CR0OSS CURRENCY EUROPEAN

SWAPTION MODEL

A Cross Currency European Swaption is a European Swaption to enter into a swap to
exchange cash flows in two different currencies. The domestic and foreign swap leg cash
flows can be fixed or floating. The model outlined here is called a Multi-Currency
Terminal Swap Rate Model which generalizes a Terminal Swap Rate Model to
incorporate foreign exchange. The main idea behind a Terminal Swap Rate Model is to
assume that the discount factors at the option maturity can be written as a function of the
underlying swap rates. This assumption reduces the number of stochastic variables that

need to be modelled.

A Cross Currency European Swaption gives the holder the option to enter into a swap to
exchange cash flows in two different currencies. The domestic and foreign swap leg cash
flows can be fixed or floating. The cash flow generation can be referred to as
https://finpricing.com/lib/FiBondCoupon.html

The underlying cross-currency swap can be fixed-to-fixed, fixed-to-floating and floating-
to-floating types with possible floating spread and principal exchanges which may
happen at the beginning of the swap or at the end of the swap or at both the beginning
and the end. The floating index interest rate for the CAD is BA rate and the one for USD
is the LIBOR rate. In this swaption, the BA-LIBOR basis spread is also considered.

Even for a European cross-currency swaptions, a number of enforced assumptions have
to be introduced to reduce the complexity of the problem. Some of the assumptions are

purely technical and some of them are supported by historical observations. One of the


https://finpricing.com/lib/FiBondCoupon.html

technical assumptions is that P\VBPs for both currencies at a swaption maturity can be

approximated by the corresponding forward PVBPs.

Let m,n >1be integers and

0<td <t <..<t? 0<t, <t/ <..<t!

Let the domestic and foreign daycount fractions be defined, respectively, as
a® = DCF(t?,,t¢, domesticDaycountBass) , j=1..n , a® =(a’ ..,

]

a = DCF(tif_l,tif : foreignDaycountBasis) Ji=1L.m , o :(afl,...,afm)T

and f'(t), f, (t) be the domestic and foreign forward interest rates seen at time t for the

forward accrual periods of (t,,t¢),(t",.t" ), t<t®,, t<t',. We define df¢(t), df," (t)

J
as the domestic and foreign discount factors at t to the time points t}’ ,t" respectively.

Let the present values, at timeT , of the domestic and foreign fixed leg cash flows be

respectively defined as

X{(@b)=3 K, Ny -a -dfd(T)+a- N, -df¢ (T)-b- N, -dfg (T) (1a)
j=1
x;(a,b)s[in N, -o/df"(T)+a-N, -df ' (T)-b-N, -df, (T)j-FXT (1b)
i=1
where,
T<t k=d,f



N,,N, are the domestic and foreign notionals, respectively.
K, K are the domestic and foreign fixed rates, respectively.

FX; is the FX rate at time T expressed as units of domestic per unit of foreign currency.

a = 1if notional amounts are exchanged at the maturity of the swap, elsea =0

b =1 if notional amounts are exchanged at the start of the swap, else b =0

Let the present values, at timeT , of the domestic and foreign floating leg cash flows be

respectively defined as

Fo(ab)= > (x+ F1(T)) Ny -a? -df ¢ (T)+a-N, -df(T)-b-N, -dfd (T) (10)

(1d)
K, (a,b)z(i(y+ £,/ (T)-N, - -df, (T)+a-N, -df, (T)-b-N, -df,’ (T)j-FXT

where,

T <t k=d,f

X, y are the domestic and foreign floating rate spreads, respectively.

We define the domestic and foreign PVVBP factors, respectively, as.
P?=Y"af -df(t) P E;aif-dfif(t), t<ty,k=d,f )
i=1 i=

and the domestic and foreign vanilla swap rates, respectively, as.



d d f f
Std = dfo (t)l;jdfn (t) Stf = dfo (t)P_fdfm (t) ’ tﬁtg,k =d, f (3)
t t

With (2) and (3) we can re-express 1(a,b,c,d) at time T, assuming T =t =t as:

X¢(ab)=K,-Ny-P®+a-Ng -(1—(4 +5¢)-P®)-b-N, (4a)
X{(ab)=(K, N, -P +a-N, -(L-S; -P/)=b-N,)-FX; (4b)
Fo(ab)=(x+S%)-N,-P® +a-N, -(1— (4 +5¢)-P¢)-b-N, (4c)
F'(ab)=(y+SS )N, -R +a-N,-(L—S; -P')-b-N, ). FX; (4d)

