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Solving the convergence issues of Generative Adversarial Networks (GANs) is one of the
most outstanding problems in generative models. In this work, we propose a novel activa-
tion function to be used as output of the generator agent. This activation function is based
on the Smirnov probabilistic transformation and it is specifically designed to improve the
quality of the generated data. In sharp contrast to previous works, our activation function
provides a more general approach that deals not only with the replication of categorical
variables but with any type of data distribution (continuous or discrete). Moreover, our
activation function is derivable and therefore, it can be seamlessly integrated in the back-
propagation computations during the GAN training processes. To validate this approach,
we firstly evaluate our proposal on two different data sets: a) an artificially rendered data
set containing a mixture of discrete and continuous variables, and b) a real data set of flow-
based network traffic data containing both normal connections and cryptomining attacks.
In addition, three publicly available data sets were added to the evaluation to generalize
the obtained results. To evaluate the fidelity of the generated data, we analyze their results
both in terms of quality measures of statistical nature and regarding the use of these syn-
thetic data to feed a nested machine learning-based classifier.
The experimental results evince a clear outperformance of a Wasserstein GAN network

(WGAN) tuned with this new activation function with respect to both a naïve mean-
based generator and a standard WGAN. The quality of the generated data allows to fully
substitute real data with synthetic data for training the nested classifier without a signif-
icant fall in the obtained accuracy.
� 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In many different domains, the application of machine and deep learning (MDL) techniques requires the availability of
considerable amounts of data to take advantage of their powerful learning processes [1]. In addition, the applicability of
MDL algorithms requires taking into account the evolution of data patterns over time [2], which implies to produce period-
ically additional volumes of relevant data for training new MDL models. Furthermore, producing the required volumes of
data in industrial scenarios usually represents a considerable drawback since data gathering and processing tasks tend to
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be optimized to guarantee services and billing [3]. Even if efficient mechanisms for generating and labelling data sets can be
implemented, data are increasingly protected by the legal regulations that governments impose to guarantee the privacy of
their contents (e.g., European General Data Protection Regulation (GDPR) [4]). These restrictions may discourage the use of
real data sets for MDL training and validation purposes.

To address this problem, in the last decade, Generative Adversarial Networks (GANs) [5] have gained significant attention
due to its ability to estimate the underlying statistical structure of high-dimensional data and generate synthetic data sim-
ulating realistic media such as images, text, audio and video [6–9]. Nowadays, GANs are broadly studied and applied through
academic and industrial research in different domains beyond media (e.g., natural language processing, medicine, electron-
ics, networking, and cybersecurity).

Roughly speaking, a GANmodel is represented by two independent neural networks, the so-called generator and discrim-
inator [5], that compete to learn and reproduce the distribution of a real data set. After a GAN has been trained, its generator
can produce as many synthetic examples as necessary [10], providing an efficient mechanism for solving the lack of labelled
data sets and potential privacy restrictions.
1.1. Problems in GAN generation procedure and related work

There has been remarkable progress in terms of study of the theoretical properties of GANs, and well as their applications
to industrial scenarios. However, less effort has been spent in evaluating GANs quantitatively and qualitatively. Several mea-
sures have been introduced mainly for measuring the image quality, but there is no consensus yet on which measures best
capture the strengths and limitations of GAN models and which of them should be used for fair model comparison. Only a
discrete number of quantitative criteria have emerged recently ([11–14]), although nearly all of them were designed to mea-
sure the quality of synthetic images [15].

Furthermore, there is no consensus on the deterministic stopping criteria during GAN training that produce high-quality
synthetic data. Several works have already started to benchmark GANs to measure their evolution with respect to the quality
of the generated data (for instance, [16–18]) and only a few of them have proposed a detention criterium not based on the
visual inspection of the synthetic data (e.g., [19,20]). In fact, the former of these two papers proposes a stopping criterion that
is closely related to the signal they generate, so that its direct application in other domains outside signal processing seems
not very feasible.

Moreover, in [20] we observed that it was not uncommon that GANs fail to discover and replicate with sufficient quality
the underlying statistical distribution of real data, in particular, if some feature was a discrete variable (e.g. a categorical fea-
ture). However, this is a cornerstone problem in generative approaches, highly demanded by an increasing number of indus-
trial applications that need a mechanism to generate high-quality synthetic data that can fully replace real data in machine
learning tasks to avoid privacy violations that might appear when using real data for training and testing purposes [21].
Therefore, providing a mechanism to generate high-quality labelled data sets that do not incur in privacy breaches will foster
cross-development of MDL components by third parties. For example, a telecom provider developing ML-based components
to be part of an IDS can import high-quality synthetic data from a telecom operator to train and validate these ML-based
components. In general, using these data may incur in a privacy breach since these are real data from real customers. How-
ever, if the data used to train the ML system is fully synthetic, let us say with a GANs, the ML component after training will
reach the desired level of performance and no breach of data privacy will occur.

To this aim, the recent work [22] proposed a solution to the generation of categorical variables in the domain of varia-
tional autoencoders (VAE) when stochastic neural networks are used, as these variables invalidate them to backpropagate
through samples. Authors propose a gradient estimator that replaces the non-differentiable sample from a categorical dis-
tribution with a differentiable sample from a Gumbel-Softmax distribution. However, the proposed solution is not general
enough since it does not consider continuous variables and only deals with categorical. In addition, they need to hard-code
the size of each categorical variable into an array of neurons of size the number of categories of the replicated variable. Some
other works in this direction propose to avoid backpropagation through discrete examples [23] using and additional pre-
trained autoencoder to pass the decoded latent examples to the discriminator.

An interesting work in this line is [24]. In this paper, the authors study the effect of post-composing the generator net-
work with a smooth map T : Rn ! Rn, showing that, in that case, the GAN tend to generated samples of the original random
variable bent by T�1. In some sense, the present paper exploits the same idea of bending the output of the generator agent
but two key differences arise. First, in our work, the smooth transformation is specifically designed (by means of probabilistic
methods) to improve the quality of the generation skills of the GAN. In this way, we handcraft a particular transformation T

in such a way that the resulting GAN does not to generate a different sample twisted by T�1, but the same original sample but
with a higher resolution. The second key difference is that in [24] the map T is used as an external add-on to the GAN, and
plays no role in the training process. In contrast, in our work, the Smirnov transformation in added as activation function of
the generator network and hence it plays an active role in the backpropagation algorithm, leading to a more stable and accu-
rate training.

Additionally, it is worth mentioning that the vast majority of the proposed GAN solutions in industrial domains do not
apply any systematic measurement procedure for evaluating the GAN evolution during training [15]. This prevents the orig-
inal data to be replaceable by the generated synthetic data and forces them to mix real and generated data to achieve accept-
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able thresholds of quality. Unfortunately, these data augmentation solutions are not applicable in scenarios in which data
privacy must be guaranteed as they use a combination of real and synthetic data. For instance, in the works [25,26], a data
augmentation method is proposed to generate adversarial attacks against network Intrusion Detection Systems (IDSs). Fur-
thermore, this idea was explored in [27], where an augmentation method with GANs was proposed to improve network traf-
fic data sets with highly imbalanced classes.

Finally, we would like to point out that the Smirnov transformation (also known as inverse transform sampling) used in
this paper is a well-known technique in probability and statistics that has been applied to data generation and random num-
ber sampling, among others. However, to the best of our knowledge, this transformation has never been used as a final stage
of a GAN to improve the quality of its samples generated, but only as a static resource leading to a naïve generation. In sharp
contrast, our proposal is precisely to bring together these two approaches and to use the Smirnov transformation as an
intrinsic part of the GAN procedure, joining the best of both worlds.
1.2. Contribution

The main contribution of this work is to introduce a novel application of custom activation functions to the last layer of
GAN generators to obtain synthetic data that, in the experiments carried out in our study, replicates with high fidelity the
statistical behaviour of real data. We provide evidence of the robustness of this solution in several scenarios, including when
dealing with data that contain discrete features (i.e., variables that follow a discrete distribution). The proposed custom acti-
vation function is based on the Smirnov transform (ST) and allows the GAN generator to mimic real data following even com-
plex statistical distributions.

Roughly speaking, given an initial random variable Y and a target random variable X, the Smirnov transformation is a real-
valued function SY!X : R ! R such that the transformed random variable SY!X Yð Þ distributes as X. In other words, SY!X is a
function that ‘bends’ the shape of the distribution of the input random variable Y and turns it into the distribution of the
output X. Notice that the function SY!X is completely deterministic with no stochastic behaviour, and moreover, derivable,
which allows it to be seamlessly integrated in the backpropagation computations during the GAN training processes.

We apply this transformation to the case of the output of a GAN. Empirically, it can be observed that the outputs of a gen-
erative network that uses linear activation in the units of the last layer tend to follow a normal-like distribution (e.g. uni-
modal, with non-compact support, approximately symmetric, etc.). This behaviour discourages its use when the variables
to be replicated are discrete or follow complex continuous distributions. To bend this output function to fit the actual dis-
tribution to be generated, we propose to use the Smirnov transform SN!X as the activation function in the units of the last
layer of the GAN to convert each normal distribution into the objective distribution X. This function SN!X can be computed
per output unit beforehand just by analyzing the training data set so that it is fixed before starting the training process of the
GAN.

To show the effectiveness and utility of this proposal, we have conducted the following analysis and obtained the follow-
ing conclusions:

1. We demonstrate in our experiments that the data generated with our solution presents a high quality comparable with
the original data. This generative power is tested through different data sets: a) A rendered data set containing a mixture
of discrete and continuous variables, b) a real data set of flow-based network traffic data containing benign user connec-
tions and cryptomining attacks, c) the ”UCI Adult (Census Income)” data set, a publicly available data set from the
renowned UCI machine learning repository, d) the ”UCI E-Shop (Clickstream data for online shopping)” data set, a publicly
available data set containing information on clickstream from online store offering clothing for pregnant women and e)
the CTU-13 data set, a publicly available labeled data set with botnet, normal and background network traffic.

