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Abstract: Network Digital Twin (NDT) is a new technology that builds on the concept of Digital Twins (DT) to create a 
virtual representation of the physical objects of a telecommunications network. NDT bridges physical and virtual spaces to 
enable coordination and synchronization of physical parts while eliminating the need to directly interact with them. There 
is broad consensus that Artificial Intelligence (AI) and Machine Learning (ML) are among the key enablers to this technol-
ogy. In this work, we present B5GEMINI, which is an NDT for 5G and beyond networks that makes an extensive use of AI 
and ML. First, we present the infrastructural and architectural components that support B5GEMINI. Next, we explore four 
paradigmatic applications where AI/ML can leverage B5GEMINI for building new AI-powered applications. In addition, 
we identify the main components of the AI ecosystem of B5GEMINI, outlining emerging research trends and identifying 
the open challenges that must be solved along the way. Finally, we present two relevant use cases in the application of 
NDTs with an extensive use of ML. The first use case lays in the cybersecurity domain and proposes the use of B5GEMINI 
to facilitate the design of ML-based attack detectors and the second addresses the design of energy efficient ML components 
and introduces the modular development of NDTs adopting the Digital Map concept as a novelty. 
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1. Introduction 
The concept and development of the Digital Twin (DT) was first formulated by Grieves and Vickers [1]. 

According to that original definition, a DT is a virtual model that resembles the characteristics and behavior of 
a physical asset or system, modeling its components and properties, as well as the interactions of the entity with 
the environment. A DT can be used to monitor and manage a physical asset or system in real-time or use it to 
recreate its behavior in predefined virtual scenarios in order to define a better industrial process or detect prob-
lems before the real implementation. 

The application of the DT concept in the field of communication networks has also recently gained atten-
tion in both the research community and the industrial sector, leading to the emergence of the Network Digital 
Twin (NDT) concept. An NDT is a virtual representation of a telecommunications network that accurately mod-
els the devices, communication links, operating environment, and applications running on the network. NDTs 
are a new way of designing and managing networks, in which multiple physical assets and their corresponding 
virtual twins are connected together to share information and collaborate to complete a set of tasks [2]. In NDTs, 
network operators in coordination with service providers and telecommunication equipment suppliers can val-
idate new functionalities prior to their incorporation into the network or emulate existing situations in the net-
work and analyze the effect of applying different policies in the network. 

By leveraging network data, NDTs can be used to build a virtual representation of a network. The data 
should replicate the expected behavior of the network; for this reason, the most common source are live feeds 
from the real network, although data collected from testbeds or simulations that reflect the intended behavior 
can also be used. 

By replicating different environments in a lab and running multiple scenarios, NDTs offer a cost-effective 
way to assess performance, predict the impact of environmental changes (such as cyber threats), and optimize 
network processes and decision making accordingly. 

Although NDTs are still in their nascent stage, it is envisioned that they will have a pervasive impact on 
the telecommunication industry, and they are pictured to be a keystone technology for the fourth industrial 
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revolution. The pursue of this interest has led to an accelerated research effort in the last years, mainly because 
they can be used to thoroughly dissect the response of a network under different conditions and test new net-
working designs without compromising the safety of the physical network. Additionally, by creating an NDT, 
the real time optimization of its corresponding physical equivalent is also possible. Furthermore, NDTs can 
help secure traditional networks by enabling fast identification and isolation of network failures to quickly 
respond to security threats. 

An NDT can be interpreted as a black-box model of a network that can be parameterized in multiple ways 
to recreate different network scenarios (e.g., different topologies, traffic volume, dynamic placement policies); 
by adjusting the parameter values, it is possible to observe the resulting changes in the NDT in real time and 
evaluate the situation using different metrics defined according to the operator’s needs. More interestingly, the 
above is possible without disrupting the real network or incurring the construction of costly test environments. 

In search of mechanisms to improve network intelligence, the use of artificial intelligence (AI) for the cre-
ation and operation of NDTs has begun to be explored in recent years. In fact, there is broad consensus that AI 
and ML are among the key enablers of the NDT concept. AI methods can be used to improve the accuracy of 
NDT simulations and to enable new services that ultimately improve user experience, such as self-healing net-
works, autonomous network management and security monitoring. In addition, AI methods can also be used 
to automatically learn and adapt to changes in real assets. This can help ensure that nondestructive testing 
remains accurate over time. 

Communication networks often work with large amounts of heterogeneous data that differ greatly in for-
mat and content. For this reason, creating a model of the network that accurately represents its behavior is a 
highly challenging task. Fortunately, Machine Learning (ML) techniques can help to extract insight from the 
real network data and construct the corresponding NDT of the network automatically [3]. Furthermore, the 
increasing excitement generated by the NDT concept in the last few years has raised interest in the NMRG IETF 
standardization group. The NMRG group has recently published a draft that proposes a reference framework 
for NDTs and their possible applications [4]. Among these applications, ML model training and validation is 
explicitly mentioned. It should also be emphasized that one of the main concepts in this draft is the recommen-
dation to have an exchange of information between the real physical network and the DT to obtain maximum 
benefit. 

