Sec-
tion 3, given a target app, the risk level is computed based
on the deviation of its behaviour w.r.t personal data col-
lection (app signature) from the common behaviour (called
category signature) of apps having the same business goal
of the target app. Even if this solution overcome some of the
limitations of previous proposals based on static analysis,
it does not take into consideration whether apps share the
collected data to external parties, which might compromise
user privacy. Moreover, static analysis techniques have some
limitations in case of code obfuscation [26], code encoding
[27], and dynamic loading [28].

7.3 Risk Estimation Based on Hybrid Analysis

In general, dynamic analysis can be used to capture the app’s
malicious behaviors at runtime, overcoming the main draw-
backs of static analysis mentioned in the previous section.
For instance, by monitoring the network traffic, it is possible
to detect whether an app shares the collected data with third
parties [29, 30].

However, dynamic analysis might demand high resources
and a long time to perform the analysis. To overcome this
limitation, hybrid approaches combining static and dynamic
analysis are emerging [31, 32]. As an example, some propos-
als (e.g., SmartDroid [33]) exploited static analysis to iden-
tify user-interface (UI) components to be then dynamically
analyzed, rather than evaluating all UI components.

Similarly, other approaches used static analysis to speed
up subsequent dynamic analysis, by removing some unnec-
essary tests in the app’s runtime analysis, that do not com-
promise the final result [34, 35]. Cam et al. [36] developed
uitHydroid, a tool to detect the collection of sensitive data by
apps. In particular, it exploited static analysis of permissions
to determine the types of required data (e.g., address, per-
sonal information). Then, uitHydroid applied the dynamic

analysis to monitor the actual data flow exiting from the
mobile to capture any sharing activity that leaks the col-
lected data to other apps/parties. Similarly, AspectDroid
[37] first exploited static analysis to determine the expected
collected data based on the required permissions. Via an
automated testing environment, AspectDroid then detected
the abuse resource behavior, i.e., data collected without the
corresponding permission.

A further proposal, Sensdroid [38], exploited the hybrid
approach to detect collaboration among apps to collect user
data (i.e., side-channel attacks). In particular, it classified
permissions into two groups of intents, namely explicit and
implicit intent. The explicit-intentioned permissions allow
the collection of data that are used only by app’s execu-
tion without sharing them with other parties. In contrast,
implicit-intentioned permissions allow data sharing with
other apps/parties. Sensdroid exploited dynamic analysis to
determine the implicit-based permissions of the installed
apps.

In contrast, Hou et al. [39] introduced a structured het-
erogeneous information network (called HinDroid) for mal-
ware detection. HinDroid models not only API calls but also
relationships among them (e.g., API calls belonging to the
same code block, having the same package name, or using
the same invoke method). Based on this network, HinDroid
is able to determine the similarity level between two apps.
Malware can be detected by identifying similarities between
the target apps and the labelled apps (i.e., malware data-
set). Along the same line, Ye et al. [40] focused not only on
exploiting relationships between API calls but also relation-
ships between apps within the same ecosystem (i.e., whether
they coexist in the same smartphone, they are developed by
the same developer, or manufactured by the same company).
In addition, [40] proposed the HG-Learning method based
on a deep neural network (DNN) classifier to detect anoma-
lous malware behavior. This approach was then extended in
[41] to cope with new attack techniques; for instance, Com-
mand and Control (CC) malware (e.g., TigerEyeing trojan).

Nevertheless, the above-mentioned approaches focus only
on specific data/resource (e.g., SMS [37], API calls [39–41]),
or permissions [38, 42] extracted from Android-Mani-
fest.xml. In particular, the static analysis is adopted in a
coarse-grained manner since these approaches only consider
permissions and APIs. Therefore, it is not possible to detect
fine-grained personal data leakage (e.g., longitude, latitude,
locale). In contrast, in our approach we perform a more fine-
grained analysis, as we analyze functions/constants calls.
Moreover, the focus of the above-mentioned approaches is
binary malware detection, whereas our target is to determine
the risk of an app (also a begign one) in terms of leakage of
personal information. As such, we keep track of information
such as the purpose of data collection and sharing, which are
not considered by the above-mentioned proposals.

 H. X. Son et al.

1 3

8 Conclusions

This paper addresses the issue of assessing an app’s risk
level, by proposing an approach that estimate the risk based
on the data collection behavior of an app and its data shar-
ing pattern. More precisely, we have proposed an hybrid
analysis approach consisting of two phases i) static analy-
sis of app’s code to determine data collection behavior; ii)
dynamic analysis of the network traffic to determine data
sharing behavior. We experimentally evaluate our approach
with both expert users and crowd-workers, and the achieved
results are encouraging. In the future, we plan to conduct
a more comprehensive experimental assessment. We also
plan to extend the approach to detect possible mismatches
between an app privacy policy and its actual behavior w.r.t
personal data usage. Finally, we plan to test alternative mod-
ellings of category and app signatures (e.g., taking also into
account the frequency of functions/constants usage).

