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ABSTRACT
A well established method to detect and classify human movements
using Millimeter-Wave (mmWave) devices is the time-frequency
analysis of the small-scale Doppler effect (termed micro-Doppler)
of the different body parts, which requires a regularly spaced and
dense sampling of the Channel Impulse Response (CIR). This is cur-
rently done in the literature either using special-purpose radar sen-
sors, or interrupting communications to transmit dedicated sensing
waveforms, entailing high overhead and channel utilization. In this
workwe present SPARCS, an integrated human sensing and commu-
nication solution for mmWave systems. SPARCS is the first method
that reconstructs high quality signatures of human movement from
irregular and sparse CIR samples, such as the ones obtained during
communication traffic patterns. To accomplish this, we formulate
the micro-Doppler extraction as a sparse recovery problem, which
is critical to enable a smooth integration between communication
and sensing. Moreover, if needed, our system can seamlessly inject
short CIR estimation fields into the channel whenever communica-
tion traffic is absent or insufficient for the micro-Doppler extraction.
SPARCS effectively leverages the intrinsic sparsity of the mmWave
channel, thus drastically reducing the sensing overhead with re-
spect to available approaches. We implemented SPARCS on an
IEEE 802.11ay Software Defined Radio (SDR) platform working in
the 60 GHz band, collecting standard-compliant CIR traces match-
ing the traffic patterns of real WiFi access points. Our results show
that the micro-Doppler signatures obtained by SPARCS enable a
typical downstream application such as human activity recognition
with more than 7 times lower overhead with respect to existing
methods, while achieving better recognition performance.

1 INTRODUCTION
There is a growing interest in human tracking [38], Human Ac-
tivity Recognition (HAR) [29] and person identification [40] using
Millimeter-Wave (mmWave) devices, where the high carrier fre-
quency and large available bandwidth allow for accurate Doppler
estimation and precise localization and tracking. To fully exploit
these properties, a large body of work has focused on dedicated
mmWave radars, that adopt specifically designed frequency modu-
lated transmissions to extract the micro-Doppler (𝜇D) effect caused
by human motion (a so-called 𝜇D signature) [27, 35].

At the same time, given the increasing number of mmWave net-
work technologies such as 3GPP 5G-NR [34] and IEEE 802.11ad/ay
[36, 37], Integrated Sensing And Communication (ISAC) solutions
are highly appealing. They effectively repurpose communication
devices by endowing them with additional environment sensing
capabilities, thus avoiding the cost of installing dedicated radar hard-
ware. This recent trend has led to the identification of sensing as a
key feature of next generation 6Gmobile networks [18] and the cre-
ation of the IEEE 802.11bf standardization group [26], aimed at en-
abling sensing features in Wireless Local Area Networks (WLANs).
However, ISAC system designs are still very limited, focusing on
joint communication and sensing waveform design [19], which
would require significant modifications to existing communication
protocols and a reduction in the achievable communication data
rates. Other approaches [17, 18, 23, 39] need to alternate commu-
nication and sensing phases according to a time-division scheme,
where regularly spaced, radar-like transmissions are performed
during dedicated sensing periods. This is needed to perceive the
fine-grained 𝜇D effect of human motion, for which dense and reg-
ular sampling of the Channel Impulse Response (CIR) is required,
causing significant overhead and channel occupation.

In this paper, we address the problem of enabling ISAC in realistic
mmWave communication systems, by reusing existing communica-
tion traffic for sensing asmuch as possible and thus introducing only
a minimal amount of additional overhead. To this end, we propose
SPARCS, the first mmWave ISAC system that reconstructs human
𝜇D signatures from irregular and sparse CIR samples obtained from
realistic traffic patterns. The main insight of SPARCS is to leverage
the intrinsic sparsity of the reflections in the mmWave channel to
pose the 𝜇D reconstruction as a sparse recovery problem. Indeed,
mmWave CIR estimation can naturally separate signal propagation
paths with < 10 cm resolution, leading to a sparse multi-path en-
vironment and consequently a sparse CIR in the Doppler domain.
This allows obtaining highly accurate 𝜇D signatures from only a
small, randomly distributed fraction of the CIR samples that are
currently needed by existing ISAC methods. To do so, SPARCS first
performs CIR resampling to construct a regular grid of CIR samples
with missing vales due to the irregularity of the sampling process
in time. Next, a sparse reconstruction method is used to obtain the
𝜇D spectrum, decoupling different propagation paths to leverage
their sparsity property. Lastly, whenever communication traffic is
absent or insufficient for the 𝜇D extraction, SPARCS supports a
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dynamic injection of very short CIR estimation fields into the (idle)
channel. Given its sparse recovery capabilities, only a small number
of additional CIR sensing units are needed to retrieve the 𝜇D, thus
entailing a negligible overhead to the communication rate.

SPARCS is compatible with any mmWave system that supports
transmit beamforming for directional communication and CIR esti-
mation. This is the case, for example, for IEEE 802.11ay WLANs at
60 GHz, which provide in-packet CIR estimation for beam track-
ing purposes, and for 3GPP 5G-NR, where base stations can send
frequent downlink CSI-Reference Signal (CSI-RS) to estimate the
channel using different Beam Patterns (BPs).

To evaluate SPARCS’ performance, we implement it on a 60 GHz
IEEE 802.11ay Software Defined Radio (SDR) experimentation plat-
form. We then test it on sparse and irregular CIR samples derived
from standard-compliant traces, both for synthetic traffic and traf-
fic patterns obtained from datasets of operational real-world WiFi
Access Points (APs) deployments [25]. To assess the quality of the
reconstructed 𝜇D signatures, we use them as input for a typical
downstream task such as HAR, which classifies human movement
detected by the captured 𝜇D into different possible activities. The
main contributions of our work are summarized next.

(1) We propose SPARCS, an ISAC method for mmWave systems
that can reconstruct high-quality 𝜇D signatures of human
movement from irregular and sparse CIR estimation samples.
SPARCS reuses training fields appended to communication
packets as sensing units, and injects additional sensing units
if necessary, adapting to the underlying communication traf-
fic and minimizing the sensing overhead.

(2) We provide an original formulation of the 𝜇D extraction
in communication systems as a sparse recovery problem,
leveraging the intrinsic high distance resolution and sparsity
properties of the mmWave channel. As a side effect, this also
improves the quality of the resulting spectrograms, making
them more robust to noise and interference.

(3) We design and validate an algorithm to perform the injec-
tion of additional sensing units when communication traffic
is insufficient. The process is dynamic, requires no knowl-
edge about future packet transmissions, and incurs minimal
overall overhead.

(4) We evaluate SPARCS by implementing it on an IEEE 802.11ay-
compliant 60 GHz SDR platform and testing it on CIR mea-
surements collected with realistic WiFi traffic patterns. For
the common HAR task, the 𝜇D signatures reconstructed by
SPARCS achieve better F1 scores than existing methods,
while reducing sensing overhead by a factor of 7.

The paper is organized as follows. In Section 2 we discuss the nec-
essary preliminaries for mmWave human 𝜇D sensing using CIR.
SPARCS is introduced and explained in detail in Section 3, de-
scribing the sparse recovery problem formulation and the involved
processing steps. In Section 4 we discuss the implementation of
SPARCS on an SDR platform, and Section 5 provides an evalua-
tion of the system on real measurement traces. We summarize the
related work in Section 6 and give concluding remarks in Section 7.

2 PRIMER ON MMWAVE SENSING
In this section we give a brief description of the CIR model for
mmWave communication systems that we use for sensing. We then
describe a baseline approach that allows tracking the movement of
people in the environment and extract their 𝜇D signatures using
regularly sampled CIR information. This forms the basis of our
SPARCS design, which entirely eliminates the requirement of fixed
Inter-Frame Spacing (IFS) and enables ultra low-overhead ISAC.