2. We provide empirical evidence of the quality improvement of our ST-based GANs with respect to state-of-the-art Wasser-
stein GANs (WGANs) and simple mean-based generators. Using WGANs we propose an ablation experiment that substi-
tutes the linear activation functions of the last layer of the generator network (Vanilla WGAN) by Smirnov transform
functions (ST-basedWGAN). The data fidelity produced by vanilla and ST-basedWGANs is assessed in two different ways:
a) From a statistical perspective, we use two distance functions (based on the L1 distance and Jaccard index) that allow us
to quantitatively and graphically compare the evolution of the quality of the data generated by ST and vanilla WGANs
during the GAN training; and b) from a practical viewpoint we test the performance of a nested machine learning
(ML) classifier when the synthetic data generated by ST-based and vanilla WGANs completely substitute real data in
the training of the classifier, comparing the performance of both classifiers when they are tested with real data.

3. The results obtained in these tests clearly outperform the existing solutions in the literature. In our experiments, the ST-
based WGANs generate synthetic samples that can replace real data without leading to a significant fall in the perfor-
mance of the nested model. To the best of our knowledge, this is the first work in which this goal is achieved outside
the image generation domain.

4. Due to the ill-convergence of the GAN training, we do not use as stopping criterion the usual procedure based on stopping
the training after a fixed number of epochs. In substitution, we introduce a novel approach based on the observed per-
formance of a nested ML task that uses the synthetic data produced by the generator at each epoch.
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Beyond the high quality of the obtained data itself, this approach has several collateral relevant consequences in GAN
generation procedure, among which we can highlight the following:

1. Our solution provides a more general approach that deals not only with the replication of categorical variables but with
any type of data distribution (continuous or discrete). To convert a standard GAN into a ST-based GAN we only need to
change the activation functions of the last layer units of the generator by the corresponding ST functions. The ST activa-
tion functions are pre-computed before starting the GAN training and therefore, the additional computational effort can
be considered negligible in the context of a full GAN training. In addition, when categorical or discrete variables are con-
sidered, it is not necessary to adapt the architecture of the generative network to the structure of the data, as it happens in
the existing solutions. On the contrary, we only need to change the activation function of each output neuron in the gen-
erator with the corresponding ST activation, independently of the number of categories of the replicated variable.

2. The proposed ST-based activation function, and in particular, the spline-based implementation we used in our experi-
ments, are derivable. Therefore, the Smirnov transformation can be integrated as the activation function of a neuron with-
out creating any problem to the backpropagation algorithm that is used during the GAN training process. Recall that the
backpropagation algorithm is based on computing the derivatives of the cost function with respect to the neural network
parameters. For that reason, it is required that all the functions that form part of the neural network, and in particular the
activation functions of the neurons, are derivable.

3. The generation procedure avoids the privacy violations that could appear when real data is used for different tasks (e.g., in
MDL training and testing processes, and when sharing data in cross-developments or federated environments).

4. The generative power of our solution can be used to alleviate the existing shortage problem of available (labelled) data
sets in many domains.

1.3. Paper structure

The rest of the paper is structured as follows: Section 2 presents a brief review of Generative Adversarial Networks. A
detailed description of the Smirnov Transform we propose as the activation function in the generator is shown in Section 3.
The performance metrics we use to compare the quality and similarity of the generated data are depicted in Section 4. The
empirical evaluation of the ST-based GAN and the obtained results are presented in Section 5. We summarize the innovative
aspects of our work and conclude with some interesting open research questions in Section 6.

2. Preliminaries

In this section we provide a brief review of GANs. Let X;F ;Pð Þ be a probability space, where X is a set (the sample space),
F is a r-algebra on X and P is a probability measure. Let us also consider a random vector X : X ! Rn, i.e. a measurable func-
tion from X to Rn endowed with the Borel r-algebra. Typically, neither the space X nor the variable X are fully known, and
only very limited access to them is provided, for instance, through a collection of samples. The aim of a generative model is to
‘replicate’ X as reliably as possible, but admitting certain variability. In other words, the goal is the following: given a fixed
probability space K;G; kð Þ, called the latent space, create a random vector G : K ! Rn such that G is ‘near’ to X in some sense
(typically, in distribution).

The proposal of a Generative Adversarial Network (GAN) is to tune two different functions: a generator G : K ! Rn and a
discriminator D : Rn ! R. The generator G will be trained to generate as faithful samples to X as possible, while the discrim-
inator D is a binary classifier optimized for distinguishing between ‘real’ samples of X and ‘fake’ samples generated by G.
Throughout this paper, we shall adopt the convention that the output of D is the likelihood of a sample x to be real, measured

in logits. In other words, if r tð Þ ¼ 1þ e�tð Þ�1 is the logistic function, then r D xð Þð Þ ¼ 1 means that D believes that x is a real
sample whereas log D xð Þð Þ ¼ 0 stands for D believing that x is a fake sample.

The classification error suffered by the classifier D is thus
EX �D Xð Þ½ � þ EK D Gð Þ½ �;

where EX and EK denote the mathematical expectation on X and K respectively. It is customary to weight this error with an
increasing concave function f : R ! R so that we instead consider the error function of D
E G;Dð Þ ¼ EX f �D Xð Þð Þ½ � þ EK f D Gð Þð Þ½ �: ð1Þ

Typical choices for f are f sð Þ ¼ log r tð Þð Þ as in [5], or f sð Þ ¼ s as in the Wasserstein GAN (WGAN) [28].
To improve this error, we will suppose that both G and D depend on some parameters (usually, they are implemented as

neural networks) and we shall adjust these parameters to optimize the error E. However, notice that the parameters of the
discriminator D are trained to minimize E, whereas the generator G aims to cheat D, so it seeks to maximize E. This gives rise
to the competitive game
max
G

min
D

E G;Dð Þ ¼ max
G

min
D

EXf �D Xð Þ½ � þ EKf D Gð Þ½ �: ð2Þ
1542



Á. González-Prieto, A. Mozo, S. Gómez-Canaval et al. Information Sciences 609 (2022) 1539–1566
Beware of the sign conventions. Sometimes in the literature, the error function (1) is weighted with the decreasing func-
tion f �sð Þ, so the resulting cost function is equivalent to the one presented here but the objectives of the functions G are
exchanged: G aims to minimize it while D tries to maximize it.

In this way, the goal of the training process of a GAN system is to look for Nash equilibria of (2). These are pairs G0;D0ð Þ of
a generator and a discriminator such that the function G # E G;D0ð Þ has a local maximum at G ¼ G0 and the function
D# E G0;Dð Þ has a local minimum at D ¼ D0. Nash equilibria exhibit very good theoretical properties of probabilistic nature.
For instance, in the assumption that a perfect discriminator is reachable at a Nash equilibrium, the Jensen-Shannon diver-
gence between the synthetic distribution G and the original one X is minimized. Similarly, Wasserstein’s Earth-moving dis-
tance is minimized when a WGAN is applied [28].

Despite of that, the problem of finding Nash equilibria in GANs is still essentially open. In the seminar paper [5], it is pro-
posed a simple optimization procedure by alternating gradient descend optimization. However, as pointed out in [29], the
game (2) to be optimized is not a convex-concave problem, so in general the convergence of these simple training methods is
not guaranteed. To stabilize this training process, several heuristic methods have been proposed, such as feature matching,
minibatch discrimination, or semi-supervised training [30]; the introduction of spurious noise [31,32] or the application of
regularization methods based on gradient penalty [33].

Finally, it is worth mentioning that most of these training methods have been designed to be applied to the case in which
the input data X are graphical images. In this scenario, the statistical properties of the color distribution among the pixels
foster the convergence of the GAN, which may achieve high quality results. Nevertheless, when the data to be replicated
exhibit different statistical properties (e.g., categorical features, heavy-tailed non-normal distribution, and strong domain
restrictions), to the best of our knowledge, no general purpose training method is known and the results are typically very
poor [20].

3. The Smirnov transform

Borrowed from the field of theoretical probability, there is a mathematical transformation that will be very useful for our
purposes. In this section, we shall outline the main concepts and properties of this map. For further information, please refer
to [34] or [35].

Suppose that X : X ! R is a random variable and let FX xð Þ ¼ P X 6 xð Þ its cumulative distribution function. In the case that
FX : R ! 0;1½ � is a continuous increasing function, then its inverse F�1

X : 0;1½ � ! R is a well-defined function called the quan-
tile function. Otherwise, we can still define an analogue of the quantile function by setting
F�1
X pð Þ ¼ min

z
FX zð Þ P pf g: ð3Þ
Recall that FX is non-decreasing and right continuous, so the set F�1
X p;1½ Þð Þ is actually a final segment including the left-

most endpoint. The value F�1
X pð Þ is thus nothing but the infimum of this set, which is actually a minimum by right continuity.

A key feature of the quantile function is the following result.

Proposition 3.1. Let U � U 0;1½ � be the uniform continuous random variable with support 0;1½ �. Then F�1
X Uð Þ � X.

Proof.

This is a very well-known result whose proof can be found, for instance, in [35]. We include here a brief proof for the
convenience of the reader. Notice that, for any x 2 R and 0 6 p 6 1, we have that minz z jFX zð Þ P pf g 6 x if and only if
x 2 z jFX zð Þ P pf g, which means that p 6 FX xð Þ. Therefore, we get that, for all x 2 R
P F�1
X Uð Þ 6 x

� �
¼ P min

z
FX zð Þ P Uf g 6 x

� �
¼ P U 6 FX xð Þð Þ ¼ FX xð Þ:
Thus, the cumulative distribution function of the random variable F�1
X Uð Þ coincides with FX , as we wanted to show.

There is also a partial reciprocal result, but it requires to impose extra assumptions on FX .
Proposition 3.2. If FX is an increasing continuous function, then FX Xð Þ � U 0;1½ �.

Proof.

Again, the proof can be found in [35]. Since FX is increasing and continuous, its punctual inverse is well defined. Hence, for
all x 2 0;1½ �, we have
P FX Xð Þ 6 xð Þ ¼ P X 6 F�1
X xð Þ

� �
¼ FX F�1

X xð Þ
� �

¼ x:
Thus, P FX Xð Þ 6 xð Þ ¼ x for all x 2 0;1½ �, while P FX Xð Þ 6 xð Þ ¼ 0 for x < 0 and P FX Xð Þ 6 xð Þ ¼ 1 for x > 1, which shows that X
distributes as a uniform random variable.
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Some remarks are in order. In the previous proposition, the hypothesis that FX is invertible is actually too strong. Repeat-
ing the type of arguments of Proposition 3.1, it can be shown that FX Xð Þ � U 0;1½ � provided that P X ¼ xð Þ ¼ 0 for any x in the
support of X. This holds, for instance, for all continuous random variables. In the case that FX is discontinuous, a closed for-
mula for the cumulative distribution function of FX Xð Þ can be still obtained. Indeed, if x 2 R is a continuity point, then
P FX Xð Þ 6 xð Þ ¼ x as usual; but if x 2 R lies in the middle of a jump singularity in which FX jumps to a value xþ > x (in other
words, xþ ¼ F�1

X FX xð Þð Þ), then we have that P FX Xð Þ 6 xð Þ ¼ xþ.