Note: that we have also added a basis spread, A, , to the domestic swap rate.
Further simplifying we have

X{ (a,b)=cy -S7 + i, +ry where,c§ =-a-N, - P? (5a)
q:-a-Nd .PTd

re =Ny '(Kd P +(a_b))

X{(ab)=FX;-(c}-8f +r{)  wherec) =—a-N, - (5b)

rl =N, (K, -P +(a-h))

Fl(a,b)=c?-S¢ +g4, +r wherec! =N, -P'(1-a) (5¢)
q=-a-Ng- PTd

re =N, '(X’PTd +(a_b))



Ff(ab)=FX,-(c!-S; +r) where,c/ =N, -P'(1-a) (5d)

rFf = Nf '(Y'I:)Tf +(a_b))

We represent the present values, at time T, of a swap to exchange the domestic and

foreign leg cash flows as

V(T 5.x% x")= g (X{(ab)- X/ (a.b)) (62)
V(T, 5, X9, F")=8-(X¢(ab)-F'(ab)) (6b)
V(T 8,F¢ X" )=8-(F (ab)- X, (a,b)) (6¢)
V(T 8,F F')=5-(F(ab)-F (ab)) (6d)

where, g =1 indicates a pay-foreign swap and £ = -1 indicates a receive-foreign swap.

Let 0<T =t =t,, then the payoff to the option at maturity can be expressed as:

M sxe x ) =[p-(x2(ab)- X @b)] (72)
Mg x FO) =g (x¢ (ab)-F (ab)] (7b)
VT s EL X = (8- (F(ab)- X/ (a,b))] (7c)
VT g F Ll =8 (FS (ab)-F (b)) (7d)

We assume the following dynamics

dinS/ = (u, —°4)dt+ o, -dw, ©)
dInFX, = (Ug, —74)dt+ o,y - dW, 9)

di=A1+0o, -dW*



where,

dw,! - dw* = p, dt
i=d,f

j,k=d, f,FX, 4

(10)

04,0¢,08,0,;,Uq,U,Ug, are deterministic functions of time.

Wtk k=d, f,M, A isa4-dimensional Brownian motion.

Given the above dynamics the variables InS{,InS;,In FX,, A, are joint-normally

distributed.
In S
NS |~ N(m,z) (11)
In FX;
A
where,
E[Ins!] InS2 +(T —t)- (- %5 (T 1)
Q f o f —f 2 (12)
m=| EfIns/ | |=| nS +(T-t)- & (Tt
el FX, ]| | InFX, +(T-1)-(- 5™ (T,t))
E?[ZT] A +(T —t)- —%Ei(T,t)z)
where,

5i(T,t)=\/(Ti_tj-f(aj)z dr, (13)

i=d,f,FX, 4



(14)
Otrx Otg O¢ Ot
O,rx O,d O, 1 O-j
where,
o? =(T-1)-(&'(T.1)f
i=d, f,FX, A
o, =p,; T-t)5'(T1t)c'(Tt1)
i,j=d, f FX,A

S, S FX, are forward values as seen from time t.

We calulate the time-t value of the options given in 7(a,b,c,d), where 0 <t <T , as

Vs —dfd @) E - (x¢ x|

=df (1) E, ﬂﬁ-(cg R A O G (AR ))]] (15a)

VO = dté ) [B-(x¢ - F ] ]

=df (1) E, ﬂﬁ-(cg S8 g +rf —FX, (e S 4 ))]] (15b)

VX = diS (1) -E, ﬂﬁ-(FT” — X )]]

= df (1) E, ﬂﬁ-(cg S8 q A +rS —FX, -(c) S 4 ))]] (15¢)



VEE = dfS (1), [[,B-(FTd —F, )]]

— a0 -E, B2 S0 wa-d +rf —FX, (el 8!+ )] ]

(15d)

Consider the following general form of the conditional expectation in 15(a,b,c,d)

ENTY]=E [[Cd SS9 g +F X, -6, +rf)]*]

TT((‘:" S8 hq Ay T —FX, €SS 4T
00

Ay ot (FX7,8¢,8] 27 )-dFX dsfds{ d2

fox. st (FXT ,S¢.S! ,27) is the corresponding density function.