In order to achieve the goals proposed by the IETF draft, in this work, we make the case of ML methods as 
a key enabler for the construction of an NDT that models complex 5G and beyond networks. To that end, we 
present in this work B5GEMINI, a proposal for an AI-based NDT architecture, whose main objective is to deploy 
a 5G/6G NDT support platform capable of building a specific network configuration and generating the neces-
sary traffic to be subsequently used for different analysis activities focused on advanced scenarios, such as 
cybersecurity and network management, which range from resource optimization to security enforcement. It 
should be noted that B5GEMINI is an acronym for “Beyond 5G GEMINI”, where the term “gemini” corre-
sponds to the Latin word for “twins”. Due to the inherent complexity of 5G/6G models, B5GEMINI aims to 
make extensive use of AI to provide them with anticipatory and self-learning capabilities.  

B5GEMINI addresses several complementary objectives: the development of a 5G/6G NDT infrastructure 
and the design and integration of advanced AI components and use cases in the NDT for realistic experimen-
tation. It is worth noting that current NDT proposals tend to apply AI to add intelligence in different ways to 
network orchestration processes. B5GEMINI goes one step beyond and also focuses on the use of NDT for 
training and validating AI/ML components in a controlled scenario when potentially harmful situations could 
occur if trained or tested in a real network. B5GEMINI will provide a virtualized representation of the 5G/6G 
network meant to analyze, diagnose, emulate, and control the physical network. The virtual system will start 
with a simple form of the real system and, using AI self-learning capabilities and data updating, evolve gradu-
ally to a more realistic image. With the support of AI, complex data sources and telemetry (e.g., IoT sensors, 
network data) will be fed into sophisticated data interpretation processes to facilitate the replica of 5G/6G net-
work components. In addition, B5GEMINI will allow for the deploying of complex network scenarios in a con-
trolled way, launching clients and servers and collecting the traffic generated by them even if they interact with 
clients and servers outside the NDTs, typically on the wider Internet. 

B5GEMINI will enable an extensive use of advanced AI mechanisms to realize several valuable AI appli-
cations, such as (i) the training and testing of ML components to deploy smart applications such as cybersecu-
rity or network management in real-time environments; (ii) the development of intelligent support to manage-
ment, orchestration, and dynamic control of the network components (e.g., Virtual Network Functions—VNFs, 
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Network Services—NS and Slices); (iii) the use of the NDT as a platform to perform distributed training and 
inference processes for ML and DL models using on-demand GPU virtualization; (iv) ML as a service to deploy 
off-the-shelf pre-trained ML models in the NDT allocated resources to perform ML tasks with a high degree of 
efficiency, avoiding costly training and testing tasks; (v) the use of the NDT for network deployment planning. 
In addition, B5GEMINI will allow one to realize several interesting use cases, such as (i) the design of ML com-
ponents for network cybersecurity capabilities and (ii) the leverage NDT as a validation environment for energy 
consumption optimization of the ML/DL components deployed in the real network. It is worth noting that other 
types of applications, such as cyber-ranges or educational applications in general, could greatly benefit from 
the use of a realistic and controlled 5G/6G network environment such as B5GEMINI, even if only the virtual 
twin is used. 

Finally, and regarding that the time and cost of planning, designing, and implementing a complete NDT 
system from scratch can be unaffordable, B5GEMINI includes in its design a modular building approach based 
on the Digital Map concept, which is a novel concept that has appeared in recent IETF discussions as a possible 
way to specifically solve this problem. 

The remainder of this work is organized as follows: Section 2 reviews the literature on the application of 
AI methods in NDTs and presents the state-of-the-art in the field. Section 3 describes the B5GEMINI architec-
ture, providing details of the underlaying infrastructure and the integration of the 5G core capabilities in it. 
Section 4 details several interesting applications that B5GEMINI can address, and Section 5 presents the main 
B5GEMINI AI components jointly with the open challenges associated with their deployment. Section 6 pre-
sents two notable use cases related to cyber-security and energy efficiency. In addition, the second use case 
depicts the application of the novel concept of Digital Maps for a modular NDT construction. Finally, Section 7 
summarizes the main findings of this work. 

2. Related Work 
The concept of DT as a virtual copy associated with a physical entity was introduced in 2003 by Michael 

Grieves at a Product Lifecycle Management (PLM) conference [5]. NASA was an early adopter of the concept, 
starting to use DTs to monitor spacecraft health since 2010. However, the term “digital twin” was first coined 
in 2011 by John Vickers. In practical terms, the first DT was developed by Tuegel et al. [6] to predict the struc-
tural integrity of next-generation fighter aircrafts over their lifetime. The concept began gaining traction in 2015 
due to the falling costs of sensors, processors and data storage, and the increasing availability of broadband 
wireless connectivity, leading to the so-called “IoT revolution” [7]. 