The aforementioned results allow us to transform any random variable into another distribution desired. We state this as
a theorem since it is crucial for our later developments. The proof is just a straightforward combination of Propositions 3.1
and 3.2.

Theorem 3.3. Let X be an arbitrary random variable and let Y be a continuous random variable. Set FX and FY for the
cumulative distribution functions of X and Y, respectively. Then, we have that
SY!X Yð Þ :¼ F�1
X FY Yð Þð Þ
is a random variable that distributes as X. The new random variable SY!X Yð Þ is called the Smirnov transform of Y into X.
Notice that Proposition 3.1 does not require any assumption on the distribution of X, so the target distribution may be

anything. However, to apply Proposition 3.2, we need that the original variable Y is continuous. Recall that, in the case that
FX is not continuous or increasing, the quantile function F�1

Y is defined as in (3).

3.1. Empirical estimation of the Smirnov transform

Let us consider the scenario of Theorem 3.3, in which we want to transform a random variable Y into another random
variable X. Typically, the distribution of Y will be known, but the actual distribution of X might be unclear (for instance,
because it is a very involved phenomenon).

To address this issue, we propose to estimate it through the so-called empirical cumulative distribution function, denoted

by bFX . To this purpose, we shall have access to a collection of samples x1; . . . ; xm of X, and we define bFX by
bFX xð Þ ¼ 1
m

Xm
i¼1

v �1;xið � xð Þ;
where vA is the characteristic function of the set A, that is, vA xð Þ ¼ 1 if x 2 A and vA xð Þ ¼ 0 otherwise.

By the Glivenko-Cantelli theorem, when n ! 1, the empirical cumulative distribution function bFX converges to the real

distribution function FX in the L1 distance almost surely. This means that, for large n; bFX is a very good estimator of FX . In
particular, we can approximate the Smirnov transform SY!X Yð Þ by the empirical Smirnov transform
ŜY!X Yð Þ ¼ bF�1
X FY Yð Þð Þ:
Here, bF�1
X is defined as in (3) by bF�1

X pð Þ ¼ minz
bFX zð Þ P p

n o
.

3.2. Smirnov transform as GAN activation

After this probabilistic digression, let us come back to the problem of training GANs. Suppose that we want to generate a

random vector X ¼ X1; . . . ;Xn
� �

of which only some samples x1 ¼ x11; . . . ; x
n
1

� �
; . . . ; xm ¼ x1m; . . . ; x

n
m

� � 2 Rn are known. For this

purpose, we want to train a GAN made of a generator G ¼ G1; . . . ;Gnð Þ : K ! Rn and a discriminator D : Rn ! R.
The key problem is that, typically, without further tuning, the output distribution of each of the random variables

Gi : K ! R is approximately normal. This is related with the mode-collapse problem [36], a well-reported behaviour of
the GANs in which, when they try to generate non-normal variables, the output data tend to not be variate, and the generator
degenerates to synthesize only small variations of a prototypical example of X. In some sense, the network G stucks in a par-
ticular example of X that cheats D very efficiently and ignores any other type of data to generate. This is optimal from the
point of view of the GAN game (2), but leads to a degenerate behaviour in which the real distribution of X is not recovered.

To address this problem, in this work we propose to facilitate the job of the generator G by using as activation function a
customized function able to capture the statistical subtleties of X. To be precise, let us denote by FN the distribution function
of the standard normal distribution, that is
FN xð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
Z 1

�1
e�s2=2 ds:
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Additionally, using the sample x1 ¼ x11; . . . ; x
n
1

� �
; . . . ; xm ¼ x1m; . . . ; x

n
m

� � 2 Rn of the n-dimensional random vector

X ¼ X1; . . . ;Xn
� �

we generate the n marginal empirical cumulative distribution functions bFX1 ; . . . ; bFXn . With this information,

we create a new activation function as the juxtaposition of the Smirnov transformations from the standard normal distribu-
tion to Xi
ŜX ¼ ŜN!X1 ; . . . ; ŜN!Xn

� �
¼ bF�1

X1 � FN ; . . . ; bF�1
Xn � FN

� �
: Rn ! Rn:
To speed up the evaluation of the function ŜX , as well as to avoid the vanishing gradient problems derivated from the

piecewise constant nature of the functions bF�1
X1 , instead of using S we shall interpolate each of the component functions

ŜN!Xi through a numerical interpolation method (typically, spline interpolation [37], but also Yoshida smoothing can be

applied) to get approximate functions ~SN!Xi . Now, the interpolated global function is given by
~SX ¼ ~SN!X1 ; . . . ; ~SN!Xn
� �

: Rn ! Rn:
In this way, as the activation function of the output layer of the generator network G we shall use the function ~SX . The
gradients of the error suffered by this function will be propagated towards the initial layers of the network as usual in
the usual backpropagation algorithm. Notice that, provided that the interpolation method returns C1-functions ~SN!Xi (i.e.

derivable with continuous derivatives), then the activation function ~SX is a differentiable map. This is the case, for instance,
of spline interpolation, allowing us to deal with discrete distributions even though their underlying quantile function is not
smooth.

The rationale behind this choice of activation function is the following. Suppose that G : K ! Rn is a generator for the ran-
dom vector X implemented by a standard GAN. In this setting, Gwill tend to present normal marginal distributions according

to the mode-collapse problem [36]. However, if instead of G we consider the new generator eG ¼ ~SX � G, then Theorem 3.3

assures that eG does (approximately) fulfills the marginal distributions of X, even though they may be discrete or with com-
pact support. Furthermore, Glivenko-Cantelli theorem [38] assesses that this approximation is asymptotically consistent, in

the sense that when the number of sample points increases, the marginal distributions of eG converge (in distribution) to the
marginal distributions of X.

As a final comment, notice that this Smirnov transformation converts random vectors with normal marginal distributions

into random vectors with approximately marginal distribution Xi. However, the global dependence between the different
output variables is not captured by ~SX . Far from being a problem (which may be addressed for example with copulas
[39]), this is an advantage of this approach: with the use of ~SX as activation function, we ease the job of the generator net-
work of generating the marginal distribution, so that it can focus on the capture of the non-linear interrelations among the
different components, which is typically the hardest part to generate.
4. Performance metrics

We propose to evaluate GANs performance using two different types of metrics. The first set of metrics is inspired by the
L1 functional distance and the Jaccard coefficient [40] and aims to quantify the similarity of the synthetic data with respect to
the real data from a statistical perspective, considering the joint distribution of data features. On the other hand, the second
set of metrics attempts to quantify the performance of synthetic data when it is used as a substitute for real data in the train-
ing of a ML classifier that aims to distinguish among the different types of data contained in the data set. To apply this metric,
it is obvious to assume that the real data are labelled and that the data set contains more than one type of data.

These two types of metrics will be used to compare the similarity between real and synthetic distributions, and the later
set will also be applied to implement a stopping criterion for GAN training that will allow us to select the best generators
producing high-quality synthetic data. It is worth noting that in preliminary experiments we compared the aforementioned
metrics with standard Jensen-Shannon and Wasserstein distributional distances. We finally decided to include only the for-
mer in our experiments, since the latter sometimes exhibited oscillatory behaviours that were not present in the former.
4.1. L1 distance and Jaccard index

These two metrics try to measure the difference between the probabilistic distributions of real and synthetic data. They
are based on two well-known statistical coefficients applied for hypothesis testing and probabilistic distances: the L1-metric
and the standard Jaccard coefficient.

Although both metrics use the probability density function of the two data distributions to compute the distance, they
can be straightforwardly extended to a more practical scenario where the density functions of the data distributions are
not known. Instead, we shall compute an empirical estimator through the histogram to replace the probability density
function.
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In the following, we shall sketch briefly the main ideas involved in the construction and estimation of these quality met-
rics. For further details, please refer to [20].

Empirical probability density function. Let us suppose that we have samples x1; . . . ; xn 2 Rd of a d-dimensional random vec-
tor X. Let us choose a partition of the support of X into disjoint cubes C1; . . . ;Cs. For simplicity, we shall take all cubes Ci of the
same volume. The empirical probability density function hX : Rd ! R is the function
hX xð Þ ¼ 1
n

Xs

j¼1

xi 2 Cj
� �		 		vCj

xð Þ;
where vCj
is the characteristic function of the cube Cj (i.e. vCj

xð Þ ¼ 1 if x 2 Cj and is 0 otherwise) and xi 2 Cj
� �		 		 stands for the

number of samples that belong to the cube Cj. By the Glivenko-Cantelli theorem [38], the empirical probability density func-
tion hX is a faithful estimator of the actual probability density function of X.

L1 Distance. Given two continuous d-dimensional random vectors X and Ywith probability density functions f X and f Y , we
can consider the L1 distance between their probability density functions, that is
dL1 X;Yð Þ ¼
Z
Rd

jf X sð Þ � f Y sð Þjds:
Notice that dL1 X;Yð Þ ¼ 0 if and only if X ¼ Y almost sure.
However, in applications, it is not common to explicitly know the probability density functions of X and Y. Instead, from a

collection of samples x1; . . . ; xn and y1; . . . ; ym of X and Y, respectively, we can compute their empirical probability density
functions hX and hY . In this way, the empirical L1 distance can be taken as
demp
L1

X;Yð Þ ¼
Z
Rd

jhX sð Þ � hY sð Þjds ¼ L
Xs

j¼1

jhX Cj
� �� hY Cj

� �j;

where L is a constant depending only on the volume and number of elements of the partitions taken and hX Cj

� �
(resp. hY Cj

� �
)

is the value of the function hX (resp. hY ) on Cj. In this empirical setting, we have that demp
L1

X;Yð Þ ¼ 0 if and only if

hX Cj
� � ¼ hY Cj

� �
, i.e. if and only if the number of samples of X on each cube Cj equals the number of samples of Y.