To solve (23) we condition first on S*,S."and A, which yields

E, B/(TY]:TTT[T(Ed SYrq+T? —FX, '(Cf Sy +F! ))+ ' foTlsT“,STf,AT(

(16)

17)

X, )-dFX, }



o (87,842 )-dsds! dz,

(18)
e by ] it ) o608 ) 1 P D 0P, |
-00 0L 0
' fsT si (ST Sy J’r) ds;ds; da (19)
where,
c(S/)=c’ S} +1"
K(S{, A )=C" S +q- A, +T°
fFXT|STd,sTf,/1T (FXT ) foosia (ST St ,27) are the corresponding conditional and trivariate
densities.

Let

BS” S‘gaSTlﬂ’T Ej ST’X’T C(STf)FXT)+.fFX St .S¢ (
0

X )-dFX, (20)

The BS inBS (ST" 'St ,ﬂ,r) stands for Black-Scholes since depending on the signs of
f
T

c(S; )and K(S{‘ ,AT), BS*(S;j S ,AT)reduces to the Black-Scholes equation

The evaluation of BS*(STd S} ,/17) is as follows

Dropping the arguments of the functions c(S,)and K(S{‘ ,AT) we write

payoff, = (K —cFX; )

(21)



Case 1: if c <0Then payoff, = |c|-[—5+ FXTj
c

Case 1a: if K <0 then BS"(S¢,S,, 4, )=|c|x[Black — Scholes(call)]

Case 1b: if K >0then BS*(SE,STf ,/17)=|c|- E[FX;1+[K]|
. K *
Case 2: if c>0Then payoff, = c-(—— FXTJ
C

Case 2a: if K >0then BS"(S¢,S/, 4 )=cx[Black — Scholes( put)]
Case 2b: if K <Othen BS*(S¢,S/, 4 )=0

Case 3: if ¢ =0then payoff, =(K)"

Case 3a: if K >0then BS'(S¢,S,, 4, )=K
Case 3b: if K <0 BS™(S¢,S,,4,)=0

where,
Black — Scholes(call):exp(M d +%Vd ].@[M d H:/i/_dln(l%)J%,@[M i \/Vlid(l%)}

B|ack—3cho|es(put)=5@[—(W_—"‘(K/c)n_e)@(,w 4 +1Vdj.®[_('\4 A —M%)D

c

M¢=E, [InFX; |InS¢,Ins! A |

A zvaq[ln FX, |InST°',InSTf,/1T]

10



Refer to the Appendix for details on calculating conditional moments of a multivariate

normal distribution.

With BS*(S;j ST A )well defined we now need to solve

+00+00+00

ENV )= [[[BS (58,81 4)- fu s, (53,51 4r)-dSids/ d, 22)

-0 0 0

Let

y, =Ins; y, =Ins{ Ys =4

(23a,b,c)
Then
ENM = [ [[BS @00y 00(v,),¥5)- fy.. . (V1. V2. ¥s) - dyscly s (24)

—00—00—00

fy voy, (V11 Y2, Y3) is the multivariate normal density function.

We now proceed by conditioning on y, and y,to integrate with respect to y,. Then we
condition on y,to integrate with respect to y, . Then we integrate with respect to y,.

This allows us to write

+00+00+00

e )= ] [BS @p(y.).e0(y,).v:)

—00—00—00

. 1:y1|y2,y3 (yl) : fy2|y3 (yZ) : fy3 (y3) : dyldyZdy (25)

11



We define the following

Uyl =E[y, | Y, Ys] Uy2 =E[Y,|Ys] u, = E.Ly.]
(26a,b,c)

Eyzl =var[y, | Y,,Ys] Eyzz =varly, | y,] Oy, = var,[y,]
(27a,b,c)

where, the bars on the variables above indicate that they are conditional moments.

We can now write

+00+00+00

vyl [ [es" om0 ) ool 25

y2

—00—00—00

2

1 em(_ (Y3—Uy3)

2
27[0—y3 20'y3

j : dyldyzdys (28)

We make the following change of variables

Y1 =20, +Uy, Y, =2,0,, +U, Y3 =250, +Uy,
(29a,b,c)

zl=\/§-x1 22=\/§-x2 23=\/§-x3
(30a,b,c)

(29a,b,c) & (30a,b,c) imply

12



y, = \/Exlayi +0, y, = \/EXZEyZZ +0, Y, = \/§x3ay3 +u,
(31a,b,c)

Which allows us to express

E, I:\/(r)+]: TTTBS*(em(\Exﬁyl _ijl ) eXp(‘EXZEyz +Uy2 ), eXp(\EX3o-y3 Ty ))

—00—00—00

% exp(=x?)-exp(— x2)-exp (= x2)- dx,dx, dx, (32)
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