The exchange of information between a physical object and its DT is a crucial element for the creation of a 
successful DT: the virtual twin must quickly adapt to changes in its physical counterpart, just as the physical 
object must promptly respond to interventions taking place in the virtual twin. This transfer of information 
from the physical environment to its virtual twin is made possible using communication networks that connect 
the two parties. NDT result from the virtualization of the communications infrastructure of a real network, 
allowing the interconnection of DTs that are part of a complete system as well as supporting the bidirectional 
data flow with the real network. Thanks to this two-way communication, NDT is expected to enable a new 
wave of AI-powered applications that can more accurately predict outcomes and make better decisions to sup-
port network operators in the deployment and operation procedures involved in network management. In this 
section, we review the most interesting applications that we discovered in our research.  

At first, we observed considerable research effort leveraging this technology towards the fulfillment of the 
expectations placed on 5G and beyond communications. The potential of edge and cloud computing platforms 
to manage DT-related data should be considered. In particular, edge computing allows for the leveraging of 
computing capabilities of the distributed nodes at the edge of the network, allowing one to reduce the band-
width and dependency with the cloud gateway [8]. There is a large body of work focused on providing solu-
tions to further minimize network and data processing latency between end users and edge servers to facilitate 
the adoption of intelligence-driven applications. In our research, we have observed a particular interest in look-
ing for the most optimal ways to place and migrate DT in a network that combines these two paradigms [9], 
i.e., an NDT optimization task in which ML and DL techniques emerge as the most attractive solution. They 
propose a new approach based on DRL to find the optimal placement for DTs in order to reduce system latency. 
This algorithm takes into account both the placement strategy and the mobility of users. In addition, they sug-
gest using transfer learning to migrate DTs to new users. 
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On the same line, Lu et al. proposed to combine DT with edge computing to efficiently connect IoT devices 
with CPS in an Industrial IoT scenario (IIoT) [9–11]. More specifically, they propose to model DTs of the physical 
devices present in the user layer and place them in the edge to allow their operation from the CPS to achieve a 
better optimization of the manufacturing process. For this purpose, they propose an asynchronous federated 
learning scheme to build the DT of those devices using ML techniques. In federated learning, different devices 
in a network collaborate to train a shared model. This can be conducted by dividing the dataset among the 
devices, and each device trains its own model. These individual models can then be merged to create a single, 
more powerful model. Federated learning allows data collected by different entities to be exploited, eliminating 
the need for a large, centralized ML infrastructure. This can be important for organizations that need to main-
tain the confidentiality of their data or have limited resources. Leveraging this concept, Lu et al. build their 
architecture based on this scheme to alleviate privacy concerns in NDT, while reducing data transfer overhead. 

To minimize energy consumption and reduce data transfers in a Mobile Edge Computing (MEC) scenario, 
Dong et al. propose an optimization of resource allocation and data offloading probabilities to the cloud, as well 
as an efficient mapping of the association between users and edge devices, by approximating these strategies 
using DL models in a supervised manner [12]. For this purpose, an NDT of the communication network is 
constructed and deployed on a central server, different configurations are evaluated in the NDT, and the best 
ones are used to train a DNN model in an off-line fashion. 

Groshev et al. describes the key technologies that will support the deployment and operation of an NDT 
in an industrial setting, including edge and fog computing, and a 5G network [13]. Additionally, they determine 
the role of AI methods to address some of the challenges posed in this scenario. More interestingly, they identify 
AI as a tool to optimally allocate and automatically scale computing resources for an NDT to satisfy key per-
formance indicators (KPIs) such as latency and security requirements. In addition, they conduct an experi-
mental evaluation as a proof-of-concept to predict the movement of a robotic arm using data collected from a 
DT to train a variety of ML models that are subsequently compared. 

A vehicular network (VN) is a collection of nodes that are connected by links. Nodes can be cars, trucks, 
buses, or other vehicles. The links can be streets, highways, or other transportation infrastructure. A VN can be 
used to model the movement of vehicles in a city. A software-defined vehicular network (SDVN) is a VN that 
uses the concept of software-defined networking (SDN) to allow network administrators to manage network 
traffic through software defined rules instead of hardware configurations [14]. This enables large networks to 
be managed more efficiently and to respond quickly to changing network conditions. Based on this concept, 
Zhao et al. propose to create an NDT of a SDVN as a simulation environment to evaluate the quality and relia-
bility of ML and DL models before applying them in the physical network [15]. This simulations environment, 
which they call the “Intelligent Digital Twin” (IDT), allows one to assess whether the models remain robust to 
the intrinsic dynamic changes of a VN and retrains the models if needed. 