Acknowledgements This work has received funding from RAIS
(Real-time analytics for the Internet of Sports), Marie Skłodowska-
Curie Innovative Training Networks (ITN), under grant agreement No
813162 and from CONCORDIA, (Cybersecurity Competence Net-
work) supported by H2020 Research and Innovation program under
grant agreement No 830927. The content of this paper reflects only
the authors’ view and the Agency and the Commission are not respon-
sible for any use that may be made of the information it contains. An
extreme and special gratitude for the helpful support of Mr. Santabar-
bara Mauro; Dr. Anh-Tu Hoang; and Mr. Ahmed Lekssays. We also
express our sincere gratitude to the experts and crowd-workers who
joined our survey and provided high-quality feedback.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bamberger KA (2020) Can you pay for privacy? consumer expec-
tations and the behavior of free and paid apps. Berkeley Tech LJ
35:327

 2. Momen N, Hatamian M, Fritsch L (2019) Did app privacy
improve after the GDPR? IEEE Secur Priv 17(6):10–20. https://
doi. org/ 10. 1109/ MSEC. 2019. 29384 45

 3. Reardon J (2019) 50 ways to leak your data: An exploration
of apps’ circumvention of the android permissions system. In:
28th USENIX Security Symposium (USENIX Security 19), pp.
603–620

 4. Son HX, Carminati B, Ferrari E (2021) A risk assessment mecha-
nism for android apps. In: 2021 IEEE International Conference on
Smart Internet of Things (SmartIoT), pp. 237–244. IEEE

 5. Chandrasekaran D, Mago V (2020) Evolution of semantic simi-
larity–a survey. In: arXiv preprint arXiv: 2004. 13820

 6. Wu Z, Palmer M (1994) Verb semantics and lexical selection. In:
arXiv preprint cmp-lg/9406033

 7. Jin H (2018) Why are they collecting my data? inferring the pur-
poses of network traffic in mobile apps. Proc ACM Interact Mob
Wear Ubiquitous Technol 2(4):1–27

 8. Sachdev SB, Verma HV (2004) Relative importance of service
quality dimensions: A multisectoral study. J Services Res 4(1)

 9. Sarma BP (2012) Android permissions: a perspective combining
risks and benefits. In: Proceedings of the 17th ACM Symposium
on Access Control Models and Technologies, pp. 13–22

 10. Peng H (2012) Using probabilistic generative models for ranking
risks of android apps. In: Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security, pp. 241–252

 11. Wu Z, Chen X, Lee SU-J (2020) Fcdp: Fidelity calculation for
description-to-permissions in android apps. IEEE Access

 12. Chia PH (2012) Is this app safe? a large scale study on application
permissions and risk signals. In: Proceedings of the 21st Interna-
tional Conference on World Wide Web, pp. 311–320

 13. Olukoya O, Mackenzie L, Omoronyia I (2020) Security-oriented
view of app behaviour using textual descriptions and user-granted
permission requests. Comput Secur 89:101685

 14. Felt AP (2011) Android permissions demystified. In: 18th ACM
Conference on Computer and Communications Security, pp.
627–638

 15. Alazab M (2020) Intelligent mobile malware detection using
permission requests and api calls. Future Gener Comput Syst
107:509–521

 16. Xiao J (2020) An android application risk evaluation framework
based on minimum permission set identification. J Syst Softw
163:110533

 17. Enck W (2014) Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. ACM Trans
Comput Syst (TOCS) 32(2):1–29

 18. Simon L et al. (2016) Don’t interrupt me while i type: Inferring
text entered through gesture typing on android keyboards. Priv
Enhancing Technol, 136–154

 19. Commission FT et al. (2016) Mobile advertising network inmobi
settles ftc charges it tracked hundreds of millions of consumers’
locations without permission. In: press release (June 22), https://
tinyurl.com/h83c2be

 20. Backes M (2016) Reliable third-party library detection in android
and its security applications. In: Proceedings of the ACM SIG-
SAC Conference on Computer and Communications Security, pp.
356–367

 21. Wang H (2015) Wukong: A scalable and accurate two-phase
approach to android app clone detection. In: Proceedings of the
2015 International Symposium on Software Testing and Analysis,
pp. 71–82

 22. Zhang X (2020) Enhancing state-of-the-art classifiers with api
semantics to detect evolved android malware. In: Proceedings of
the Conference on Computer and Communications Security, pp.
757–770