Jaccard index. This metric is designed to compare the supports of two distributions. In this way, instead of looking at the
particular distribution function, the aim of this metric is to determine whether the two random variables satisfy the same
value constraints.

Suppose that we have two random variables X and Y with supports supp Xð Þ and supp Yð Þ, respectively. The Jaccard index
of X and Y is
J X;Yð Þ ¼ jsupp Xð Þ \ supp Yð Þj
jsupp Xð Þ [ supp Yð Þj ;
where jAj stands for the Lebesgue measure (i.e. the volume) of the measurable set A. This coefficient takes values in the inter-
val 0;1½ � and the larger the value of J X;Yð Þ the more similar the empirical supports.

Again, if the real support is not known, we can still estimate it through the empirical probability density functions as
Jsmp X;Yð Þ ¼ jsupp hXð Þ \ supp hYð Þj
jsupp hXð Þ [ supp hYð Þj :
4.2. Nested ML performance

The second set of metrics attempts to quantify the performance of synthetic data when it is used as a substitute for real
data for training a ML classifier.

To be precise, suppose that our data set of real data, let us call it DS, is labelled for a supervised classification ML task. In
other words, DS contains instances of s P 2 different classes which are appropriately labelled. For the sake of notational sim-
plicity, we shall consider the case s ¼ 2 of binary classification (as appears in the experiments of this work), but the approach
can be straightforwardly generalized.

In order to train a ML model, as usual, we can split DS into two data sets, DS1 and DS1, with similar statistical properties.
In this way, DS1 can be used for training a ML classifier, whereas DS2 is reserved for testing its accuracy through the standard
classification quality measures: F1-score, precision and recall.

Nevertheless, in addition to being used for the training of the ML classifier, DS1 can also be used to train GANs aiming to
replicate its data. Hence, using DS1 we train two GANs K0;G0;D0ð Þ and K1;G1;D1ð Þ to synthesize data with label 0 and 1
respectively. Choose N;M > 0 and draw samples x01; . . . ; x

0
N and x11; . . . ; x

1
M of the latent spaces K0 and K1 respectively. Then,

using the generators G0 and G1, we create a new fully synthetic training data set DS10 with N þM instances joining the syn-
thetic data generated by both GANs.
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With this new synthetic dataset DS10, we train a standard ML classifier (say, a random forest classifier [41]). Then, screen-
ing the precision, recall, and F1-score of the classifier against DS2, we are able to measure the quality of the generated data:
the higher these measures, the better the synthetic data that was generated by K0;G0;D0ð Þ and K1;G1;D1ð Þ. Hence, large val-
ues of these coefficients point out that the synthetic data generated by G0 and G1 can be used to faithfully substitute the real
instances. Observe that no real data is used for such training purposes, although real data is always used for testing.

Additionally, as a baseline comparison for the metrics obtained with GAN synthetic data, we can also consider the ML
classifier trained with DS1 and compute its performance metrics with DS2 as the testing data set. In this way, we can com-
pare the performance of the ML classifier trained with GAN synthetic data against the benchmark-level performance
obtained using real data during the training of the ML classifier. Notice that our approach highly differs from many existing
works that only mix real with synthetic data (e.g., data augmentation solutions), which can generate data privacy breaches as
real data is present in the resultant data set.

It is worth mentioning that the particular choice of the MLmethod to test the nested accuracy is not really important. This
procedure seeks to discriminate between generated data of high and poor quality according to whether the classifier can
learn from the data. In this way, it is not a matter of getting the highest possible performance, which may require exhaustive
testing and hyperparameter tuning, but of analyzing the ability of the model to extract information from the generated data.
In this idea, a sufficiently flexible ML algorithm, like Random Forest, with a rudimentary hyperparameter tuning is enough to
obtain a compelling metric of the quality of the data.

Marginal quality evaluation. From a practical perspective, beyond the aforementioned process, we can also evaluate the
marginal quality of each of the generators before jointly evaluating the quality of G0 and G1. We generate only one of the
types of data, say label 0, and we mix the synthetic samples of label 0 with real samples of label 1 obtained from DS1. This
data set is used to train a ML classifier and then the classifier is tested on DS2 to get the performance measures. This process
is repeated for each type of data. In this way, the corresponding ML accuracy coefficients will only measure the ability of G0

to generate label 0, regardless of the fitness of G1 and vice versa.
In our experiments, we apply a variant of this approach that computes the performance of the ML classifier at each of the

training epochs of the GAN. In this way, we are able to screen the evolution of the training and to relate it to the quality of the
generated data. In particular, this idea enables a novel stopping criterion: when the GAN training epochs do not produce any
significant enhancement in the performance of the ML classifier, the training process of the GAN is stopped. It is worth noting
that this approach allows to train each type of GAN in parallel and therefore, each training can be stopped at different epochs
when no significant enhancement is observed in a particular GAN.

Choice of the best GAN model. After each GAN is trained, the joint performance of both types of synthetic data is computed.
Using the whole set of GANs obtained during the marginal quality evaluation would imply to compute the ML performance
for each pair G0;G1ð Þ of generators G0 and G1 at each of their training epochs. This leads to a quadratic number of generators
to be tested in the ML task, both for training and testing, to obtain the full set of measurements.

However, we observed experimentally that drawing roughly a dozen samples by choosing uniformly at random one gen-
erator of each type of data tends to produce results equivalent to the brute force approach of trying all possible combina-
tions. In addition, we applied more elaborated strategies based on performance elitism, ordering the generators of each
type of traffic by F1-score and choosing generators at random only from the subset containing the best generators.

Finally, we would like to remark that, since we have generative models able to create as many samples as needed, we can
choose the number of generated samples N andM as large as desired. If we choose N and M in the same range as the number
of instances in the original dataset DS1, we obtain a synthetic data set with very similar characteristics to the original one. In
particular, any unbalancing between classes will remain. However, other choices can be made. For instance, we can decide to
take N ¼ M, so that the obtained data set corrects the unbalanced situation, or to take N and M much larger than the size of
the original dataset, so that we increment the amount of data available for the ML classifier. It is worthy to mention that,
even though this solution gives rise to a balanced dataset as with data augmentation procedures, the proposed solution is
substantially stronger than simple data augmentation: the synthetic data is not a simple enrichment of the original data
set but a completely new data set.
5. Experiments

With the aim of demonstrating the effectiveness of the ST-based solution, we trained state-of-the-art Wasserstein GANs
(WGAN), using linear activation and Smirnof transform functions respectively in the output of the generator network. Ini-
tially, we selected two labelled data sets with interesting properties to investigate whether the ST-basedWGAN can replicate
the complexity of these data sets with higher fidelity. The performances of the two WGAN configurations were compared by
running a set of experiments for each data set and label. These two data sets have been made publicly available to facilitate
further experimentation and reproducibility of our experiments and can be found in [42].

In addition, we extended our experiments to three publicly available data sets to confirm the previously observed prop-
erties of the ST-based solution. In the rest of the section, we describe the data sets used for the experiments, the details of the
two WGAN architectures, and the obtained performance of the two solutions.
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5.1. Dataset description

To demonstrate the applicability of the proposed solution, we have defined two different use cases to experimentally val-
idate the versatility of ST-based GANs. The general objective of the two use cases is to test whether GAN-generated synthetic
traffic can fully replace real traffic in ML problems where the use of real data could generate privacy breaches. The two data-
sets used in this first round of experiments are publicly available in [42] to foster further experimentation and to allow other
researchers to use them as benchmark datasets.

First use case: Rendered data set. For the first use case considered in this work, we have designed two fictitious data sets
(denoted by DS1-r and DS2-r). As previously commented in subSection 4.2, we train GANs with DS1-r, while DS2-r is used for
training the ML-classifier that will assess the quality of the synthetic data generated by the GANs. In addition, DS1-r is used
for training the benchmark ML classifier. Both data sets contain entries of two different data types (i.e., 2 labels) and are per-
fectly balanced, containing 400;000 entries for each label. The data sets are composed of four variables, two of them contain
continuous values and the other two contain discrete values. Each of the entries of the data set was generated by sampling
from two random vectors (one per label class) made of independent random variables with the distributions shown in
Table 1 (see also their histogram in Figs. 7 and 8). Notice that, to hinder the generation of the data, fixed the output class
the features are independent random variables and thus they are completely uncorrelated. In this way, a generative model
cannot rely on a simple feature to generate a complex one, but it has to be able to replicate them simultaneously.

This use case aims to demonstrate that the use of linear activation functions at the last layer of the generator fails to repli-
cate complex data distributions such as the ones we have rendered and in particular, the variables representing discrete data
distributions. On the contrary, we show that, using ST-based activation functions, we are able to perfectly replicate from a
statistical point of view, both continuous and discrete variables, even if the data variables follow complex statistical
distributions.

It is worth noting that the statistical distributions of the two types of data have been generated in such a way that they
are similar on average, which makes the task of an ML classifier more complicated when we want to train it to correctly iden-
tify the two types of data. Indeed, if the synthetic data have not been generated with sufficient fidelity to the two real data
distributions, because the means of their 4 variables are so close, the ML classifier trained with synthetic data will obtain a
significantly worse performance in terms of accuracy, precision and recall than a benchmark classifier trained with real data.

Finally, observe that some of the distributions of the 8 variables (4 per data type) have been generated with statistical
patterns different from the Gaussian distribution (Table 1) to demonstrate that the generators with linear activation do
not replicate with precision the real distributions when they are not Gaussian or discrete, and that on the contrary, when
the generators have activation functions based on ST, the distributions of the synthetic data exactly replicate the real vari-
ables even if their distributions follow statistical patterns very different from Gaussian distributions (e.g. discrete
distribution).

Second use case: Network traffic. The second use case aims to evaluate the replication by GANs of data coming from a real
scenario in the cybersecurity domain. The real data used in this experiment were previously generated in a realistic network
laboratory called the Mouseworld lab [43]. The Mouseworld is a network digital twin created at Telefónica R + D facilities
that allows deploying complex network scenarios in a controlled way. In this lab, a set of virtual machines were deployed
for the generation of regular network traffic (e.g., web and video flows) jointly with cryptomining clients connected to public
mining pools in the Internet [44].

We ran the experiment twice for one hour, collected the transmitted packets, and generated two data sets (denoted by
DS1-c and DS2-c) each with 4 millions of flow-based entries containing statistics of the connections. Normal traffic connec-
tions were labelled with 0 and cryptomining ones with 1. It is worth noting that both data sets are totally unbalanced, con-
taining only 4;000 entries of criptomining connections.