A similar use case is presented in [3]. In this paper, the authors identify 5G as a key technology to enable 
efficient inter-vehicle communication to satisfy the necessary low latency and high throughput requirements 
that are critical requirements to achieve autonomous driving. In this particular context, with the objective of 
improving road safety and traffic management, the Spirent team proposes to achieve this goal by creating a 
Digital Twin of a 5G SDVN to emulate all aspects of a 5G network and its interactions with vehicles under 
different realistic scenarios (e.g., congestion and vehicle density) in a controlled manner [16]. In this approach, 
AI methods can be introduced to understand and evaluate vehicle behavior, optimize vehicle-to-vehicle com-
munication, and enable end-to-end validation of the entire 5G SDVN. In this way, the built NDT serves as a 
testbed to verify vehicle performance prior to deployment in a real-world environment. 

Similar to the above presented case, in 2016, General Electric filed a US patent for a wind farm management 
solution that leverages the concept of NDT to facilitate the operations and test diverse strategies in a simulation 
environment powered by AI [17]. The proposal is composed of two communication networks, a local network 
that connects individual wind turbines with the control system, and a cloud-based communication network 
that allows operators to configure and operate the wind farm remotely via the Internet. The proposed solution 
includes ML models to analyze the data generated by the DT to recommend actions and simulate them on the 
provided graphical user interface (GUI) for continuous feedback. ML techniques are trained on real data and 
integrated in the NDT. The developed models are then used to assist operators in the management of the wind 
turbines through the GUI, offering automated suggestions and allowing one to simulate the selected strategies 
in the NDT to quickly obtain feedback. 
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From a more creative point of view, there have been several interesting proposals that attempt to determine 
other roles that ML can play within NDT. One of those interesting use cases of ML in the operation of NDT is 
presented in [2]. As noted by the authors, the behavior of the virtual twin is expected not to disturb the physical 
space. To that end, ML techniques could be used to validate the next actions of the real system using data 
generated from the NDT model to prevent unwanted actions in the physical environment. In this scenario, 
which is also envisaged in [3,18], ML would serve as an anomaly detection tool for network operators, enabling 
them to quickly anticipate abnormal situations and mitigate further damage. 

Nguyen et al. anticipated 5G-based NDT technology as a city management service that can provide situa-
tional awareness and decision-making for city managers and first responders [3]. In particular, they present the 
case for NDT as a ML-powered tool for the prediction of infectious disease outbreaks. More specifically, they 
propose to create an NDT that represents the city infrastructure and the overlaying 5G network. With the in-
creased bandwidth and low latency that 5G networks provide, it will be possible to collect and analyze data 
from a large number of sensors in real time to track people movement, activities and interactions. Combining 
this information with past and current epidemiological data and using a combination of ML and conventional 
data analytic processes, it is possible to predict the most likely outbreak scenarios to occur. In this way, public 
health officials and other related professionals can be better prepared to develop strategies to respond to these 
situations more effectively. Extending this idea, the combination of 5G-based DT and ML can be applied to the 
development of more efficient and ambitious smart city applications [19], such as intelligent transportation, 
smart energy, and intelligent security. 

We have also identified some works where DT-based systems are developed with the help of ML tech-
niques [20,21]. ML and DL methods are also expected to play an important role in NDT model building, as also 
anticipated in [18], but, to this day, there is a need for further systematic research in this area to find the most 
suitable methods and models for different types of data and to determine how these models will interoperate 
with the rest of the elements and contribute to the NDT. 

In summary, there is a lack of studies on the design and development of NDT and, in particular, on the 
integration of ML and DL methods in such systems. The research proposed in this article aims to fill this gap 
and contribute to the advancement of this area by providing B5GEMINI, an architecture for NDTs that consid-
ers AI components by design. Furthermore, all the articles we have collected for this research approach the 
design and construction of NDTs from a holistic perspective, aiming to implement all their components and 
interconnections in a complete development cycle to achieve the desired functionality, which requires extensive 
and careful planning and implies high risk in the development process to achieve a successful and sustainable 
outcome. As a novelty, we introduce the Digital Map (DMap) concept in B5GEMINI, justified on the need to 
build a complete NDT in a modular way and thus avoid the cost of planning, designing, and implementing a 
complete NDT system from scratch. Furthermore, B5GEMINI proposes as novelty the NDT-ready label to iden-
tify physical networks and NDTs that are fully interoperable by means of a standardized communication chan-
nel. In addition, we also provide fundamental AI solutions that can be integrated into an NDT and identify key 
AI components that can be included in B5GEMINI architecture to provide an NDT with intelligent capabilities 
that facilitate network operations or enable new use cases. Finally, two interesting use cases are proposed to 
show the adequacy of the B5GEMINI proposal: The design of a ML-based cryptomining detector for cyber-
security solutions and the optimization of AI/ML components reduces its energy consumption both in training 
and inference phases. 