2.1 Sensing in mmWave systems
Capturing the movement features of humans in the environment
requires an analysis of the reflections of the transmitted signal from
their bodies, which is usually carried out applying signal process-
ing techniques to the CIR. Due to the high path loss occurring at
mmWave frequencies, directional communication is employed by
means of transmitter and receiver beamforming, typically using
phased antenna arrays. The transmitter and the receiver use suitable
BP configurations of their antenna arrays to maximize the signal
strength [11, 36, 37]. To successfully sense with a mmWave system,
at least one of the BPs has to illuminate the subjects of interest, as
only in this case the reflected signal carries detectable information
about the movement signature. To this end, we consider a setup
where an AP transmits packets and is able to collect the reflections
of its own signal, after being reflected by objects (including humans).
This reflection is collected by the receive array of the AP itself using
a quasi-omnidirectional BP. This requires full-duplex capabilities,
as is common in ISAC scenarios [14], which in the simplest form
can be achieved with a Multiple Input Multiple Output (MIMO)
system in a mixed configuration with one RF chain as transmitter
and another as receiver. The CIR estimation fields used for sensing,
which we denote by sensing units, can either be piggybacked by
appending them as a trailer to the Physical Layer (PHY) communi-
cation packets or transmitted independently (injected). mmWave
standards implement beam training mechanisms that help to estab-
lish a communication link by testing different BP combinations and
then selecting the best one. Such functionality is supported by all
mmWave standards. For example, 5G-NR [11], use Synchronization
Signal Block (SSB) and CSI-RS for beammanagement, while WLAN
systems adopting the IEEE 802.11ad/ay standards [36, 37] use chan-
nel estimation and training fields (CEF and TRN, respectively) to
obtain accurate CIR information. Our framework to extract sensing
information from CIR measurements can be applied regardless of
the specifics of the standards.

2.2 mmWave CIR model
Due to the large transmission bandwidth of mmWave systems,
channel measurements contain fine-grained information about the
environment [18, 23, 39]. Depending on the communication sys-
tem we consider, sensing could be performed using the 5G-NR
Orthogonal Frequency Division Multiplexing (OFDM) Channel
State Information (CSI), which contains the channel gains for each
OFDM subcarrier, or the IEEE 802.11ad/ay Single Carrier (SC) CIR.
Both communication schemes are suitable for human sensing: (i)
in 5G-NR, the base stations can send frequent downlink CSI-RS to
estimate the channel using different BPs, while (ii) in IEEE 802.11ay
in-packet beam tracking is enabled, so that specific fields called
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training fields (TRN), each using a different BP, can be appended to
communication packets. In the following, we focus on SC CIR, and
show how to extract the 𝜇D effect of human movement. However,
previous works have demonstrated that similar processing can be
performed with OFDM CSI [18, 20], and SPARCS is general enough
to be applied in both cases.

We consider a multipath propagation environment with a time-
varying number of reflectors, 𝑃 (𝑡). These cause physical signal
propagation paths that can be separated in the CIR according to a
finite ranging resolution, i.e., the capability of the system to resolve
the distance of the reflectors causing different signal paths. This is
given by Δ𝑑 = 𝑐/2𝐵, where 𝐵 is the transmitted signal bandwidth
and 𝑐 the speed of light. Thus, the CIR contains the complex channel
gains for a discrete grid of possible signal paths (or distance bins),
with indices ℓ = 0, . . . , 𝐿 − 1. Each path is associated with a specific
distance from the AP, according to the relation 𝑑ℓ = 𝑐𝜏ℓ/2, with 𝜏ℓ
being the delay associated with path ℓ . Moreover, the CIR depends
on the specific BP used during the transmission, denoted by 𝑏 =

0, . . . , 𝑁BP − 1. For carrier frequency 𝑓𝑜 , the CIR along ℓ , using BP
𝑏 at time 𝑡 is

ℎℓ,𝑏 (𝑡) =
𝑃ℓ (𝑡 )∑︁
𝑝=1

𝑎
𝑝

ℓ,𝑏
(𝑡) exp

{
− 𝑗2𝜋 2𝑓𝑜

𝑐

[
𝑑ℓ +

∫ 𝑡

0
𝑣
𝑝

ℓ
(𝑥)𝑑𝑥

]}
. (1)

In Eq. (1), 𝑃ℓ (𝑡) is the number of physical reflectors whose contri-
butions overlap in the ℓ-th CIR path, as their distances are within
𝑑ℓ±Δ𝑑/2, while 𝑣𝑝ℓ is the radial velocity1 of reflector 𝑝 . The quantity
𝑎
𝑝

ℓ,𝑏
(𝑡) is the complex gain due to the joint effect of the transmitter

BP, the object reflectivity and the signal attenuation.

2.3 micro-Doppler extraction
The extraction of the 𝜇D spectrum from multiple, concurrently
moving subjects requires tracking the position of each person in the
physical space, in order to separate their individual contributions to
the CIR. Then, a spectral analysis over different CIR samples yields
the desired 𝜇D signature [13, 23].

2.3.1 People tracking. People tracking is performed by extracting
measurements of each person’s distance and angular position with
respect to the AP across time, as detailed, e.g., in [23]. This process
consists of (i) removing the background contribution to the CIR
by subtracting the average CIR across a suitable time interval, (ii)
selecting the locally strongest reflection paths in the CIR (peaks)
and obtaining the corresponding distance 𝑑ℓ , (iii) computing the
Angle of Arrival (AoA), 𝜃 , of the reflection from the correlation
between the different BPs gains and the strengths of the CIRs across
the whole angular Field-of-View (FOV) [15]. The approach in (iii)
requires the BP shapes to be estimated in advance, and is based on
the intuition that different BPs illuminate different possible reflec-
tors in the environment, depending on their position. Therefore,
we can expect to receive the reflected signal from a certain subject
only when a BP is pointing in his/her direction. The resulting set
of distances and angles represent candidate positions of humans in
the environment. A multi-target tracking method such as a Joint
Probabilistic Data Association Filter (JPDAF) [2] allows smoothing
the trajectories of the subjects by rejecting noise and clutter.
1By convention, 𝑣𝑝ℓ has a positive sign when the reflector moves away from the AP.

The tracking phase provides an estimate of the position of each
subject, at every time instant 𝑡 , which we denote by [𝑑 (𝑡), 𝜃 (𝑡)]
using symbol^to differentiate between our estimates and the true
position. Due to step (𝑖𝑖) above, which selects the local peaks in the
received power, typically only the reflections from the torso can
be tracked when a person moves in the environment. In contrast,
the head and the limbs cause much weaker reflections [35], whose
contributions can only be detected in the 𝜇D spectrum. Neverthe-
less, tracking the spatial location of the torso is crucial for the 𝜇D
extraction as it allows separating the contributions of the multiple
subjects in the environment. Once 𝑑 (𝑡) and 𝜃 (𝑡) are determined,
they are used to select the path ℓ∗ and the BP 𝑏∗ that correspond
to the distance and angular position of the subject, respectively.
Then, the CIR waveform that contains the 𝜇D effect of the person’s
movement is ℎℓ∗,𝑏∗ (𝑡). Besides enabling the separation of multi-
ple subjects, this operation makes mmWave sensing systems much
more robust to changes in the environment than sub-6GHz systems
[21]. While the latter are heavily affected by second-order reflec-
tions on walls and objects, mmWave sensing mostly relies on the
line-of-sight path between the person and the transmitter/receiver,
with little contribution from the external environment.

2.3.2 micro-Doppler spectrum. Human movement causes a small-
scale Doppler effect on the reflected signal due to the different body
parts, which possess different velocities and follow different trajec-
tories [4]. This is referred to as 𝜇D effect and causes a measurable
frequency modulation on the reflection. High frequency signals
such as mmWave communications are particularly affected by the
𝜇D modulation due to their small wavelengths. Various techniques
from time-frequency analysis can be applied to analyze the 𝜇D,
obtaining spectrograms showing the time evolution of the signal
energy contained in the different frequency bands of interest. The
most popular and computationally efficient of such methods is the
Short Time Fourier Transform (STFT) of ℎℓ,𝑏 (𝑡) [3], which consists
in applying awindowed Fourier Transform (FT) on partially overlap-
ping portions of the CIR. As shown in [13, 20, 23], STFT processing
needs to be applied to a window of𝑊 subsequent estimates of the
CIR with a fixed CIR sampling interval of𝑇𝑐 seconds, provided that
the time spanned by the window is short enough to consider the
movement velocity of the reflectors constant for its whole duration.
Note that this operation allows detecting and separating the veloc-
ities of the 𝑃ℓ (𝑡) reflectors, whose contributions overlap in path
ℓ when considering a single estimate of the CIR. The choice of 𝑇𝑐
impacts the frequency resolution of the STFT, Δ𝑓 𝑑 = 1/(𝑊𝑇𝑐 ), and
its maximum measurable frequency, 𝑓 𝑑max = 1/(2𝑇𝑐 ). Using the
relationship between the Doppler frequency and the corresponding
velocity, one can obtain the velocity resolution and the maximum
observable velocity as Δ𝑣 = 𝑐/(2𝑓𝑜𝑊𝑇𝑐 ) and 𝑣max = 𝑐/(4𝑓𝑜𝑇𝑐 ). To
fully capture the range of velocities of interest for humanmovement,
the typical approach is to select 𝑇𝑐 such that 𝑣max is sufficiently
high that is covers the velocities that can occur in the human ac-
tivities of interest, which may vary depending on the application
[23, 29, 35].