A set of 59 statistical features were extracted from each TCP connection, although we selected a reduced set of 4 for our
experiments: (a) number of bytes sent from the client, (b) average round-trip time observed from the server, (c) outbound
bytes per packet, and (d) ratio of packets inbound/ packets outbound. These four features were selected as they exhibit two
interesting properties for our generative experiments that were previously commented in the first use case: (i) each feature
presents a different statistical behaviour far from a Gaussian distribution and (ii) the mean of each feature in the two types of
traffic (normal and cryptomining) were close, which makes the task of an ML classifier more complicated when we want to
train it to correctly identify the two types of data.

The nature of both types of traffic is very different, a fact that will be reflected in the quality of the GAN-generated data.
The normal traffic has a great variety since it is composed of many types of connections (e.g., video, audio, web elements, and
Table 1
Distributions used to render data sets DS1-r and DS2-r. Each of the features was drawn independently.

Label Feature 0 Feature 1 Feature 2 Feature 3

Label 0 Normal
l ¼ 0;r ¼ 1ð Þ

Binomial
n ¼ 15;p ¼ 0:3ð Þ

Exponential
r ¼ 3ð Þ

Poisson
k ¼ 1:0ð Þ

Label 1 Normal
l ¼ 0;r ¼ 1ð Þ

Discrete uniform
supp: 0;15½ �ð Þ

Snedecor F
m1 ¼ m2 ¼ 3ð Þ

Poisson
k ¼ 2:0ð Þ
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multimedia elements). On the contrary, the cryptomining connections are handled by a reduced set of protocols and there-
fore, their statistical patterns are not expected to differ substantially. Due to the greater diversity that normal traffic connec-
tions exhibit when compared to cryptomining connections, GANs that try to replicate label-0 data will perform slightly
worse than their counterparts that replicate label-1 data.

5.2. Additional data sets

In addition to the former data sets, we selected three publicly available data sets to demonstrate in different scenarios
that the ST activation function used in a Wasserstein GAN generates synthetic data of greater quality and performance than
when the normal linear activation function is applied to the same WGAN. We choose two data sets from the renowned UCI
repository and one containing a set of network captures including normal traffic and several botnet attacks:

1. UCI Adult data set also known as Census Income data set( https://archive.ics.uci.edu/ml/datasets/adult). This data set is
used to predict whether income exceeds $50 K/yr based on census data [45]. The data set contains 14 features, one of
them (Income) was used as the label for the nested classification task and the rest were used as the objective data to
be replicated by the GANs.

2. UCI E-shop data set also known as Clickstream data for online shopping data set ( https://archive.ics.uci.edu/ml/datasets/
clickstream+data+for+online+shopping). The dataset contains information on clickstream from online store offering
clothing for pregnant women [46]. The data set contains 14 features, one of them (Price) was used as the binary label
for the nested classification task and the rest were used as the objective data to be replicated by the GANs.

3. CTU-13 data set ( https://www.stratosphereips.org/datasets-ctu13). The CTU-13 is a dataset of botnet traffic that was
captured in the CTU University, Czech Republic, in 2011 [47]. The dataset contains a large capture of real botnet traffic
mixed with normal traffic and background traffic. The CTU-13 dataset consists of 13 captures (called scenarios) of differ-
ent botnet samples that were processed to obtain a single data set with 11 features plus a label (1: botnet attack, 0: nor-
mal traffic).

5.3. Proposed architecture

Aiming to mimic synthetic data with several types of behaviour, we adopted in preliminary experiments a well-known
conditional GAN model, the so-called Auxiliary Classifier GAN (AC-GAN) [48], as the architecture to generate at the same
time all types of variables. In both use cases, the ACGAN did not produce an adequate performance when replicating the
two types of data and moreover, it generated significant oscillations in the convergence process. For that reason, we opted
to use a different GAN for each type of data to be generated.

To get rid of the mode collapse problems that frequently appear during GAN training, we adopted as a reference model
the WGAN architecture [28], in which a Wasserstein loss function is used as the loss function instead of a standard cross-
entropy function. We tested two different strategies to enforce the required Lipschitz constraint in the cost function, weight
clipping ([28]) and gradient penalty ([49]), not observing any significant enhancement in the convergence of the GAN train-
ing. Therefore, we chose a WGAN architecture with no additional strategy to enforce the Lipschitz constraint and with a dis-
criminator with small learning rates as a heuristic to avoid reaching mode collapse situations.

For the shake of brevity we will use the terms standard GAN or vanilla GAN in the rest of the paper to refer to a state-of-
the-art WGAN equipped with linear activation functions in the last layer of the generator network. Additionally, we will use
ST-based GAN to refer to a WGAN in which the linear activation functions of the last layer of the generator network have been
substituted by the corresponding Smirnov transform functions.

Regarding that the statistical nature of the 4 features to be synthetically replicated in both use cases did not exhibit any
topological structure or time relationship among them, convolutional or recurrent networks would not take any advantage
of it. Therefore, we selected fully connected neural networks (FCNNs) as the architectural model for both the discriminant
and generator networks. LeakyRelu functions were used as the activation function in all layers, except for the last layer of the
generator. Based on previous experiments [20], no filtering based on the output of the discriminator was applied to discard
synthetic data, nor was noise added to synthetic or real data during the training of the discriminator to help GAN
convergence.

5.4. Experimental results

In this section, we analyze the performance on each of the use cases of Section 5.1 of four different generative approaches:
(i) when real data is used and no generation occurs, (ii) with a simple mean-based generator, (iii) with a standardWGAN, and
(iv) with a WGAN with ST-based activation function. As we will show, the ST-based solution outperforms both the standard
GAN and the simple mean-based generator, reaching an accuracy in a nested ML classifier similar to the one obtained with
real data.

As ML classifier, we selected a Random Forest model with 300 estimators. In the first use case, we limited each tree depth
to 20 to avoid some overfitting effects that appeared in preliminary experiments. No depth limit was applied to trees in the
second use case. In the first use case, a balanced set of samples were obtained for each label (200;000 samples per label
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totalling 400;000 samples) for training and testing. In the second use case, we kept the original ratio of the two labels (many
more normal traffic connections than cryptomining ones) and we got 400; 000 samples of label 0 (normal traffic) and only
4;000 of label 1 (cryptomining connections) for training and testing. In the testing process, we establish additional decision
thresholds of 0:2;0:4;0:6 and 0:8 to the default 0:5 in order to analyse the results of the default and the best performing
threshold. Finally, the training and testing of ML classifiers were run 100 times in all experiments to minimise biased beha-
viours during sampling and training.

For training WGANs, we used previous knowledge from past experiments [20], and applied the set of hyperparameters
detailed in Table 2 performing a blind random search in the hyperparameter space guided by the F1-score obtained in a
nested ML-model that was executed evaluating the marginal quality of the generator after 10 mini-batch trains (see Sec-
tion 4.2). For each type of data, the WGAN selected was the one that obtained the best F1-score for the nested classifier
in any of its mini-batches. As optimization algorithms, we used Adam for generators and RMSProp for discriminators and
the binary cross-entropy loss function was substituted by the Wasserstein loss. The hyper-parameters chosen for the gen-
erator and discriminator in each use case are detailed in the last two columns in Table 2.
5.4.1. Real data
To establish an upper bound on the expected performance of the nested ML classifier, a benchmark classifier was trained

100 times for each of the two use cases with real samples from the first data set DS1 and tested using samples from the sec-
ond data set DS2. The first row in Table 3 summarises the obtained F1-score values and confusion matrices in testing for the
best decision threshold and the default threshold (0:5) in the first use case (rendered data). The first row of Table 4 sum-
marises the same information for the second use case (cryptomining attack).

Alongside, Fig. 13a plots the histogram of the statistical distribution of F1-score results obtained in the first use case when
a ML classifier was trained with DS1-r and tested with DS2-r. Similarly, Fig. 15a shows the histogram of the statistical dis-
tribution of F1-score results obtained in the second use case when a ML classifier was trained with DS1-c and tested with
DS2-c.
5.4.2. Mean generator
Opposed to the previous results, we established a baseline in our experiments through a naïve generator designed to gen-

erate new data by adding Gaussian noise to the means of the data features. The standard deviation of the noise was manually
adjusted to produce the best results and hence, a more challenging baseline. Each nïaive model was tested with the corre-
sponding DS2 data set of each use case.

A summary of the baseline results obtained with this naïve model can be found in the second rows of Table 3 and Table 4,
for the first and second use cases respectively. Histograms showing the F1-score values obtained after running the mean gen-
erators 100 times are shown for each use case in Fig. 13b and Fig. 15b.
Table 2
WGAN hyperparameters.

Range of values Rendered data Network data

Generator # layers [2..6] G0 ;G1 2 G0 2 200;500;3000;500;4½ �
# units per layer [100..10000] 500;3000;5000;400;4½ � G1 2 600;3000;1000;4½ �
latent vector Fixed value

(100, 123)
100 123

noise for latent vector
(distribution, std)

distr = [norm, uniform]
std = [0.1..100]

uniform, std = 1.5 normal, std = 0.5

batch normalization [True..False] True True
regularization: L2 = 1e� 5::10½ � L2:

G0 ;G1 ¼ 0:1
L2:
G0 ;G1 ¼ 0

L2, dropout Dropout = 0::1½ � Dropout:
G0 ;G1 ¼ 0

Dropout:
G0 ;G1 ¼ 0

LeakyRelu alpha Fixed value 0:15ð Þ G0 ¼ G1 ¼ 0:2
D0 ¼ D1 ¼ 0:15

G0 ¼ G1 ¼ 0:2
D0 ¼ D1 ¼ 0:15

Discriminator learning rate Default value
0:001ð Þ

G0 ;G1 ¼ 0:001 G0 ;G1 ¼ 0:001

# layers [2..6] D0;D1 2 D0 2 380;800;600;177;23½ �
# units per layer [100..10000] 280;503;177;23½ � D1 2 280;903;500;23½ �
batch normalization [True..False] True True
regularization: L2 = 1e� 5::10½ � L2:

D0;D1 ¼ 0:001
L2:
D0 ¼ 0:02, D1 ¼ 0:05

L2, dropout Dropout = 0::1½ � Dropout:
D0;D1 ¼ 0

Dropout:
D0 ¼ 0:1, D1 ¼ 0:15

LeakyRelu alpha Fixed value 0:15ð Þ D0 ¼ D1 ¼ 0:15 D0 ¼ D1 ¼ 0:15
learning rate Default value 0:001ð Þ D0;D1 ¼ 0:0001 D0;D1 ¼ 0:001
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Table 3
Rendered data set (first use case). Performance of synthetic traffic combining labels 0 and 1. Training with (i) a real data set (R-DS1), (ii) a mean-based noise
generator and (iii and iv) GAN synthetic data (with linear and ST activation). Results on testing with real data (R-DS2). Experiment is drawn 100 times
uniformly at random (Fig. 13 and Fig. 14). For the GANs, in each sample we choose one generator from among all label 0 generators and one generator from
among all label 1 generators.