3. B5GEMINI Network Digital Twin 
In this section, we first describe Mouseworld Lab, the origin of B5GEMINI, as it contains some of the core 

components of the DTN architecture that form the foundation of B5GEMINI. Then, we explain the infrastruc-
ture of B5GEMINI and all its related components, with special emphasis on the integration of the 5G Core in 
B5GEMINI. Last, we introduce a novel approach for building modular NDT based on the Digital Map (DMap) 
concept. 

3.1. Mouseworld 
One of the corner stones of B5GEMINI is the Mouseworld Lab [22], a controlled environment set up in the 

Telefónica I+D premises for running experiments that allow deploying complex network scenarios in a con-
trolled way and generate realistic labeled data sets for training supervised ML components and validate super-
vised and unsupervised solutions. The Mouseworld Lab provides a way to launch clients and servers, and 
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collects the traffic generated by them even if they interact with clients and servers outside the Mouseworld Lab 
on the Internet; finally, it adds labels to this traffic without operator intervention. This environment is deployed 
on an NFV-enabled architecture, under the management of an orchestrator (NFVO), extending an ETSI NFV 
MANO stack as necessary (Figure 1). 

AI and ML were included by design in the Mouseworld Lab to allow the deployment of realistic network 
management and cybersecurity use cases where ML could be seamlessly trained, tested, and deployed. There-
fore, the Machine Learning Orchestration is part of the Digital Twin Entity Management and is composed of a 
Topology Generator and an Experiment Launcher. The first uses predefined templates, interacts with OSM 
(ETSI NFV SOL-005 interface) and OpenStack (Glance Image service API) provisioning NSD (Network Service 
Descriptors) and VNFD (VNF descriptors) compatible with OSM, detailing the network functions, the links, 
and their day-1 configurations. The Experiment Launcher makes day-2 configurations and triggers the emula-
tions functions for dataset generation, and it is described with OSM’s ProxyCharms or with dedicated scripts. 
The current version uses a configuration file to define the statistical distribution of the traffic, the number of 
intervals in which the experiment is divided and the duration, and the type of service that it is emulating. 
Currently, there are defined three scenarios: traffic classification, crypto mining malware detection, and DoH 
attacks.  

 
Figure 1. Mouseworld Lab. 

3.2. Introduction to Network Digital Twinning 
In the digital twinning context, two concepts with differentiated characteristics are established [2]: 

1. Digital Twin (DT): Treated as an intelligent system in charge of modeling all the characteristics of a specific 
physical component. In the case of the DT, the communication performs a one-to-one mapping between 
the physical twin and its DT, allowing bidirectional feedback between both. From this point of view, using 
a bidirectional data flow between both worlds, the DT is able to continuously adapt to operational changes 
based on real-time data and information coming from the physical twin, being able, among other things, 
to monitor and even predict the future state of the physical twin. In addition, the DT can also be manipu-
lated, and changes made to it can be automatically transferred to the physical twin. 

2. NDT (Network Digital Twin): Treated as an intelligent system composed of multiple individual DT sys-
tems that are able to model complex interactions. The DTs are interconnected through an abstraction layer, 
which is in charge of the data flow between the different DTs. The abstraction layer built on top of the 
actual network functions as an interface capable of extracting and translating data from one DT to another, 
creating a communication channel between them, and enabling the integration and interoperability of each 
DT system. As such, the NDT also comprises the infrastructure of the network and the data flow between 
the different DT systems. In this case, the data flow follows a many-to-many method, interconnecting all 
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DTs with each other within the NDT. This facilitates the exchange of information between all the DTs 
included in the NDT, achieving more accurate detections of the network state, enriching the real-time anal-
ysis and improving decision making about the physical twins. 

3.3. B5GEMINI Infrastructure 
With the aim to design a modular and scalable system for the creation of NDT applied to 5G networks that 

attempts to model each of the elements of the 5G networks in the form of a DT, we propose B5GEMINI as an 
evolution of Mouseworld, establishing a complete NDT model capable of accurately emulating the behavior of 
a 5G network in certain use cases, which will make use of the NDT to be able to apply the task-based on AI. 
One of the crucial elements that differentiates B5GEMINI from Mouseworld is the two-way communication 
capability with the real network, which allows real-time synchronization between the real and virtual networks. 
That is, the configuration of the real network can be replicated in the virtual twin in real-time and the optimi-
zations applied to the virtual twin can be seamlessly deployed in the real network. Figure 2 shows the concep-
tual design of this complete system. Next, each of the modules that make up the entire system will be reviewed. 

 
Figure 2. B5GEMINI architecture diagram. 

3.3.1. System Input for DT Generation 
In the phase of creation of the different DTs that will make up the NDT, two general system inputs are 

stablished: automatic entry and manual entry.  
1. Automatic Entry: This is defined with the aim of obtaining an exact replica of the physical object to be 

modeled, the development of smart agents that can be deployed in the target network, which are in charge 
of collecting all the information necessary for the DT generation (topological information, hardware and 
software information, states, etc.). This information is introduced to the deployment module in the JSON 
or XML format.  