Previous work assumes that the constraint of a fixed 𝑇𝑐 is met,
which does not hold in realistic communication scenarios, where
packet transmissions are scheduled according to the needs of the
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Figure 1: Comparison between the traditional CIR-based human
sensing and SPARCS.

communication protocols rather than sensing accuracy. Traffic pat-
terns are typically bursty and irregular and thus cannot be used by
existing methods for human sensing. Instead, dedicated time slots
need to be reserved for the transmission of sensing units, which is
incompatible with the random access CSMA/CA MAC commonly
used in IEEE 802.11. Conversely, SPARCS is the first approach that
does not require any specific pattern in the transmission of the
sensing units, enabling true ISAC by exploiting communication
packets for sensing whenever possible, and introducing minimal
additional overhead when necessary.

3 SPARCS METHODOLOGY
We now present the SPARCS algorithm to recover the 𝜇D spectrum
from irregular and sparse CIR sampling patterns. The processing
steps of SPARCS compared to traditional CIR-based sensing meth-
ods are shown in Fig. 1.
(1) CIR resampling: after CIR estimation and people tracking,

for which we adopt the standard JPDAF technique [2], we apply
a resampling strategy to approximate the irregularly spaced CIR
values with a regular sequence whose sampling interval is chosen
according to the desired 𝜇D resolution (Section 3.1). Due to irregu-
larity of the original sampling process, the approximated regular
sequence may contain missing values that need to be filled in the
subsequent processing steps.
(2) Sparse 𝜇D recovery: we formulate the recovery of the 𝜇D

spectrum from the incomplete CIR measurements as a sparse re-
covery problem. For this, we leverage two key aspects. On the
one hand, the intrinsic sparsity of the mmWave channel leads to
a small number of signal reflections from the human body that
carry information about different body parts. On the other hand,
the high distance resolution of mmWave systems makes the reflec-
tions from the different body parts separable. The combined effect
of these two properties is that the resulting CIR is highly sparse
in the Doppler frequency domain, as detailed in Section 3.2 We
then solve the sparse recovery problem using the Iterative Hard
Thresholding (IHT) algorithm for each CIR path (Section 3.3), and
aggregate the results to obtain the final 𝜇D spectrum (Section 3.4).
(3) Sensing unit injection: when communication traffic is ab-

sent or too scarce to obtain an accurate reconstruction, our system
can inject short sensing units into the (idle) channel to overcome
the problem, as described in Section 3.5. Thanks to the sparse recon-
struction of point (2), the amount of units that need to be injected
is minimal and can be tuned to trade off between overhead and
sensing accuracy.

3.1 CIR resampling
Our system samples the CIR at time instants 𝑡𝑖 , which coincide with
the reception of the reflections from the 𝑖-th transmitted packet. To
reconstruct the 𝜇D spectrum from CIR samples which are randomly
distributed in the time domain, we first resample the CIR to obtain
regularly spaced samples with a fixed granularity𝑇𝑐 , where possible.
To do so, we resort to the slotted resampling technique, which
allows approximating a sequence of randomly spaced samples into
a regular grid with missing values [1]. We consider 𝑁𝑠 consecutive
samples obtained at the time instants 𝑡0, 𝑡1, . . . , 𝑡𝑁𝑠

and denote by
0,𝑇𝑐 , 2𝑇𝑐 , . . . , (𝐾 − 1)𝑇𝑐 the regular grid with step size 𝑇𝑐 . Slotted
resampling constructs a new CIR sample sequence ℎℓ,𝑏 (𝑘𝑇𝑐 ) where
the CIR values are obtained from the original sequence ℎℓ,𝑏 (𝑡𝑖 ) as
follows. Time bins (or intervals) of length 𝑇𝑐 are centered on each
time instant of the regular grid, i.e., bin 𝑘 is 𝛽𝑘 = [𝑘𝑇𝑐 −𝑇𝑐/2, 𝑘𝑇𝑐 +
𝑇𝑐/2), with center 𝑘𝑇𝑐 . Then, the value of the CIR corresponding
to the 𝑘-th grid value is either (i) selected among the values of the
original sequence whose sampling times fall inside bin 𝑘 , taking
the one whose sampling time is the closest to the bin center, or (ii)
considered as a missing value if no samples of the original sequence
fall inside bin 𝑘 . Specifically,

ℎℓ,𝑏 (𝑘𝑇𝑐 ) =
{

0 if {𝑡𝑖 |𝑡𝑖 ∈ 𝛽𝑘 } = ∅,
ℎℓ,𝑏 (𝑡𝑘 ) otherwise, (2)

where the 0 values represent missing samples and
𝑡𝑘 = argmin

𝜏 ∈{𝑡𝑖 |𝑡𝑖 ∈𝛽𝑘 }
|𝑘𝑇𝑐 − 𝜏 |. (3)

The resulting, regularly spaced sequence of CIR samples is used
to reconstruct the 𝜇D spectrum of the subject. However, due to the
missing samples which are set to 0, a plain application of the STFT
(as described in Section 2.3) would lead to a corrupted spectrum.
In the next section we detail our solution to this problem, which is
based on sparse recovery techniques.

3.2 Sparse 𝜇D recovery problem formulation
Several methods exist to tackle the problem of computing the power
spectrum of non-uniformly sampled signals [1]. Our approach be-
longs to the category of sparsity-based approaches, in which the
sparsity of the signal in the frequency domain is leveraged to dras-
tically reduce the number of measurements needed for an accurate
reconstruction of the spectrum. We select windows of length𝑊
samples (window size) every 𝛿 samples from the sequenceℎℓ,𝑏 (𝑘𝑇𝑐 ),
choosing 𝛿 = 𝑊 /2. Due to the slotted resampling process, each
window may contain missing samples. We denote byU𝑚 the set
of indices of the available samples contained in the𝑚-th window.
Then, we define vector hℓ,𝑏 (𝑚) ∈ C |U𝑚 | , containing the available
CIR samples in the𝑚-th window, and vector h̃ℓ,𝑏 (𝑚) ∈ C𝑊 , rep-
resenting the complete𝑚-th CIR window, which is only partially
known due to the missing samples. We also denote by Finv the
inverse Fourier matrix, whose element in position (𝑔, 𝑙) is given
by (Finv)𝑔𝑙 = (1/

√
𝑊 ) exp ( 𝑗2𝜋𝑔𝑙/𝑊 ) , 𝑔, 𝑙 = 0, . . . ,𝑊 − 1 while

U𝑚 =
[
u𝑇
𝑖

]
,∀𝑖 ∈ U𝑚 is the matrix that selects the rows of Finv

whose indices are inU𝑚 . u𝑖 is the vector of all zeros but the 𝑖-th
component, which equals 1.

The following relation holds between the incomplete CIR win-
dow, hℓ,𝑏 (𝑚), and the FT of the full CIR window, Hℓ,𝑏 (𝑚) ∈ C𝑊 ,



SPARCS: A Sparse Recovery Approach for Integrated Communication and Human Sensing in mmWave Systems IPSN, May 04–06, 2022, Milan, Italy

AP

Path

Path

Path - Leg

Path - Torso

Total micro-Doppler

…
 

Transmission 

Reflection paths

…
 

2 m/s

0 m/s

0 m/s
2 m/s

0 m/s

2 m/s

0.7 s

0.7 s

0.7 s

Multipath
accumulation

dℓ = dℓ∗

dℓ′

b∗

ℓ′

ℓ

∑
ℓ

|H ℓ′,b∗ |
2

|H ℓ,b∗ |
2

1

Figure 2: Visual representation of the 𝜇D spectrum computed us-
ing SPARCS on 2 different CIR paths, one containing the reflection
from a person’s torso, the other capturing the 𝜇D signature of the
leg. The total 𝜇D is obtained summing together these contributions.

which we aim to recover in order to compute the 𝜇D spectrum,

hℓ,𝑏 (𝑚) = U𝑚 h̃ℓ,𝑏 (𝑚) = U𝑚FinvHℓ,𝑏 (𝑚) = Ψ𝑚Hℓ,𝑏 (𝑚), (4)

where in the last step we use matrixΨ𝑚 = U𝑚Finv as a shorthand
notation. Given Eq. (4), our aim is to recover Hℓ,𝑏 (𝑚) from the
incomplete measurement vector hℓ,𝑏 (𝑚), which is a typical sparse
recovery or compressed sensing problem [7]. In this framework,
it has been proven that recovering the FT of the desired signal is
possible if the latter is sparse in the frequency domain, i.e., the FT
only contains a low fraction of non-zero elements. To verify that
this sparsity assumption holds in our case, we rewrite Eq. (1) after
the resampling and windowing operations, so that the 𝑖-th sample
of the complete𝑚-th window is given by[
h̃ℓ,𝑏 (𝑚)

]
𝑖
=

𝑃ℓ (𝑚)∑︁
𝑝=1

𝑎
𝑝

ℓ,𝑏
(𝑚) exp

{
− 𝑗4𝜋 𝑓𝑜

𝑐

[
𝑑
𝑝

ℓ
+ (𝑚𝛿 + 𝑖)𝑇𝑐𝑣𝑝ℓ,𝑚

]}
,

(5)
where 𝑣𝑝

ℓ,𝑚
is the radial velocity of the 𝑝-th reflector in path ℓ

during window𝑚, and 𝑑𝑝
ℓ
its distance from the AP. Here, we use

the assumption from Section 2.3 that the velocity of each reflector
can be considered constant during a window. In addition, we also
consider that the reflective coefficients and the number of reflectors
are constant. This is reasonable for the considered setup, where the
reflectors are parts of the human body, which typically move slowly
compared to the duration of a window𝑊𝑇𝑐 (see also Section 4).