Dataset Quality Measure Best Default

Training 200K/200K
Real data (R-DS1)

Threshold 0.5 0.5
F1-score 0.812 0.812
Confusion
matrix

349534 50466 349534 50466

99271 300729 99271 300729

Training 200K/200K
Noise generator with means

Threshold 0.2 0.5
F1-score 0.764 0.731
Confusion
matrix

349292 50708 379238 20762
135673 264327 185058 214942

Training 200K/200K
WGAN with linear activation

Threshold 0.5 0.5
F1-score 0.789 0.789
Confusion
matrix

357013 42987 357013 42987
123978 276022 123978 276022

Training 200K/200K
WGAN with ST activation

Threshold 0.4 0.5
F1-score 0.795 0.793
Confusion
matrix

338960 61040 333288 66712
102240 297760 98781 301219

Training 200K/200K
WGAN with linear activation
F1-score elitism (top 10)

Threshold 0.4 0.5
F1-score 0.779 0.775
Confusion
matrix

346911 53089 339251 60749
122176 277824 118428 281572

Training 200K/200K
WGAN with ST activation
F1-score elitism (top 10)

Threshold 0.5 0.5
F1-score 0.783 0.783
Confusion
matrix

339440 60560 339440 60560
111704 288296 111704 288296

Table 4
Performance of synthetic traffic combining labels 0 and 1. Training with (i) a real data set (DS1), (ii) a mean-based noise generator and (iii and iv) GAN synthetic
data (with linear and ST activation). Results on testing with real data (DS2). Experiment is drawn 100 times uniformly at random (Fig. 15 and Fig. 16). For the
GANs, in each sample we choose one generator from among all label 0 generators and one generator from among all label 1 generators.

Dataset Quality Measure Best Default

Training 400K/4K
Real data (DS1)

Threshold 0.8 0.5
F1-score 0.957 0.898
Confusion
matrix

399426 574 399873 127
205 4183 1384 3004

Training 400K/4K
Noise generator with means

Threshold 0.8 0.5
F1-score 0.710 0.624
Confusion
matrix

393386 6614 381851 18149
1364 3024 816 3572

Training 400K/4K
WGAN with linear activation

Threshold 0.8 0.5
F1-score 0.920 0.820
Confusion
matrix

399692 308 398651 1349
969 3419 1657 2731

Training 400K/4K
WGAN with ST activation

Threshold 0.8 0.5
F1-score 0.897 0.869
Confusion
matrix

399780 220 399123 877
1334 3054 1288 3100

Training 400K/4K
WGAN with linear activation
F1-score elitism (top 10)

Threshold 0.8 0.5
F1-score 0.941 0.933
Confusion
matrix

399646 354 399696 304
626 3762 782 3606

Training 400K/4K
WGAN with ST activation
F1-score elitism (top 10)

Threshold 0.6 0.5
F1-score 0.879 0.873
Confusion
matrix

399572 428 399261 739
1425 2963 1316 3072
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5.4.3. GANs: Linear and custom activation
For the two use cases of Section 5.1, we ran a set of experiments to obtain the performance of a ML classifier trained with

GAN synthetic data and tested with DS2 data sets (DS2-r for the first use case and DS2-c for the second). GANs were always
trained using DS1 data sets (DS1-r for the first use case and DS1-c for the second). The GANs were trained during a fixed set
of 25;000 mini-batches (50 epochs). Every 10 mini-batches, the GAN generator model was saved for posterior use, and the
obtained L1 and Jaccard distances of synthetic and real data were computed. In addition, as mentioned in Section 4.2, a train-
ing data set was generated mixing GAN synthetic data of the current label with real data sampled from the other label of DS1.
Using this hybrid data set, we trained a ML classifier, and then the ML model was tested with DS2. The obtained F1-score
represents the marginal performance of the GAN synthetic data for the current label and, in addition, provides a potential
early stopping criterion for GAN training. Note that although both DS1 and DS2 contain real data, the performance against
DS2 provides a more reliable measure, since DS1 was used for training the GAN and therefore, the GAN generator could have
learnt specific information only contained in DS1.

After training standard and ST-based WGANs for the two labels, we run the following experiment for each type of GAN
(standard and ST-based) to highlight the advantage of the proposed ST solution: For each label, a WGAN generator is selected
uniformly at random among all models stored previously every 10 mini-batches. Then, a completely synthetic data set is
produced using the generator of label 0 and the generator of label 1. Using this synthetic data set we train the ML classifier
and test its performance with DS2 obtaining the F1-score value and the confusion matrix. This process was run 100 times to
compare the statistical distribution of the obtained F1-score values for the standard and ST-based WGANs. In addition, we
repeated the experiment not selecting uniformly at random each label generator among the whole set of stored generators
for a label but among the top 10 sorted by the marginal F1-score for this label (i.e., using F1-score elitism). In this way, we
explored whether it is more efficient to search the best performing label 0 and 1 generators among all stored generators or
using the F1-score elitism. In addition, we analyse whether the ST-based solution performs better than the standard WGAN
using this elitism.

Distances from synthetic to real data. Fig. 1 shows the evolution of L1 distance and Jaccard index during the GAN training for
label 0 and label 1 in the first use case. It can be observed from both labels that the L1 distance curve for the ST-based WGAN
stabilises faster, shows less oscillations and achieves smaller values (around 0:3 for both labels when GAN training is sta-
bilised) than in the standard WGAN with linear activation (around 0:6 for both labels in the minimum points of the curves).
With respect to the Jaccard index, the results of the ST-based WGAN conclude in a similar way: The curves for both labels
achieve high values (around 0:7 for label 0 and 0:9 for label 1), stabilise faster (in 4 epochs for label 0 and 6 epochs for label 1)
and do not exhibit significant oscillations. On the contrary, the Jaccard curves of the standard WGAN for the two labels show
a bad performance with values not greater than 0:4. These results highlight that in the first use case the similarity of the
synthetic data generated by the ST-based WGAN generator and the real data is much higher than when the synthetic data
is generated by the standard WGAN generator.

The L1 distance and Jaccard index results for the second use case are shown in Fig. 2. Similarly to the first use case, the
distance in ST-based WGAN stabilises quickly (10 epochs for label 0 and 20 for label 1), with a very low value (around 0:25)
and without significant oscillations indicating that the quality of the generated synthetic data is high. On the contrary, stan-
Fig. 1. Rendered data (use case #1). Evolution of L1 distance and Jaccard index, using GAN generators with linear activation (top row) and ST-based
activation (bottom row) for labels 0 and 1. The x-axis represents the GAN training epochs (1 epoch = 50 ticks).
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Fig. 2. Cryptomining attack scenario (use case #2). Evolution of L1 distance and Jaccard index, using GAN generators with linear activation (top row) and ST-
based activation (bottom row) for labels 0 (normal traffic) and 1 (cryptomining connections). The x-axis represents the GAN training epochs (1 epoch = 50
ticks).
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dardWGAN suffers from remarkable oscillations and the distance value is not small (from 0:65 to 1:6 for label 0 and from 0:6
to 1:25 for label 1), which highlights that the similarity of the synthetic data generated by the GAN and the real data is not
very high. Analyzing the Jaccard coefficient in the figure for the ST-based WGAN curve, it can be seen that values around 0:4
and 0:6 are obtained for labels 0 and 1. It is intuited in the figure that with more training epochs the former values would
continue to grow. In contrast, the standard WGAN curve quickly stabilises around a very small value of 0:1 for both labels,
which shows that in this case, the statistical distributions of real and synthetic data are quite different.

We can conclude that in both use cases, the ST-based WGAN replicates for the two labels the statistical behaviour of the
real data (DS1 data set) with high precision and requiring only a few training epochs. In addition, the quality of the synthetic
data produced throughout the training process does not suffer from significant oscillations. On the contrary, the standard
WGAN replicates with worse quality the statistical distribution of the real data, needs more training epochs, and the quality
of the generated data suffers from high oscillations during the training process, which prevents its use in real applications.

Evolution of synthetic data quality. In this section, we analyze the evolution of the quality of the synthetic data generated
by the standard and ST-basedWGANs with respect to the real data. Figs. 3 and 4 for the first use case, and Figs. 5 and 6 for the
second, show graphically the obtained distributions. To this end, we compare and plot samples of real and synthetic data
distributions at different mini-batches (1, 100, and 1000) corresponding to the epochs 0;2 and 20 respectively.

To ease the visualization of the above-mentioned figures, we have flattened the four histograms corresponding to the four
features of the data set into a 1-dimensional plot. To be precise, each of the points in the x-axis of the plot represents a cube
(a bin) in which the empirical probability density function was computed (see Section 4.1). In this way, comparing the cubes
of two samples, we can infer whether the two data distributions are similar or not. For example, samples of two data dis-
tributions with elements placed in different cubes would point to data distributions with significant differences. On the con-
trary, if the elements of both distributions are mapped to the same cubes and the number of elements in each cube is similar
for both samples, we could infer that the two data distributions are similar.

To plot and compare the synthetic and real data distributions, the cubes of the real data sample are sorted by the number
of elements in each cube in ascending order. In this way, the marks on the x-axis represent the cubes as ordered for the real
data sample. Therefore, the real data curve always exhibits an ascending shape. The y-axis represents the number of sample
elements that are placed in each cube. It is worth noting that higher numbers on the x-axis indicate that the WGAN has cre-
ated many nonexistent elements (in the real data set) that are assigned to new bins. These bins containing elements outside
the real data domain are placed on the left side of the WGAN curve since the real data curve has no elements in such bins.

