

## FFT BASED ALGORITHM FOR EFFICIENT GRAVITY FIELD CALCULATION: **COMPARISON WITH EXACT RESULTS FOR POLYHEDRAL SHAPE MODELS**

Manuel Pérez-Molina<sup>1,2</sup>, Adriano Campo-Bagatin<sup>1,2</sup>, Nair Trógolo<sup>1</sup>

<sup>1</sup>Instituto de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Spain. Contact e-mail: manuelpm@ua.es <sup>2</sup>Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Spain.

In the frame of the H2020 NEO-MAPP project [1,2], we propose a Fast Fourier Transform (FFT) [3] based algorithm for efficient computation of the gravity field created by a body with any arbitrary mass distribution. Our algorithm first considers a primary three-dimensional cartesian grid that contains the considered mass distribution and has uniform point spacings  $\Delta x$ ,  $\Delta y$ ,  $\Delta z$ . The density  $\rho(r)$  of the body is then discretized at each primary grid cell. Next, our algorithm considers a secondary three-dimensional cartesian grid that applies an arbitrary translation  $\vec{t}$  to the primary one and represents the space region where the gravity field will be computed. Finally, our algorithm computes efficiently the gravity vector  $\vec{g}(r)$  created by the (discretized) body within the primary grid at all secondary grid points.





## Universitat d'Alacant Universidad de Alicante