From Eq. (5), one can see that as long as 𝑃ℓ (𝑚) ≪ 𝑊 , the FT
of h̃ℓ,𝑏 (𝑚) is indeed sparse, as it is composed of 𝑃ℓ (𝑚) spectral
lines located at frequencies 2𝑓𝑜𝑣

𝑝

ℓ,𝑚
/𝑐 . Given the excellent distance

resolution due to the high bandwidth of mmWave systems and the
intrinsic sparsity and directionality of the channel, the different
parts of the subject’s body tend to contribute to the 𝜇D spectrum in
different CIR paths as shown in Fig. 2. Therefore, 𝑃ℓ (𝑚) is generally
close, if not equal, to 1. Sometimes the number of reflectors in a
single path can be larger than 1, due to different body parts being
closer than the distance resolution of the system, but this number
is still much lower than𝑊 . This even holds for multiple subjects.
Assume that two subjects with labels 1 and 2 are present in the
monitored physical space, and denote by (ℓ1, 𝑏1) and (ℓ2, 𝑏2) their
CIR path-BP pairs. According to Eq. (5), the sparsity assumption
must hold for each pair independently, and this is verified as long
as the subjects occupy different spatial positions. Specifically, (i)
if ℓ1 ≠ ℓ2 the CIRs along BPs 𝑏1 and 𝑏2 are the combination of

Algorithm 1 Single path sparse recovery.
Input: hℓ,𝑏∗ (𝑚) , 𝜂,𝑛max,Ω, 𝜉 .
Output: Hℓ,𝑏∗ (𝑚) .
1: Collect the set of available samples indices U𝑚 .
2: Build matrices U𝑚 =

[
u𝑇
𝑖

]
, ∀𝑖 ∈ U𝑚 and Finv

3: Compute Ψ𝑚 = U𝑚Finv .
4: Set Ĥ(0) = 0, 𝑛 = 0, 𝛾 (0) to any value > 𝜉 .
5: while 𝑛 < 𝑛max or 𝛾 (𝑛) > 𝜉 do
6: Ĥ(𝑛+1) ← Eq. (8)
7: 𝛾 (𝑛+1) ← | |Ĥ(𝑛+1) − Ĥ(𝑛) | |2
8: 𝑛 ← 𝑛 + 1
9: end while
10: return Ĥ(𝑛)

𝑃ℓ1 (𝑚) ≪ 𝑊 and 𝑃ℓ2 (𝑚) ≪ 𝑊 complex exponentials each, and
(ii) if ℓ1 = ℓ2, but 𝑏1 ≠ 𝑏2, the attenuation coefficient of 𝑏1 will
mostly remove the reflection from subject 2 in h̃ℓ1,𝑏1

and vice
versa, making the contributions from the subjects separable. The
contributions from different subjects overlap only if they occupy
the same CIR path and share the same BP, which is very unlikely
to occur in real cases due to the high distance (∼ 8 cm) and angular
(as low as 2◦) resolutions of the mmWave CIR [23]. Therefore, the
sparsity assumption in SPARCS still holds even if multiple subjects
are present in the environment. Due to this, we can assume that
𝑃ℓ (𝑚) ≪𝑊 holds, and that sparse recovery techniques can be used
to recover Hℓ,𝑏 (𝑚), as detailed in the next section.

3.3 Single-path sparse recovery
Given the model from Eq. (4), the reconstruction of the CIR FT

along each path can be posed as a sparse recovery problem. Specifi-
cally, we seek a vector Hℓ,𝑏 (𝑚) which is a solution to Eq. (4) while
being as sparse as possible, coherent with the above discussion.
Considering the BP 𝑏∗ pointing in the direction of the target, the
desired FT of h̃ℓ,𝑏∗ (𝑚) is the solution of the optimization problem

Hℓ,𝑏∗ (𝑚) = argmin
H

| |H| |0 s.t. | |hℓ,𝑏∗ (𝑚) −Ψ𝑚H| |2 ≤ 𝜀, (6)

where | | · | |0 denotes the ℓ0-norm of a vector, i.e., the number of its
non-zero components. The constant 𝜀 > 0 can be estimated from
the noise in the CIR, using a training dataset.

An approximate local solution to Eq. (6) can be found using fast
greedy algorithms [7]. We adopt the IHT, which solves

Hℓ,𝑏∗ (𝑚) = argmin
H

| |hℓ,𝑏∗ (𝑚) −Ψ𝑚H| |22 s.t. | |H| |0 ≤ Ω, (7)

where Ω is a pre-defined sparsity level parameter. The algorithm
involves an iterative gradient descent step on the quadratic term in
Eq. (7), followed by a thresholding operation:

Ĥ(𝑛+1) ← TΩ
[
Ĥ(𝑛) + 𝜂Ψ𝑇

𝑚

(
hℓ,𝑏∗ (𝑚) −Ψ𝑚Ĥ(𝑛)

)]
, (8)

where 𝑛 is the iteration index and TΩ is the hard-thresholding op-
erator, which sets to 0 all the components of the argument vector
except the Ω largest ones in terms of the Euclidean norm. 𝜂 is a
learning rate parameter which can be tuned to improve the con-
vergence properties. The iterative process is stopped whenever
| |Ĥ(𝑛+1) − Ĥ(𝑛) | |2 < 𝜉 or when a maximum number of iterations,
𝑛max, is reached. In SPARCS, Ω is a key parameter, which is strictly
related to the number of reflectors 𝑃ℓ (𝑚): as IHT reconstructs a
vector which has at most Ω non-zero elements, Ω is an upper bound
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for 𝑃ℓ (𝑚), and it can be thought of as the maximum number of
reflectors per path that we allow reconstructing. Ω can be tuned
in order to obtain better 𝜇D reconstruction (see Section 5.5). The
sparse recovery algorithm is summarized in Alg. 1. According to the
compressive sensing theory [9], the reconstruction performance
of IHT (and in general of any recovery algorithm) degrades as the
number of available measurements, |U𝑚 |, decreases. Theoretical
results show that the minimum number of measurements needed
to reconstruct Hℓ,𝑏∗ (𝑚) is O(Ω log(𝑊 /Ω)) [9], although the ex-
act number has to be estimated empirically as it also depends on
the level of noise present in the signal. In Section 5, we show that
SPARCS can achieve excellent 𝜇D reconstruction with as few as
𝑊 /8 measurements per window, thanks to the high sparsity of the
mmWave CIR.

3.4 Multi-path aggregation
The moving body of a person causes several reflections that affect
more than one CIR path, as discussed in Section 3.2. Using the
procedure described in the previous sections, SPARCS is able to
retrieve the contribution of each pathHℓ,𝑏∗ (𝑚) to the 𝜇D. Since the
different body parts contribute to the 𝜇D in different paths, to fully
capture human movement we need to combine the information
from the different paths. Denote by 𝑄 the number of distance bins
we aggregate to obtain the 𝜇D spectrum. For convenience we as-
sume𝑄 to be an odd integer, as this makes the following processing
steps symmetric with respect to a central CIR path (corresponding
to the torso), but the same steps can be applied for 𝑄 being even.
We aggregate the spectra obtained from the path caused by the
torso, ℓ∗, with the ⌊𝑄/2⌋ distance bins preceding ℓ∗ and the ⌊𝑄/2⌋
subsequent distance bins, as they may contain the contributions of
the other body parts. The expression of the total 𝜇D spectrum is

D(𝑚) =
ℓ∗+⌊𝑄/2⌋∑︁

ℓ=ℓ∗−⌊𝑄/2⌋

��Hℓ,𝑏∗ (𝑚)
��2 , (9)

where the squared magnitude is applied element-wise. In addition,
we apply normalization of the spectra in the range [0, 1] by com-
puting D(𝑚) ← D(𝑚)−min𝑖 D𝑖 (𝑚)

max𝑖 D𝑖 (𝑚)−min𝑖 D𝑖 (𝑚) . Note that Eq. (9) entails
solving 𝑄 optimization problems of the form in Eq. (7), however,
the 𝑄 problems can be parallelized as they are completely indepen-
dent. Decomposing the full 𝜇D spectrum reconstruction problem
into 𝑄 subproblems effectively allows applying sparse recovery
techniques, which in turn leads to a significant reduction of the
number of measurements that are needed.