In the first use case, it can be observed in Fig. 3 that the standard WGAN for label 0 creates many more nonexistent data
elements than the ST-based WGAN. Considering that the real data samples generate around 80 cubes, at epoch 2, the stan-
dard WGAN created 350 cubes and the ST-based WGAN only 120, and when they reach epoch 20, the standard WGAN gen-
erated 200 cubes and the ST-based WGAN remained at 120. A similar behaviour is observed in Fig. 4 for label 1, where the
standard WGAN, in the three epochs discussed above, doubles the number of cubes generated by the ST-WGAN. The situa-
tion in the second use case is similar to the first. The ST-based WGAN generates significantly fewer cubes than the standard
WGAN for both labels (Fig. 5 and Fig. 6).
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Fig. 4. Rendered data set (first use case). Comparison of synthetic (blue) and real (red) data distributions using WGAN generators for label 1 with linear
activation (top row) (4a, 4b, and 4c) and with ST-based activation (bottom row) (4d, 4e, and 4f) in different epochs (0, 2 and 20). The 4-dimensional vector
has been flattened into by sorting by frequency in ascending order on t.he x-axis.

Fig. 3. Rendered data set (first use case). Comparison of synthetic (blue) and real (red) data distributions using WGAN generators for label 0 with linear
activation (top row) (3a, 3b and 3c) and with ST-based activation (bottom row) (3d, 3e, and 3f) in different epoch.s (1, 2 and 20).
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Fig. 6. Cryptomining attack (second use case). Comparison of synthetic (blue) and real (red) data distributions using GAN generators for label 1 with linear
activation (top row) (6a, 6b, and 6c) and with ST-based activation (bottom row) (6d, 6e, and 6f) in different epochs (0, 2 and 20).

Fig. 5. Cryptomining attack (second use case). Comparison of synthetic (blue) and real (red) data distributions using GAN generators for label 0 with linear
activation (top row) (5a, 5b and 5c) and with ST-based activation (bottom row) (5d, 5e and 5f) in different epoch.s (0, 2 and 20).
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Fig. 8. Rendered data set (first use case). Frequency distribution from Label 1 of real data and standard and ST-basedWGAN’s synthetic data. Histogram (top
row) and Kernel Density Estimator (KDE) function (bottom row) are shown for the four variables.

Fig. 7. Rendered data set (first use case). Frequency distribution from Label 0 of real data and standard and ST-basedWGAN’s synthetic data. Histogram (top
row) and Kernel Density Estimator (KDE) function (bottom row) are shown for the four variables.
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Feature replication. After having analysed in the previous subsections the quality of the synthetic data generated by ST-
based WGANs, we study the fidelity with which WGAN generators replicate the statistical distribution of each variable.
We compare the statistical distributions of each of the 4 variables that compose the data elements in the first use case in
Fig. 7 (label 0) and Fig. 8 (label 1), and for the second use case in Fig. 9 (label 0) and Fig. 10 (label 1). At the top row of each
figure, we plot the histogram of the real variables and the synthetic variables generated by the standard and ST-based
WGANs. The bottom row shows the Kernel Density Estimator (KDE [50]) function of all of them. Synthetic data samples were
obtained at epoch 25.

In general, it can be observed in all figures that the ST-basedWGAN replicates the histogram and the KDE function of each
variable with high accuracy. On the contrary, for the two use cases and the two labels, the standard WGAN tends not to
mimic the statistical distribution of the real data.

It is worth noting that one of the key innovations of our proposal is the ability of ST-based WGANs to replicate discrete
data variables. To the best of our knowledge, none of the existing solutions provides a clean approach to solve this crucial
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Fig. 9. Cryptomining data set (second use case). Frequency distribution from Label 0 of real data and standard and ST-based WGAN’s synthetic data.
Histogram (top row) and Kernel Density Estimator (KDE) function (bottom row) are shown for the four variables.

Fig. 10. Cryptomining data set (second use case). Frequency distribution from Label 1 of real data and standard and ST-based WGAN’s synthetic data.
Histogram (top row) and Kernel Density Estimator (KDE) function (bottom row) are shown for the four variables.
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issue as the ST-based approach does. In the first use case, an ad hoc data distribution was designed to contain two discrete
variables (features 1 and 3) in each label to highlight the advantage of our solution in comparison with current solutions. It
can be observed in the Label 0 histograms for features 1 and 3, (Fig. 7b and Fig. 7d) that the ST-based WGAN perfectly repli-
cates the discrete nature of these features. In sharp contrast, the standard WGAN fails on this task and generates two syn-
thetic variables that follow a continuous distribution. The same situation appears for label 1, as variables 1 and 3 (Fig. 8b and
Fig. 8d) are perfectly replicated by the ST-based WGAN and on the contrary, the standard WGAN generates synthetic vari-
ables following a continuous distribution.

As a final remark, note that the discrete variables can be categorical or not (e.g., an ordered sequence of integer numbers)
as the ST solution does not impose any assumption on this and therefore, provides a general solution for any discrete
variable.

Marginal F1-score. Looking at the marginal F1-score values obtained for each label in the first use case (Fig. 11), we observe
that the standard WGAN generators for both labels fail completely when they are used to marginally replace real data in
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Fig. 11. Rendered data (first use case). Evolution of the marginal F1-score on training and testing, using GAN generators with linear activation (top row) and
ST-based activation (bottom row) for labels 0 and 1. The first and second columns correspond to the evolution for the GAN trained to generate label 0,
whereas the third and forth columns correspond to the generation of label 1. The x-axis represents the GAN training epochs.
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training an ML classifier, as they obtain very bad F1-score metrics (around 0:35 for label 0 and 0:4 for label 1) in both testing
(DS2-r) and training (DS1-r) data sets. On the contrary, the ST-based WGAN obtains F1-score values close to the ones
obtained using real data in the training of the ML classifier. The benchmark classifier trained with real data obtained an
F1-score of 0:812 with DS2-r and using the synthetic data generated by the ST-based WGAN we obtained around 0:75 for
label 0 and 0:7 for label 1 with DS2-r as testing data set. Furthermore, the ST-based WGAN did not generate any significant
oscillations in the F1-score curve after the maximum F1-score values were reached at 4 and 8 epochs respectively for labels 0
and 1.

In general, the results of the marginal F1-score for the second use case are aligned with those obtained in the first use case.
When the ST-based WGAN was used with DS2-c as the testing data set, higher F1-score values were achieved (around 0:6 for
label 0 and 0:85 for label 1) without incurring significant oscillations when GAN training was estabilised (around 8 epochs
for both labels). In contrast, the standard WGAN performance was not good, with small F1-score values for label 0 (from 0:1
to 0:5) and noticeable oscillations throughout the GAN training for both labels. Fig. 12.

We can conclude that in both use cases, the ST-based WGAN obtained better marginal F1-score values, stabilised to the
maximum values faster and without producing significant oscillations once stabilised.

Nested ML evaluation. In this section, we analyze the performance of the nested ML classifier when a fully synthetic data
set is generated using GANs. Recall that this data set is created by mixing samples created by the GAN generators of labels 0
and 1, and it is used to feed a ML classifier. As criteria for picking the generators to be used for each label, we applied two
different strategies: (i) drawing a random sample among the whole set of stored generators, and (ii) drawing a random sam-
ple from the top 10 models sorted by the marginal F1-score of the label (i.e., using F1-score elitism).

Table 3 summarises the results obtained for the first use case and Fig. 14 shows detailed histograms of the F1-score results
obtained after running 100 times each experiment. In the light of the results presented in these plots, the main conclusions
are:

(i) Both the ST-based and standardWGANs can be used for training a ML classifier as their performance is better than that
of the noise generator and only slightly worse than that of the real data.
(ii) The synthetic data generated by the ST-based WGAN performs slightly better than that of the standard WGAN, both
when random selection is done on the whole set of models (0:793 against 0:789 for the best F1-score obtained) and when
the F1-score elitism is used (0:783 against 0:775 for the best F1-score obtained).
(iii) The interval of the F1-score values obtained when using the ST-based WGAN (from 0:75 to 079) was concentrated
near to the maximum value and was significantly smaller than that obtained with the standardWGAN that are noticeably
dispersed in a larger interval from 0:5 to 0:79. Hence, selecting at random ST-based generator models is highly likely to
obtain a synthetic data set that performs close to the best model combination and the real data. In contrast, if we select
generators at random from the standard WGAN, it is less likely to obtain a synthetic data set that comes close to the per-
formance of the real data.
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Fig. 13. Rendered data set (first use case). Baseline. F1-score on DS2-r (left) and DS1-r (right) using as training data set: (13a) a real data set (DS1-r) and
(13b) a naive noise generator with means. Results for decision thresholds of 0.2, 0.4, 0.5, 0.6 and 0.8 are represented. Each experiment wa.s run 100 times.

Fig. 12. Cryptomining attack scenario (second use case). Evolution of the marginal F1-score on training and testing, using GAN generators with linear
activation (top row) and ST-based activation (bottom row) for labels 0 and 1. The first and second columns correspond to the evolution for the GAN trained
to generate label 0, whereas the third and forth columns correspond to the generation of label 1. The x-axis represents the GAN training epochs.
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Fig. 14. Rendered data set (first use case). F1-score on DS2-r (left) and DS1-r (right) using as training dataset GAN generators with linear and IST-based
activation. Random selection of generators was done from among all generators (14a and 14b) and using an elitism criterion (top 10 of F1-scores) (14c and
14d). Results for decision thresholds of 0.2, 0.4, 0.5, 0.6 and 0.8 are represented. Each experiment wa.s run 100 times.
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Fig. 15. Cryptomining attack data set (second use case). Baseline. F1-score on DS2-c (left) and DS1-c (right) using as training data set: (15a) a real data set
(DS1-r) and (15b) a naive noise generator with means. Results for decision thresholds of 0.2, 0.4, 0.5, 0.6 and 0.8 are represented. Each experiment wa.s run
100 times.
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(iv) When the ST-based activation was used, although the maximum value obtained with F1-score elitism was slightly
lower than that obtained with the uniform drawing method, the distribution of results was slightly more concentrated
near the maximum value.