 23. Zhu S (2020) Measuring and modeling the label dynamics of
online anti-malware engines. In: 29th USENIX Security Sympo-
sium (USENIX Security 20), pp. 2361–2378

 24. Singh AK et al (2019) Experimental analysis of android malware
detection based on combinations of permissions and api-calls. J
Comput Virol Hacking Tech 15(3):209–218

 25. Ma Z (2019) A combination method for android malware detec-
tion based on control flow graphs and machine learning algo-
rithms. IEEE Access 7:21235–21245

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MSEC.2019.2938445
https://doi.org/10.1109/MSEC.2019.2938445
http://arxiv.org/abs/2004.13820

A Risk Estimation Mechanism for Android Apps based on Hybrid Analysis

1 3

 26. Yang Y (2018) Droidward: an effective dynamic analysis method
for vetting android applications. Cluster Comput 21(1):265–275

 27. Yuan Z (2014) Droid-sec: deep learning in android malware detec-
tion. In: Proceedings of ACM Conference on SIGCOMM, pp.
371–372

 28. Schütte J (2015) Condroid: Targeted dynamic analysis of android
applications. In: 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications, pp. 571–
578. IEEE

 29. Shuba A, Markopoulou A (2020) Nomoats: towards automatic
detection of mobile tracking. Proc Priv Enhancing Technol
2020(2):45–66

 30. Yurekten O, Demirci M (2021) Sdn-based cyber defense: a survey.
Future Gener Comput Syst 115:126–149

 31. Gajrani J (2020) Effectiveness of state-of-the-art dynamic analy-
sis techniques in identifying diverse android malware and future
enhancements. In: Advances in Computers vol. 119, pp. 73–120.
Elsevier,

 32. Wang W (2020) Botmark: automated botnet detection with hybrid
analysis of flow-based and graph-based traffic behaviors. Inf Sci
511:284–296

 33. Zheng C (2012) Smartdroid: an automatic system for revealing
ui-based trigger conditions in android applications. In: ACM
Workshop on Security and Privacy in Smartphones and Mobile
Devices, pp. 93–104

 34. Devecsery D (2018) Optimistic hybrid analysis: Accelerating
dynamic analysis through predicated static analysis. In: 23rd Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 348–362

 35. Palit T (2021) Dynpta: Combining static and dynamic analysis for
practical selective data protection. In: 2021 IEEE Symposium on
Security and Privacy (SP), pp. 1919–1937 . IEEE

 36. Cam NT (2019) Detecting sensitive data leakage via inter-applica-
tions on android using a hybrid analysis technique. Cluster Com-
put 22(1):1055–1064

 37. Ali-Gombe AI (2018) Toward a more dependable hybrid analysis
of android malware using aspect-oriented programming. Comput
Secur 73, 235–248

 38. Shrivastava G, Kumar P (2019) Sensdroid: analysis for mali-
cious activity risk of android application. Multimed Tools Appl
78(24):35713–35731

 39. Hou S, Ye Y, Song Y, Abdulhayoglu M (2017) Hindroid: An
intelligent android malware detection system based on structured
heterogeneous information network. In: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 1507–1515

 40. Ye Y, Hou S, Chen L, Lei J, Wan W, Wang J, Xiong Q, Shao
F (2019) Out-of-sample node representation learning for hetero-
geneous graph in real-time android malware detection. In: 28th
International Joint Conference on Artificial Intelligence (IJCAI)

 41. Fan Y, Ju M, Hou S, Ye Y, Wan W, Wang K, Mei Y, Xiong Q
(2021) Heterogeneous temporal graph transformer: An intelligent
system for evolving android malware detection. In: Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, pp. 2831–2839

 42. Cam NT (2016) Android security analysis based on inter-applica-
tion relationships. Information Science and Applications (ICISA)
2016. Springer, Singapore, pp 689–700

	A Risk Estimation Mechanism for Android Apps based on Hybrid Analysis
	Abstract
	1 Introduction
	2 Modelling Apps behavior
	2.1 App signature
	2.2 Category Signature

	3 Risk Estimation Based on Static Analysis
	4 Risk Estimation Based on Hybrid Analysis
	5 Implementation and Datasets
	5.1 Hybrid Analysis
	5.2 Datasets

	6 Experiments
	6.1 Participants
	6.2 Evaluation of Crowdsourcing-Based Participants
	6.3 Evaluation of Expert-Based Participants

	7 Related Work
	7.1 Risk Estimation Based on App Metadata Analysis
	7.2 Risk Estimation Based on Static Analysis
	7.3 Risk Estimation Based on Hybrid Analysis

	8 Conclusions
	Acknowledgements
	References