The value of 𝑄 is selected according to physical considerations
and validated in practice, as described in Section 5. The 𝜇D vectors
from Eq. (9) can be collected in sequences, one every 𝛿 slots, forming
𝜇D spectrograms of arbitrary length, depending on the specific
application that is being performed, e.g., activity recognition, fall
detection, gait segmentation, etc. In the following, we refer to the
number of 𝜇D vectors considered in such spectrograms as Λ.

3.5 Sensing unit injection
SPARCS can exploit the sensing units in sparsely distributed com-
munication packets to recover the 𝜇D spectrum of human move-
ment. However, during communication between the AP and one

Algorithm 2 Injection of sensing units in window𝑚.
Input: 𝑀𝑠 .
1: # P1 - observation phase
2: 𝑁𝑎 (𝑚) ← no. of sensing units received in the first half of the window (either

from reflected communications packets or injected).
3: # P2 - scheduling phase
4: 𝑁𝑤 (𝑚) ← max(𝑀𝑠 − 𝑁𝑎 (𝑚), 0) .
5: Schedule S𝑚 =

{
𝑠1, . . . , 𝑠𝑁𝑤 (𝑚)

}
.

6: # P3 - transmission phase
7: for 𝑞 =𝑚𝑊 /2, . . . , (𝑚 + 1)𝑊 /2 − 1 do
8: if 𝑞 ∈ S𝑚 then
9: if no reflected comm. packet received then
10: Transmit the sensing unit.
11: S𝑚 ← S𝑚 \ {𝑞 }.
12: else
13: Use the sensing unit from the comm. packet
14: S𝑚 ← S𝑚 \ {𝑞 }.
15: end if
16: else
17: if reflected comm. packet received then
18: Use the sensing unit from the comm. packet
19: S𝑚 ← S𝑚 \ {min𝑠∈S𝑚 𝑠 }.
20: end if
21: end if
22: end for

or more terminals it may happen that the AP remains silent for
longer than the duration of a processing window,𝑊𝑇𝑐 , or that the
received packets are fewer than the minimum number of measure-
ments required for an accurate 𝜇D reconstruction. In these cases,
the sparse recovery algorithm can not recover Hℓ,𝑏 (𝑚) as the avail-
able sensing units are insufficient. To tackle this problem, we allow
our system to inject sensing units into the channel whenever the
number of communication packets is not sufficient for Alg. 1 to
work. Different from existing ISAC frameworks, our sparse recov-
ery approach allows us to introduce a minimal amount of overhead,
as the 𝜇D spectrum can be recovered from a number of CIR samples
which is much lower than the full length of the window𝑊 . Note
that for the injection of a sensing unit it is sufficient to transmit the
necessary CIR estimation fields, without any preamble and header
as used in conventional packets, since the unit is only received at
the AP itself and contains a known waveform.

3.5.1 Basis of the injection algorithm. In the following, we present
the proposed injection procedure assuming that both communica-
tion packets and sensing units are transmitted at times that lie on
a uniform grid with spacing 𝑇𝑐 . This simplification is valid due to
the fact that the slotted resampling process described in Section 3.1
is used. Therefore, we can describe the injection process in terms
of windows of size𝑊 , where each value in the window occupies a
slot which is a multiple of 𝑇𝑐 . Due to slotted resampling, the slots
can be empty if no packet was transmitted sufficiently close to it.

Our approach consists in setting a minimum number of sensing
units per window, termed 𝑀𝑠 , that allows a sufficiently accurate
reconstruction of the 𝜇D signatures. We then transmit additional
units whenever the number of reflections of communication packets
in the window is not sufficient to meet this minimum requirement.
The proposed method only requires the knowledge of whether a
reflected communication packet is received in the current slot, i.e.,
no information about the future traffic pattern is needed.

3.5.2 Algorithm description. The algorithm, summarized in Alg. 2,
operates in three phases, namely observation (P1), scheduling (P2)
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Figure 3: Example injection procedure with 𝑀𝑠 = 8,𝑊 = 16. 4 sens-
ing units are scheduled after P1 and P2. Then, as three reflected
communication packets are received, we reuse them and the first
three scheduled sensing units are not transmitted. The fourth sens-
ing unit is instead injected in the last slot.

and transmission (P3). Recall that the 𝜇D extraction described in
Section 3.2 follows a window-based approach, with subsequent
windows overlapping by half of their length, as shown in Fig. 3.
Consider a time instant between the end of window𝑚 − 1 and the
start of window𝑚 + 1. This coincides with the half of window𝑚,
which is between slots𝑚𝑊 /2 − 1 and𝑚𝑊 /2. In this time instant
we can observe how many reflected communication packets were
received in the first half of window 𝑚, which spans the indices
from (𝑚 − 1)𝑊 /2 to𝑚𝑊 /2 − 1 (P1, line 2 in Alg. 2). We denote
this number as 𝑁𝑎 (𝑚). The injection algorithm is executed on a
half-window basis at the time when window 𝑚 − 1 has ended
and window 𝑚 + 1 has not yet started, as this allows reasoning
on the sole current window𝑚. Based on 𝑁𝑎 (𝑚), we can compute
how many sensing units we would need in the remaining half of
window𝑚 in order to meet the requirement of at least 𝑀𝑠 units,
which we denote by 𝑁𝑤 (𝑚) = max(𝑀𝑠 − 𝑁𝑎 (𝑚), 0). However, the
sensing process has no knowledge of when future communication
packets will be received, so the best we can do is schedule the
transmission of 𝑁𝑤 (𝑚) sensing units in the next half-window. The
slots in which these packets are scheduled can be selected according
to a deterministic rule or a probability distribution. We call S𝑚 ={
𝑠1, . . . , 𝑠𝑁𝑤 (𝑚)

}
the set of indices of the slots in which we schedule

the additional sensing units for the next half-window (P2, lines 4-5
in Alg. 2). While P1 and P2 are performed in a single time slot,
before the second half of window𝑚 starts, P3 (lines 7-23 of Alg. 2)
is a dynamic process that spans the whole second half of window𝑚.
The indices of the slots considered in this part of the algorithm are
𝑞 = 𝑚𝑊 /2, . . . , (𝑚 + 1)𝑊 /2 − 1. Note that some communication
packets, of which we have no knowledge, may be received in this
second half-window. The procedure iterates over the slots and in
each of them checks if a sensing unit was scheduled for that slot,
i.e., if 𝑞 ∈ S𝑚 . There are four possible cases:
(1) 𝑞 ∈ S𝑚 and no communication packet was received in this slot.
In this case we transmit the sensing unit, then remove 𝑞 from S𝑚 .
(2) 𝑞 ∈ S𝑚 and a communication packet (or more) was received in
this slot. In this case we reuse the sensing unit in the communication
packet and remove 𝑞 from S𝑚 .
(3) 𝑞 ∉ S𝑚 and no communication packet was received in this slot.
In this case we just move to the next slot without taking action.
(4) 𝑞 ∉ S𝑚 and a communication packet (or more) was received in
this slot. In this case we reuse the sensing unit in the communication

packet, then we remove the next sensing unit from the scheduled
ones, i.e., we set S𝑚 ← S𝑚 \ {min𝑠∈S𝑚 𝑠}.

Note that, despite operating on a half-window basis, due to the
overlap of adjacent windows, our algorithm only poses a constraint
on the minimum number of packets sent per full window. This
means that half a window can be empty as long as enough sensing
units are received in the other half.

3.5.3 Scheduling the sensing units. While the scheduling of the
sensing units in P2 can be done with any arbitrary policy that
guarantees that exactly 𝑁𝑤 (𝑚) packets are scheduled in the next
half window, we want to maximize the number of sensing units
that can be piggybacked on communication packets, rather than
using a dedicated transmission. From P3 in Alg. 2, one can see that
scheduling the sensing units towards the end of the half-window
leaves more time for possible communication packets to become
available and thus be reused instead of injecting a new sensing unit.
Consequently, in SPARCS we schedule the sensing units for the
second half of window𝑚 as a burst of packets spaced by 𝑇𝑐 , which
occupy the last 𝑁𝑤 (𝑚) slots of the window.