2. Manual Input: In the case of not having sufficient permissions to be able to deploy the intelligent agents 
described in the previous point, an option for loading these files manually by the operators is enabled, 
avoiding limiting the emulation capacity of the system. 

3.3.2. Deployment Module 
Once the initial phase of collecting information for the generation of the DTs is finished, the implementa-

tion module is used, which, through the Terraform IaaS (Infrastructure as a Service) [23] tool, will oversee the 
implementation of the virtual infrastructure that will host the DTs. This module allows, through different 
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providers, one to deploy the infrastructure in any available cloud (AWS, Google Cloud, Azure, IBM, etc.) or in 
its own virtualization infrastructures, using managers such as vSphere for VCenter (VMWare). Figure 3 shows 
an example of virtual machine provisioning associated with the 5G AMF element through the Terraform soft-
ware using the vSphere provider. The main advantage of this technology is the abstraction and non-dependence 
on specific API for each cloud, since once the Terraform deployment file is generated, it is easily portable to any 
other cloud that offers a provider compatible with it. Added to the advantage of deployment over any type of 
infrastructure, is the resource management offered by Terraform, allowing the creation of multiple NDT de-
ployments, isolated from each other, as well as their subsequent elimination, both at the full deployment level 
and for specific resources within a deployment. Finally, the deployment module makes use of a wide library of 
virtual machines and Docker [24] containers, which will serve as the basis for the provisioning and configura-
tion of the different DTs to be implemented using technologies such as Kubernetes [25], Docker Swarm [26] or 
Docker Compose [27].  

 
Figure 3. Example of deployment module for a specific resource via Terraform. 

The NFs of the 5G core network are implemented using Docker containers, being able to deploy all the 
NFs in the same instance or deploy the NFs in a distributed manner, using the Docker bridge network for 
internal communications between each module or defining the Docker networks’ overlay, respectively. Addi-
tionally, in the deployment phase, the docker interfaces are duplicated, allowing the capture of all traffic (sig-
naling and user traffic) that is shared outside and inside the core network. 
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Figure 4 shows the integration of the NDT 5G Core at Mouseworld Lab. In this case, Mouseworld Lab is 
used to apply real context to the DT 5G Core, since it is made up of several virtual devices that act as clients or 
servers for different types of traffic (streaming video, web pages, etc.). It also has an orchestrator that communi-
cates with all DT devices within the NDT through a management network and the ability to monitor and cap-
ture traffic for analysis, statistics, and data set generation. It additionally allows the connection of the NDT to 
remote services through the Internet. 

 
Figure 4. 5G core infrastructure and traffic injection applied to B5GEMINI. 

B5GEMINI devices added to existing infrastructure are marked in red in Figure 4. As can be observed in 
the figure, the 5G core infrastructure has been integrated into a single instance, using Docker containers, as 
explained above. However, B5GEMINI allows one to establish an NDT with the different distributed 5G Core 
NFVs. To allow communication between the different DTs, virtual links are established to communicate the 
required containers (specifically the AMF and UPF) with other devices in the environment. UPF is connected 
to an internal network that allows user traffic to reach local or remote servers via the Internet. 

On the other hand, the traffic injection module is implemented as a virtual element within the NDT, which 
can communicate with the AMF through signaling traffic and can receive traffic from client users in the Mouse-
world Lab environment. The traffic is piped and sent over the link connected to the UPF container in the dock-
erized 5G core. 

3.3.3. Digital Twin Configuration and Provisioning Module 
After completing the infrastructure deployment phase, the configuration and provisioning module is re-

sponsible, based on the information collected by the smart agents, for modeling each of the DT and configuring 
the necessary interconnections to fully simulate the target 5G network. The 5G infrastructure used in the Ma-
chine Learning Lab is based on the virtualization of the 5G core network. The network functions (NF) that make 
up the core interact in a virtual environment within the NDT B5GEMINI infrastructure. The implementation of 
NFs, used in the NDT B5GEMINI, are based on the free5GC project [28]. This project offers an open implemen-
tation of the main NFs needed for core operation. The implemented NFs are: 
• Access and Mobility Function (AMF): Implements the control plane function in the core network, including 

registration, reachability, connection, and mobility management. It uses the NGAP protocol for signaling 
communication with the RAN nodes. 

• Authentication Server Function (AUSF): Provides authentication support for 5G services, handling identi-
fiers, managing authentication, and maintaining session states. 

• Non-3GPP Interworking Function (N3IWF): Adds the functionality required for interworking between 
untrusted non-3GPP networks and the core. 