Table 4 summarizes the results obtained for the second use case and Fig. 16 shows detailed histograms of the F1-score
results obtained after running each experiment 100 times. In a general sense, the results are aligned with the ones of the
first use case:

(i) ML classifiers trained with synthetic data generated by WGANs obtain a similar performance than when trained with
real data. In fact, the best value of standard WGAN with F1-elitism was slightly greater than the best value obtained with
real data.
(ii) The interval of the F1-score values obtained when using the ST-based WGAN was concentrated near to the maximum
value and this effect was accentuated when F1-elitism was applied. Hence, selecting at random ST-based generator mod-
els is highly likely to obtain a synthetic data set that performs close to the best model combination and the real data.
(iii) In contrast, when using the standard WGAN, the interval of F1-score values is significantly wider and only a very
small percentage of them are close to the best value obtained with real data, which precludes to use this method as it
is not likely to produce a realistic synthetic data set when generators are selected at random. However, this effect slightly
decreases when F1-score elitism is used for selecting the generators.

5.5. Further experiments

To analyse whether the obtained results can be generalised to other data sets, three publicly available data sets (UCI Cen-
sus Income, UCI E-shop and CTU-13 botnet attacks) were used to run a new round of experiments as in subSection 5.4.3.
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Fig. 16. Cryptomining attack data set (second use case). F1-score on DS2-c (left) and DS1-c (right) using as training dataset GAN generators with linear and
custom activation. Random selection of generators was done from among all generators (16a and 16b) and using an elitism criterion (top 10 of F1-scores)
(16c and 16d). Results for decision thresholds of 0.2, 0.4, 0.5, 0.6 and 0.8 are represented. Each experiment was run 100 times.
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Table 5
Additional experiments with publicly available datasets.

Dataset Quality
Measure

Real data Hybrid dataset :
Label 0 WGANð Þ
Label 1 realdatað Þ

Hybrid dataset :
Label 0 realdatað Þ
Label 1 WGANð Þ

Fully synthetic
dataset

:

UCI Adult dataset
Vainilla WGAN
linear activationð Þ

F1-score 0:7874 0:1965 0:4334 0:5358

L1distance
to real data

L0 : 1:5348
L1 : 1:4133

L0: 3:4925 L1: 2:5711 –

UCI Adult dataset
Smirnov WGAN
ST activationð Þ

F1-score 0:7874 0:7745 0:7654 0:7858

L1distance
to real data

L0 : 1:5348
L1 : 1:4133

L0: 1:9878 L1: 1:8455 –

UCI E� shop dataset
Vainilla WGAN
linear activationð Þ

F1-score 0:9445 0:3779 0:3501 0:3585

L1distance
to real data

L0 : 1:5331
L1 : 1:5516

L0: 3:4925 L1: 2:5711 –

UCI E� shop dataset
Smirnov WGAN
ST activationð Þ

F1-score 0:9445 0:6602 0:7384 0:6339

L1distance
to real data

L0 : 1:5331
L1 : 1:5516

L0: 2:8880 L1: 2:5077 –

CTU� 13 botnet dataset
Vainilla WGAN
linear activationð Þ

F1-score 0.9899 0:5522 0:3503 0:8076

L1distance
to real data

L0 : 0:5735
L1 : 0:1891

L0: 3:1067 L1: 3:6628 –

CTU� 13 botnet dataset
Smirnov WGAN
ST activationð Þ

F1-score 0.9899 0:9395 0:9051 0:8551

L1distance
to real data

L0 : 0:5735
L1 : 0:1891

L0: 3:1283 L1: 1:8701 –
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These datasets were previously described in subSection 5.2 It is worth noting that we configured the same type of WGAN
architecture for these experiments to design an ablation experiment in which only the activation function at the last layer
of the generator was changed from linear to Sminorv transform. We summarize in Table 5 the results obtained with such
WGAN configuration but similar results were obtained when theWGAN configuration was changed (e.g., adding or removing
layers and neural units to the generator and discriminator).

We sampled twice the real data set for each label and computed the L1 distance of the two samples. Each sample got 500
elements from the real data uniformly at random and with replacement. The experiment was repeated 5 times and the result
shown in Table 5 is the median of the distances obtained in the 5 experiments. The distance from synthetic data to real data
for each label was computed using the generator that obtained the best score in the marginal F1-score test for each label. A
sample of 500 elements obtained from the WGAN generator was used to compute the L1 distance from the synthetic data to
the real one. The experiment was repeated 5 times and the median of the obtained distances was shown in the table.

To obtain the F1-score when only synthetic data is used to train the nested ML classifier, we used the F1-elitism criteria
and the mixing procedure described in [20]. For each label, the top ten generators in the marginal F1-score test were
selected. Then, one generator of each label was selected uniformly at random to get a fully synthetic sample. The size of
the synthetic sample and the proportion of each label were the same as in the real data set. Using the synthetic data, a nested
ML classifier was trained and tested on a second real data set. The experiment was repeated 50 times and the best result was
shown in the table.

Table 5 compiles the main results of these experiments: (i) L1 distance from a real to a synthetic sample, (ii) marginal F1-
score on testing of labels 0 and 1 when only one type (label) of synthetic data is used for training the nested Ml model and
(iii) F1-score on testing when only synthetic data from the two labels is used for training the nested ML model. The third
column of Table 5 shows the F1-score on testing when only real data is used to train the nested ML model and the distance
of two samples of real data for each label. These figures establish the real data level performance, to whichWGANs should try
to be as close as possible. Fourth and fifth columns present the F1-score and L1 distance for each label and the last column
shows the F1-score when only synthetic data from both labels is used for training the nested ML model.

The results in Table 5 show that when using WGAN synthetic data to train a nested classifier, the F1-score is significantly
higher if the Sminorv transform is used as the activation function in the last layer of the generator. This improvement
appears both when we use single-label data (columns 4 and and 5) and when we blend data from the two labels to generate
a fully synthetic dataset (column 6).

It is worth noting that in general, the quality of the synthetic data generated by WGANs with linear activation was very
poor, as the marginal F1-scores (columns 4 and 5) show values less than 0:5. Analysing in detail the corresponding confusion
matrices, we observed that the nested classifier did not achieve to distinguish label 0 from label 1 data and nearly all inputs
were classified as the same type (i.e., the stopped clock case). Regarding the improvement achieved by linear activation
WGANs when the nested classifier in the CTU-13 scenario is trained with synthetic data for both labels (column 6),we con-
jecture that it is mainly due to some statistical artifacts generated by combining two different data distributions for a a rel-
atively simple to solve classification problem. Conversely, the synthetic data generated by ST-based WGANs achieved F1-
score values closer to the ones obtained when the nested ML classifier was trained with real data and in particular, when
the UCI-Adult data set was considered, the obtained performance was the same.
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When L1 distances are analysed, it can be observed that, in general, ST-based WGANs obtain synthetic data distributions
(columns 4 and 5) that are closer to the real data than when linear activation was used. In some scenarios (e.g., UCI E-shop,
label 1), even when the linear activation-based WGAN can produce synthetic data that is close in distance to the real data,
this metric is not reflecting that some discrete features in the real data (e.g. categorical variables) are being generated as con-
tinuous variables by the vanilla WGAN. On the contrary, ST-based WGANs generate data that is equally distributed as the
real data (i.e., small distance to real data) but in sharp contrast with vanilla WGANs, only the discrete values that are present
in the real data are replicated in the synthetic data.
6. Conclusions

We propose a novel activation function to be used as output of the generator agent of a GAN. This activation function is
based on the Smirnov probabilistic transformation (ST) and is specifically designed to improve the quality of the generated
data. This transformation bends the shape of an input random variable and turns it into the distribution of a given output.

The proposed ST-based activation function provides a general approach that deals not only with the replication of cate-
gorical variables but with any type of data distribution (continuous or discrete). Moreover, this activation function is deriv-
able and therefore, it can be integrated in a neural network model without affecting to the gradient calculation done by the
backpropagation algorithm during the GAN training process. To convert a standard GAN into a ST-based GAN, we only need
to change the activation functions of the last layer in the generator by the corresponding ST functions that are precomputed
before starting the GAN training.

We empirically demonstrated that, in the experiments carried out, the synthetic data generated with our solution pre-
sents a high quality comparable to the original data. We used a rendered and a real data set to test the quality of the gen-
erated data by our ST-based WGANs with respect to vanilla WGANs and simple mean-based generators. In addition, we
tested our solution on three publicly available data sets obtaining similar results with respect to the quality of the synthetic
data obtained by IST-based WGAN when compared to the data obtained using vanilla WGANs.

We assessed data fidelity in two different ways: a) From a statistical perspective, using two distance functions (based on
the L1 distance and Jaccard index) that allow us to quantitatively and graphically compare the evolution of the quality of the
synthetic data generated during the GAN training; and b) from a practical viewpoint, testing the performance of a nested
machine learning classifier when the synthetic data completely substitute real data in the training of the classifier.

The experimental results evidence a clear outperformance of the GAN network tuned with ST-based activation function
with respect to a standard GAN. The quality of the generated data is so high that it can fully substitute real data for training a
nested classifier without a fall in the obtained performance. This result encourages the use of GANs to produce high-quality
synthetic data that are applicable in scenarios in which data privacy must be guaranteed.

Due to the ill-convergence of the GAN training, we introduced a novel approach based on the observed performance of a
nested ML task that uses the synthetic data produced by the generator at each epoch. Future work should investigate new
distances that can (i) guide the convergence of the GAN during training toward high-fidelity data generation and (ii) measure
data quality not only from a statistical perspective, but also considering to what extent synthetic data can completely replace
real data in different tasks (e.g., to train ML models). Using these distances, efficient stopping criteria for GAN training should
also be investigated.

It is worth mentioning that, even though in this paper we have applied a fully connected neural network architecture, the
solution introduced in this paper can be straightforwardly generalized to work with more complex architectures. The reason
is that the Smirnov transformation does not interact with the inner structure of the network, but only acts as a proxy that
‘bends’ the output to adapt it to a certain probability distribution. In particular, Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) may benefit from using this activation function at the output stage.

Finally, and interesting prospective work would be to analyze the impact of this activation function to other types of neu-
ral networks, like classical neural classifiers of Long-Short Term Memory (LSTM) networks, to create more complex neural
outputs, such as Poisson-like with compact support. Furthermore, besides the deep learning world, the proposed transfor-
mation can be used to transform data in other ML fields, like a new kernel method for Support Vector Machines (SVM) or
a projection method for a dimensionality reduction algorithm, giving rise to new and exciting solutions.
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