4 IMPLEMENTATION
In this section we describe the implementation of SPARCS on
a mmWave SDR platform. We base our implementation on the
IEEE 802.11ayWiFi protocol, as it operates in the unlicensed 60GHz
band and supports CIR estimation for different BPs.
Testbed. We use the open-source mm-FLEX experimentation plat-
form from [15] for a baseline design. It has an FPGA-based baseband
processor which can generate, capture and process (custom or stan-
dard compliant) frames with up to 1.76 GHz of bandwidth. The
baseband processor is connected to mmWave RF front-ends with
phased antenna arrays and supports various front-ends to operate
in different frequency bands, e.g., at 28 GHz or 60 GHz [30]. In
the remainder of this paper we use a 60 GHz RF front-end which
simplifies experimentation as this is an unlicensed band, but we
note that simply by changing the RF front-end, SPARCS can operate
in a different band, e.g., for 5G-NR compatibility.

To implement SPARCS, we augment the functionalities of the
testbed to enable full-duplex operation, not only in the baseband
processor but also in the RF front-end. A block diagram of the
system is shown in Fig. 4. In the baseband processor, the operation
of the system is controlled by a statemachine (SM)which triggers an
AXI-DMA that reads the I/Q samples from theDDR-TXmemory and
feeds them to the DACs. The SM also triggers another AXI-DMA in
the receiver datapath that saves the receives samples in the DDR-
RX memory, i.e., both datapaths are synchronized and no packet
detection is required. To support the variable IFS extracted from real
(or artificially generated) traces, we include a block RAM memory
(BRAM) in the FPGA logic that stores the IFS that will be used in the
experiments. The SM reads these values sequentially, introducing a
delay in the system according to the value read from memory. The
variable IFS functionality can be disabled at runtime to configure a
fixed IFS. We remark that since we simultaneously use the up/down
conversion stages from the same mmWave development kit, the
Tx/Rx sub-systems are fed by the same local oscillator and thus
the Carrier Frequency Offset (CFO) is very low (< 100 Hz), which
enables the extraction of the 𝜇D values required by SPARCS.
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Figure 4: SPARCS implementation block diagram.

Table 1: Summary of the SPARCS implementation parameters. The
suggested values based on experimental results are shown in bold.

System parameters

Grid step 𝑇𝑐 0.27 ms
Window length 𝑊 64
Window shift 𝛿 32
Sparsity parameter Ω {1, 2, 3, 4, 5, 6, 7}
No. aggregated paths 𝑄 {1, 3, 5, 7, 9, 11, 13, 15}
Min. no. measurements 𝑀𝑠 {4, 8, 16, 24, 32, 64}
IHT learning rate 𝜂 1
IHT convergence threshold 𝜉 10−4

IHT maximum iteration number 𝑛max 200

IEEE 802.11ay CIR estimation details. In IEEE 802.11ay, in-
packet beam tracking [10] is introduced, where the CIR is estimated
using different BPs within a single packet. This is implemented by
appending a given number of training (TRN) fields to the packet. A
TRN field is composed of 6 TRN units formed by complementary
Golay sequences of 128 BPSK modulated samples, for a total of
768 samples [37]. In our implementation, we use 𝑛TRN TRN fields
as the SPARCS sensing unit, where each TRN field employs a differ-
ent BP, and 𝑛TRN is the number of subjects being tracked by the
system, as a single TRN field per subject suffices. Considering the
typical number of people that are to be simultaneously tracked in
human sensing systems, reasonable 𝑛TRN values range from 1 to
10. The CIR estimates obtained from the TRN fields are then used
as the input to SPARCS sparse recovery algorithm.
System parameters. In Tab. 1 we summarize the system parame-
ters used in the implementation. We set 𝑇𝑐 = 0.27 ms and𝑊 = 64,
which lead to (i) a velocity resolution of Δ𝑣 = 𝑐/(2𝑓𝑜𝑊𝑇𝑐 ) ≈
0.14 m/s and (ii) aliasing-free velocity measurements up to 𝑣max =

±𝑐/(4𝑓𝑜𝑇𝑐 ) ≈ ±4.48 m/s. These values are not critical to the func-
tioning of our system, and can be modified according to specific
implementation requirements. However, for reliable 𝜇D extraction
without aliasing, it is advisable to adjust 𝑇𝑐 to a value that allows
capturing the range of velocities typically covered by human move-
ment, e.g., approximately ±2−3m/s for a walking person, and up to
±5m/s for running or other fast movements [35]. Note that suitable
values of 𝑇𝑐 can also be obtained in 5G-NR systems, where a base
station can transmit downlink CSI-RS frames with a periodicity
between 0.3125 ms and 80 ms. For a 5G-NR carrier frequency of
28 GHz, using 𝑇𝑐 = 0.3125 ms leads to 𝑣max ≈ ±8.57 m/s, which
is enough to capture fast human movement.

For people tracking, we use periodically transmitted in-packet
beam training frames with 12 TRN units and antenna beams cover-
ing a FOV range from−45◦ to 45◦. Then, we utilize the distance and

AoA estimation procedure described in Section 2.3.1, as proposed
in [23], to which we refer for further details. We experimented with
different values of𝑀𝑠 ,Ω and 𝑄 , as reported in Tab. 1 and described
in Section 5.3 and Section 5.5, while for the IHT algorithm we se-
lected the parameters that led to the most accurate convergence
results on our experiments, i.e., 𝜂 = 1, 𝜉 = 10−4 and 𝑛max = 200.

5 EXPERIMENTAL RESULTS
We now present the experimental results obtained with our SPARCS
testbed implementation. The experiments were performed in a
laboratory of 6 × 7 meters with a complex multi-path environment
due to additional reflections caused by furniture, computers, screens,
and a wide whiteboard.

5.1 Results on synthetic traces
As a first qualitative result we show the 𝜇D spectrograms obtained
by SPARCS on randomly sampled CIRs of a walking subject (see
Fig. 5). For this, we use synthetic traces, generated by measuring
the CIR using a uniform sampling interval equal to 𝑇𝑐 , and then
setting to 0 a variable number of uniformly distributed values per
window to simulate missing samples. This is a simplified case, as (i)
the available (not removed) packets lie on a regular grid with spac-
ing 𝑇𝑐 , therefore no approximation error is introduced by slotted
resampling, and (ii) samples are removed on a per window basis,
so a minimum number of packets in each window is guaranteed.
Still, this evaluation is useful to highlight the impact of increas-
ing the sparsity level of the measurements for SPARCS compared
to standard STFT [24]. In the results presented in this section, no
packet injection is performed, as we aim to assess the impact of the
number of measurements per window on the reconstructed 𝜇D. In
Fig. 5b we show the baseline walking spectrogram obtained using
the standard STFT using the full window of 64 samples, as done
in [23]. The spectrogram shows a typical walking 𝜇D modulation,
with the contribution of the static clutter (the strong component at
0 velocity), of the torso (the strong oscillating component around
±1.5 m/s and the limbs (the faint contributions around the torso
component). Moreover, a certain amount of noise and interference
is present, as shown by the non-zero background level and the
horizontal lines at around ±2m/s and ±3.7m/s. In Fig. 5c, the same
method is applied to windows with only 16 out of 64 the samples
retained, while the rest is set to 0. The impact is very strong as it
completely corrupts the useful structure in the 𝜇D signature. From
Fig. 5d to Fig. 5f we show the results obtained by SPARCS, on the
same sequence, with 64, 16 and 4 samples out of 64, respectively.
At the top of each figure, we report the Root Mean-Squared Er-
ror (RMSE) of the 𝜇D with respect to a ground truth spectrogram,
shown in Fig. 5a. This ground truth was obtained from the STFT out-
put with full measurement windows (Fig. 5b), by manually isolating
the useful 𝜇D spectrum containing the gait information and setting
to 0 any background noise and interference lines. We observe two
interesting aspects. On the one hand, the SPARCS algorithm can
successfully recover the 𝜇D spectrum even when a large fraction
of the samples is missing, and the quality of the result decreases
gracefully with the sparsity of the available measurements. Unlike
standard STFT, SPARCS almost completely eliminates the noise and
interference in the estimated 𝜇D spectrogram. Such improvement is
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(b) Full window
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Figure 5: Walking 𝜇D spectrograms and RMSE for different levels of sparsity, obtained by uniformly removing samples for each window.
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Figure 6: Example traffic patterns from the pdx/vwave dataset.

Table 2: Details of the 3 sequences of the pdx/vwave dataset.