5G Core 
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• Network Repository Function (NRF): Is a centralized repository for the service discovery broker for NFs. 
• Network Slice Selection Function (NSSF): Used by AMF to select network slice instances for particular 

services.  
• Policy Control Function (PCF): In charge of controlling QoS and control plane policy rules (slicing, roam-

ing, mobility). It also provides the management of subscribers, applications, and network resources. 
• Session Management Function (SMF): Responsible for the interaction with the data plane and managing 

Protocol Data Unit (PDU) sessions. 
• Unified Data Management (UDM): Stores the authentication data and subscription information and man-

ages the authentication repository. 
• Unified Data Repository (UDR): A database that stores and manages subscriber data, identities, and service 

configurations. 
• User Plane Function (UPF): Function that manages all the functionality related to the user plane, enabling 

data forwarding and packet processing. 
The different NFs are implemented separately as stand-alone processes that interact using the standard 

defined interfaces. This means that the NFs can be deployed separately using virtualization or container tech-
nology. Figure 5 shows an example of the distributed deployment, using overlay networks, of the NFs 
associated with the free5GCore implemented in Docker. 

 
Figure 5. Example of distributed provisioning 5G Core via Docker. 
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3.3.4. Network Monitoring Module 
This module is responsible for monitoring the complete operation of all information exchanged within the 

NDT. Once all the DTs are provisioned and configured, the monitoring module will control the activation of 
port-mirroring functionalities within each one of the subnets present in the resulting NDT, with the aim of being 
able to use this information traffic for the generation of datasets that allow for the improvement of the complete 
emulation of the NDT. 

3.3.5. Traffic Generation and Injection Module 
This module offers the option of enabling the traffic generation, based on different 5G traffic models over 

the NDT, and allows the validation and analysis of network performance. 
The main goal of this module is to provide a way of injecting traffic in the 5G core network-virtualized 

infrastructure without dealing with actual Radio Access Networks and 5G-ready hardware. This module acts 
as a signaling NAS traffic generator that is able to communicate with the AMF NF in the 5G core by emulating 
the operations of User Equipment in a real environment. This module can perform session management, UE 
registering and de-registering, etc. Additionally, it can maintain GTP tunnels with a UPF in the core network 
and send data through them. The user data to be sent through this module, which acts as a broker, is captured 
in a network interface, and can have any virtual appliance or hardware machine as a source, as long as they are 
connected to the module interface. 

Both the NAS signaling emulation (Signaling Traffic Generator—STG) and the users’ data broker (User 
Traffic Generator—UTG) are implemented in a single process, enabling the possibility of registering UEs, es-
tablishing PDU sessions, and sending user traffic to a data network from the same software tool, associating 
the information of the signaling traffic to the tunnel generated for the users’ traffic. 

3.3.6. Bidirectional Pipeline 
Once the NDT infrastructure has been deployed and provisioned, it is necessary to establish the different 

pipelines to be used in the complete system. Depending on the type of elements interconnected and their com-
munication necessities, two different pipelines are distinguished: V2V (virtual to virtual) and P2V (physical to 
virtual). The former is performed within the NDT, interconnecting each of the DTs that compose it. These pipe-
lines allow for reflecting of the behavior of the communication that takes place in the physical world, without 
the time limitation present in the physical world, which allows the communication of large data flows in re-
duced times, and facilitates the emulation task, accelerating the obtention of results. The second supervises the 
interconnection between the virtual world of the NDT and the physical world, allowing the continuous feed-
back loop between the DT and its physical counterpart, providing the system with continuous co-evolution and 
cooperation capabilities. 

Focusing on the type of P2V communication, it is necessary to approach it from a cybersecurity perspective 
due to the risks and threats associated with an environment of this type, such as risks associated with data, risk 
to physical devices modeled through DTs, to networks through those that are interconnected or to the network 
applications that operate on them. As described by Chen et al. in [29], P2V communication in NDT architectures 
must comply with the requirements of data confidentiality and integrity and the stability of the authenticity of 
policies, as well as the unforgeability based on the authenticity of both parties, physical and digital. 

3.3.7. AI/ML Module to Drive Smart Actions 
This module will provide AI components, which are AI/ML models built (or imported) into the platform 

and deployed as smart agents. These smart agents can perform a variety of downstream tasks, such as optimiz-
ing network policies (e.g., traffic routing, resource deployment strategies, etc.) or predicting network failures. 
To that end, this platform will continuously monitor the NDT, providing the collected information to the smart 
agents in order to take appropriate actions to perform some arbitrary tasks. These changes can be replicated in 
the physical world through the P2V pipeline. It should be noted that the changes are not necessarily always 
replicated in the physical world, which is a more complex process that involves human verification to ensure 
that the changes are safe can be also considered. In Sections 4–6, we provide further details that expand the 
internals of this AI/ML module. More precisely, we will discuss the main AI components and applications that 
can be deployed in an NDT scenario. 
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3.4. Digital Maps: Preparing the Way towards an NDT-Ready Architecture 
In order to tackle specific problems in the NDT scenario without requiring planning, designing, and im-