Trace Environment No. frames Duration

psu cs University CS dept. 260326 1 : 00 h
library Public library 1300671 4 : 00 h
ug Coffee shop 895721 2 : 34 h

made possible by the sparsity constraint in Eq. (7), which allows for
a lower RMSE than STFT operating on full measurement windows.
This is the main reason why SPARCS not only reduces the overhead
needed for human sensing, but also improves its accuracy.

5.2 Realistic traces: the pdx/vwave dataset
Next, we evaluate the performance of SPARCS on realistic WiFi
AP traces. This poses an experimental challenge, because commer-
cial devices implementing the IEEE 802.11ay standard are not yet
available, and no public datasets containing real traffic traces for
the PHY layer of mmWave WiFi (IEEE 802.11ay/ad) exist, to the
best of our knowledge. For this reason, we used the pdx/vwave
dataset, containing real traffic traces captured in different real en-
vironments from WiFi APs employing a legacy (sub-6 GHz) WiFi
protocol [25]. Specifically, we use 3, over 1 hour long, traces from
this dataset, called psu cs, library and ug, respectively. We select
traces collected in different environments to represent different
kinds of traffic patterns (see Tab. 2).

The pdx/vwave dataset includes information about the trans-
mission instants and packet sizes of all packets outgoing from the
considered AP. Exploiting this information, we perform our mea-
surements transmitting packets according to these time patterns
(see Section 5.3), using the BRAM in the FPGA to store the de-
sired transmission instants (see Section 4). On top of the existing

pdx/vwave communication patterns we use the injection algorithm
(Alg. 2) to send additional sensing units when needed.

Even though the pdx/vwave dataset is based on a legacy sub-6
GHzWiFi protocol, we argue that it is still reasonable to use it to ob-
tain realistic packet transmission patterns. While in the pdx/vwave
dataset the maximum physical layer PDU size is PPDUpdx =

1.5 kB (without packet aggregation), in IEEE 802.11ay three main
transmission modes are defined, namely High Throughput (HT),
Directional Multi Gigabit (DMG) and Very High Throughput (VHT),
withmaximumphysical layer PDU sizes,PPDUay , of 65 kB, 262 kB
and 4692 kB, respectively [36, 37]. With the increase in the packet
sizes, the data rates of mmWave systems have increased accord-
ingly, and in IEEE 802.11ay they will range from 0.3 Gbps to several
Gbps. As a numerical example, the traffic patterns in pdx/vwave
with a typical bitrate of 4 Mbps would correspond to a bitrate of
0.7 Gbps in DMG IEEE 802.11ay when using an aggregated packet
size of 262 kB instead of 1.5 kB. Note that traces with a larger
number of packets and smaller PDU sizes (as will likely be the case
in real deployments) will simply increase the sensing accuracy and
further reduce the overhead.

5.3 Human activity recognition results
To evaluate the quality of the 𝜇D spectrograms extracted by SPARCS,
we use them as the input to a HAR method. Specifically, we follow
a standard approach, training a deep neural network on a dataset
of Λ ×𝑊 dimensional 𝜇D spectrograms, with Λ = 200 (equivalent
to ≈ 1.76 s), in order to classify the movement performed by the
person during that time. In order to provide a comparison with
other IEEE 802.11ay HAR methods based on regular CIR sampling,
such as RAPID [23], we consider the 4 following activities: walking,
running, sitting and waving hands. For HAR, we use a standard
Convolutional Neural Network (CNN) architecture, composed of
4 inception modules [33] performing 1 × 1, 3 × 3 and 5 × 5 con-
volutions. The number of filters used is 8, 16, 32 and 64 for the 4
modules, respectively. The convolutional blocks are followed by a
fully-connected layer with 64 neurons, to which we apply Dropout
[31], and a final Softmax layer with 4 outputs [12]. We use the
exponential-linear unit activation function after each layer [6].

5.3.1 Training data. We collected a training dataset involving 6
different subjects performing the 4 activities, for a total duration of
about 12minutes each. This leads to over 400 partially overlapping,
1.76 s long, 𝜇D sequences per activity, which we then augmented
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Figure 7: Per-class F1 scores obtained by SPARCS (for different val-
ues of𝑀𝑠 ) and RAPID on our test dataset [23].

as described shortly. Note that the training data only includes uni-
formly sampled CIR traces with sampling period 𝑇𝑐 = 0.27 ms. The
CNN training is done for 80 epochs, using a learning rate of 10−4,
the Adam optimizer and the cross-entropy loss function [12]. In
order to enhance the robustness of the CNN, we apply an ad-hoc
data augmentation strategy: we randomly remove some of the CIR
samples in each window of the training dataset, and then apply
SPARCS’ IHT algorithm to reconstruct the spectrograms (see Sec-
tion 5.1). We repeat the process using a sparsity level of 1/8, 1/4
and 1/2, enlarging the training dataset to 4 times its original size,
for a total of approximately 1600 𝜇D spectrograms per activity. A
randomly selected subset of the training data (around 10 %) was
used as a validation set to tune the CNN hyperparameters.

5.3.2 Test data. We test the CNN on the 𝜇D spectrograms obtained
from CIR samples collected using the pdx/vwave packet traces
described in Section 5.2. We collect four, randomly selected, 20 s
long traces (one per activity) for each of the 3 sequences types
(psu cs, library and ug). We repeat the experiments for different
values of the minimum number of sensing units per window,𝑀𝑠 =

4, 8, 16, 32, 64, for a total of 60 test sequences. The test data involves
a single subject, which was not included in the training set.

5.3.3 HAR F1 score. We evaluate the performance of the CNNwith
the per-class F1 score metric [5], which effectively summarizes the
precision and recall and preserves the class-specific results. Fig. 7
shows the total average per-class F1 score over the 60 sequences, for
different values of the minimum number of sensing units per win-
dow,𝑀𝑠 . As a baseline for comparison, we also report the F1 score
obtained by the RAPID algorithm from [23], which extracts the 𝜇D
signatures by regularly sampling the CIR. Our results show that
SPARCS can reach over 0.9 F1 scores on all activities with𝑀𝑠 = 8
already, which corresponds to only 1/8 of the full measurements
window. Notably, with𝑀𝑠 = 4, the low number of measurements
per window affects significantly only the ’Sitting’ and ’Waving
hands’ activities, which involve fine-grained movements and are
therefore more difficult to classify. Finally, we compare the results
from SPARCS and RAPID [23]. For a fair comparison, we imple-
mented RAPID’s STFT to extract the 𝜇D and trained the CNN on
the resulting spectrograms without enlarging the dataset using dif-
ferent levels of sparsity described in the previous section. Instead,
we directly use the training procedure of [23], since we found that
the sparsity-based data augmentation slightly reduced RAPID’s
performance. It can be seen that SPARCS’ sparse recovery problem
formulation (Section 3.2) and enforcing a sparsity constraint on
the individual paths is beneficial to HAR performance. The gap is
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Figure 8: Overhead of SPARCS for different values of𝑀𝑠 in the three
traces of the pdx/vwave dataset (left). Overhead vs. average HAR F1
score for different values of𝑀𝑠 (right).

particularly significant for ’Sitting’ and ’Waving hands’ as they in-
volve lower energy traces in the spectrograms; these are more easily
corrupted by noise and interference, that SPARCS is mostly able to
reject (see, again, the comparison between Fig. 5b and Fig. 5d).

5.4 Overhead analysis
Increasing𝑀𝑠 to improve the HAR performance also increases the
overhead of SPARCS. A first general measure of this can be obtained
comparing the maximum size of a PPDU in IEEE 802.11ay to the size
of a sensing unit. Recalling the three different modes introduced in
Section 5.2 and the size of an IEEE 802.11ay TRN field (768 bits),
we obtain that a sensing unit, with 𝑛TRN = 1, is 0.1%, 0.03% and
0.002% of a PPDU in HT, DMG and VHT, respectively. Moreover,
the channel occupation time for a sensing unit with 𝑛TRN = 1
is 436 ns [37], which is a negligible fraction (0.16%) of a slot of
duration 𝑇𝑐 .

Next, to evaluate the overhead of SPARCS on a realistic commu-
nication scenario, we use the traces of the pdx/vwave dataset. In
this way, we can also assess the impact of injecting sensing units,
as they are not useful to the communication process. Denote by
𝑐𝑖 the number of bits in the 𝑖-th communication packet transmit-
ted in the trace. As the number of bits transmitted in each trace
refers to a legacy, lower bitrate, WiFi protocol, we rescaled the
packet sizes according to the maximum PHY layer packet size in
IEEE 802.11ay. We rescaled the size of packet 𝑖 in each trace as
𝑐𝑖 = (PPDUay/PPDUpdx) ×𝑐𝑖 , with PPDUay = 262 kB. We call
𝑛𝑐 the number of transmitted communication packets in a trace, by
TRNlen the length, in bits, of a piggybacked or injected TRN field,
𝑛inj the number of injected sensing units and 𝑛TRN the number of
TRN fields used in every sensing operation (we consider it fixed,
whereas in reality it is determined by the number of subjects in the
environment). We define the overhead as a function of 𝑛inj as

OH(𝑛inj) =
𝑛TRN

(
𝑛𝐶 + 𝑛inj

)
TRNlen∑𝑛𝑐

𝑖=1 𝑐𝑖
. (10)

In Fig. 8, left, we show the overhead obtained on each of the three
pdx/vwave traces, using 𝑛TRN = 1. The overhead for different
values of 𝑛TRN can be obtained by using it as a multiplicative
factor on the values in Fig. 8. We see that the overhead scales almost
linearly as 𝑀𝑠 is increased from 4 to 64. For values of 𝑀𝑠 < 32,
the entailed overhead is less than 4%, falling below 1% for𝑀𝑠 = 8
As a reference, we report the overhead for 𝑀𝑠 = 64, which is the
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value obtained by injecting sensing units continuously into the
channel, piggybacking them eventually on communication packets
if possible. Note that existing approaches requiring uniform CIR
sampling, like RAPID [23], would require an even higher overhead,
as not only do they need 64 samples per window, but these samples
have to be regularly spaced as no resampling procedure is carried
out. This means they would have to take precedence over potential
data packets so that they are sent exactly at the right sampling time.

From Fig. 8, right, one can see that SPARCS can achieve an F1
score of over 0.9 for every activity for a minimum of𝑀𝑠 = 8 sensing
units per window, resulting in a sensing overhead of less than 1%.
With this configuration, SPARCS achieves a better F1 score than
existing approaches, while reducing overhead by a factor of 7 and
being compatible with random access MAC protocols.

5.5 Sensitivity to the choice of the parameters
In Fig. 9, we show the effect of varying parameters 𝑄 , representing
the number of paths aggregated around the person’s position (see
Eq. (9)), andΩ, which is themaximumnumber of resolvable Doppler
components, equal to the sparsity parameter in the IHT algorithm.
We computed the HAR per-class F1 score using a random subset of
the 60 test sequences. The values adopted in our experiments are
reported in Tab. 1.

5.5.1 Impact of changing 𝑄 . Our results show that SPARCS is ro-
bust to almost any value of 𝑄 when considering walking and run-
ning, whereas sitting and waving hands are negatively affected by
reducing 𝑄 below 7. This is due to the fact that while walking and
running are, in most cases, distinguishable even from the sole con-
tribution of the torso, this is not true for sitting and waving hands
that require including the reflection paths coming from the limbs.
Computational complexity considerations are also in order for high
values of 𝑄 , as it leads to solving 𝑄 times Eq. (7) at each 𝜇D extrac-
tion process. As the problems are independent, they can be solved
in parallel, and thus a reasonable approach is to tune 𝑄 according
to a trade-off between 𝜇D reconstruction accuracy and hardware
resource availability for parallelization. In the following, we use
𝑄 = 9. Considering that we use 𝐵 = 1.76 GHz transmission band-
width (1 IEEE 802.11ay channel), the range resolution of SPARCS
is 𝑐/2𝐵 = 8.5 cm. This means that summing the contribution of
⌊𝑄/2⌋ distance bins before and after the one corresponding to the
torso, we include in the spectrum a region of ±34 cm around the
person’s position, which is a reasonable value considering typical
body sizes and that the subjects are moving.

5.5.2 Impact of changing Ω. Fixing 𝑄 = 9, in Fig. 9 (right), we
show that the best values for Ω are 2 and 3 for all the activities.
This is because using Ω = 1 often leads to only reconstructing the 0
Doppler component in the spectrogram, losing the information on
the person’s movement. On the other hand, choosing Ω too high
makes the IHT reconstruction imprecise, as with a low number of
measurements per window enforcing more sparsity is beneficial to
restrict the number of possible solutions to Eq. (7).

6 RELATEDWORK
Dedicated mmWave radars. The high sensitivity of mmWaves
to micro-Doppler shifts, together with Deep Learning (DL) methods
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Figure 9: Per-class F1 scores aggregating a different number of paths
𝑄 (left) and changing Ω, the IHT sparsity parameter (right).

for spectrogram analysis and classification, have been widely ex-
ploited to enable applications such as activity recognition [16, 29],
person identification [21, 24] and bio-mechanical gait analysis [27].
The typical approach in these works is to transmit sequences of
large bandwidth signals (of 2 to 4 GHz), with a rate dictated by the
desired sensing resolution [22]. Thus, mmWave radar sensors have
two main drawbacks:
(i) they are specifically tailored to sensing and cannot perform
communication. Moreover, their deployment cost is relatively high
as one single sensor can reliably cover a range of at most 8 − 10 m
due to the radial distortion and occlusion problems [8]. For this
reason, ad-hoc radar sensor networks would need to be deployed in
practical scenarios. Our method, in contrast, fully exploits existing
mmWave communication systems with no modifications to the CIR
estimation process or packet structures.
(ii) The fixed chirp transmission interval, which is related to the 𝜇D
resolution, requires regular transmissions with continuous channel
occupation. Some works have explored the possibility of randomly
subsampling the chirp transmission intervals using compressive
sensing [7] to either save computational resources [32] or reduce
the effect of unwanted interference [28]. However, these works are
based on a radar framework, where the transmission instants can
be freely chosen and optimized. SPARCS, instead, reuses the given
underlying communication traffic as much as possible and only
injects small additional sensing units when necessary.
60 GHz WiFi sensing. Research interest towards sensing with
WiFi devices working in the mmWave band has mostly focused on
the 60 GHz IEEE 802.11ad/ay standards [23, 38, 39]. These works
target various applications, such as person tracking and gesture
recognition, exploiting CIR estimation to detect humans in the
environment. However, they require dedicated and regular sens-
ing signal transmissions in order to function properly, entailing a
significant overhead and channel utilization for sensing.

Our work significantly improves over the above mentioned stud-
ies in that it enables the reuse of randomly distributed communi-
cation packets via sparse recovery, whenever possible. This is of
key importance to integrate sensing capabilities in communication
devices while maintaining low overhead and complexity.
Integrated sensing and communication.A number of technical
works address ISAC systems in next generation 5G/6G cellular
networks [17, 18] and WLANs [23, 26]. Many of those target the
joint communication and sensing waveform design [19] and are
mostly oriented to automotive applications to measure distance
and velocity of nearby vehicles. In contrast, few works focus on
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human sensing [17], which is the aim of the present work. All
of the above approaches alternate communication and sensing
phases according to a time-division scheme, causing significant
overhead and channel occupation. SPARCS instead, provides a full
ISAC scheme, as it passively exploits communication traffic while
dynamically injecting sensing units to cover silent periods. As a
result, our method significantly reduces sensing overhead while at
the same time improving the sensing accuracy.

7 CONCLUDING REMARKS
In this paper, we have designed and implemented SPARCS, the first
mmWave ISAC system that can sense human 𝜇D signatures from
irregular and sparse CIR estimates. These are obtained in a stan-
dard compliant way by both reusing optional CIR estimation fields
appended to communication packets and sporadically injecting
sensing packets whenever communication traffic is absent. Differ-
ently from the existing ISAC methods, SPARCS is based on a sparse
recovery approach to the 𝜇D reconstruction, which is theoretically
grounded in the instrinsic sparse multi-path environment of the
mmWave channel. This enables an accurate 𝜇D extraction from a
significantly lower number of randomly distributed CIR samples,
thus drastically reducing the sensing overhead. After a CIR resam-
pling step along the time domain, SPARCS performs an iterative
sparse reconstruction in the frequency domain, decoupling differ-
ent propagation paths at first, to leverage their sparsity property,
and then combining them to obtain the final 𝜇D spectrum.

While SPARCS is compatible with different mmWave systems
(e.g., 3GPP 5G-NR, and IEEE 60 GHz WLANs), for our implementa-
tion we used an IEEE 802.11ay SDR platformworking in the 60GHz
band. We tested our system on a large set of standard-compliant
CIR traces matching the traffic patterns of real WiFi access points,
performing a typical downstream application such as HAR. Our
results show that SPARCS entails over 7 times lower overhead
compared to prior methods, while achieving better performance.

Future research directions include refining SPARCS by lever-
aging an exchange of information between the sensing and com-
munication processes, e.g., utilizing sensing to optimize the beam
selection, and exploiting communications for collaborative sensing.
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