plementing a complete NDT system from scratch, which would be very costly and time-consuming, the re-
search community has begun to consider the possibility of building NDTs in a modular fashion. In this context, 
we propose to adopt the term Digital Map (emerged in recent IETF discussions) to describe a DMap as a subset 
of an NDT that focuses on a single specific dimension of the NDT functionality exposing its services through 
an API that other DMaps can easily consume to interact with it. The scope of application of a DMap is purpos-
edly limited in nature; hence, it targets a narrow set of tasks, such as fault test simulation or energy optimization 
of the real network. The bidirectional flow of information between the virtual network and the physical system, 
formatted in JSON or another similar data exchange format, can synchronize the state of both networks. In this 
way, DMap can be incrementally developed, and the interconnection of several DMaps can lead to a complete 
NDT system. 

In our proposal for a DMap-based NDT solution, which is illustrated in Figure 6, the following elements 
can be identified: (1) the physical network, (2) the Digital Twins (DTs) of the physical components of the net-
work, (3) the NDT that represents the interconnection of DTs and comprises the virtualization of the network, 
the data flows between DTs and the DTs that conform it, and (4) several Digital Maps (DMap) that represent a 
set of functionalities build upon one or more DT, thus serving as a concrete view or dimension of the NDT. The 
rationale behind the Digital Map concept, which we propose as a novelty, is justified on the need to build a 
complete NDT in a modular manner and thus avoid the cost of planning, designing, and implementing a com-
plete NDT system from scratch. In this way, DMaps considerably reduces the complexity of building a fully 
featured NDT system that completely replicates the physical system. 

 
Figure 6. Diagram architecture of the DMap-based NDT. 

In particular, we propose a minimal NDT architecture that allows the connection of new DMap modules 
to an existing network to incrementally build an NDT system. The minimal architecture consists of an NDT 
connector, which is responsible for the communication between the NDT and the physical network, and an 
NDT orchestrator, which is responsible for managing and coordinating the orchestration of the different net-
work elements that compose the NDT. In particular, the NDT connector serves as a bridge that enables data 
exchange between the virtual and physical networks. In this way, the data flow between the network compo-
nents of the physical system and the corresponding replicas of these components (DTs) in the NDT are con-
stantly synchronized. On the other hand, the NDT orchestrator will be responsible for replicating and provi-
sioning the required network configuration of the physical system (network elements, interconnections, traffic 
routing, etc.). Based on this minimal NDT architecture, new DMaps can be developed and included in the NDT 
at any time to enrich it with new functionalities. It should be noted that multiple DMaps can share some of the 
underlaying components that conform the minimal NDT architecture (e.g., a subset of replicated network ele-
ments, the NDT connector, and the NDT orchestrator). 



 13 of 26 

 

In addition, the deployment of a DMap-based NDT allows for selectively limiting the scope and visibility 
of the network according to the operator needs. Thus, a DMap can be deployed to cover a specific set of network 
components, or a specific range of IP addresses based on the specific service provider requirements. In contrast, 
a monolithic approach to the development of a DMap does not allow such flexibility and the NDT will always 
have full network visibility in all situations. That is, if a specific subnet must be excluded for some reason during 
network operation, it will be necessary to create a new NDT for that purpose or, alternatively, to mask it from 
the rest of the NDT, which may not be trivial and may require additional operational overhead. 

We envision that a DMap-based architecture design can pave the way towards a complete NDT architec-
ture, providing a cost-sensitive approach to incrementally build an NDT and delivering a flexible design to 
quickly adapt to the changing needs of the network. To that end, in order to make it easier for an NDT infra-
structure to interact with the diverse ecosystem of 5G networks, standardization efforts are the first prerequisite 
to any successful implementation of such a system. We suggest that a standardization working group should 
focus on (i) providing a detailed description of the DMap architecture and the mechanism for DMap intercon-
nection, (ii) define the DMap functionalities that need to be exposed through the DMap API, (iii) specify the 
structure of the messages exchanged between DMaps and the physical system, and (iv) determine the message 
exchange mechanism (protocols) between DMaps and the physical system. As a second prerequisite, we pro-
pose to consider the creation of a working group to develop a reference implementation of an NDT-ready ar-
chitecture based on DMaps. To that end, the architecture proposed in Section 3 of this work can serve as the 
basis for the working group’s initial proposal. 

Based on the normalization of these interconnections, we propose the establishment of the term “NDT-
ready” to refer to a real system applying these standards. In this way, an NDT-ready label on a physical system 
implies that it could be connected to different NDTs that conform to the interconnection standard. Vice versa, 
an NDT that conforms the interconnection standard could be directly connected to any physical system with 
the NDT-ready label. 

Moreover, an effortless integration of any DMap into the NDT-ready system can be achieved using the 
aforementioned interconnection standards. In this regard, we envision that task-specific DMaps can be offered 
as a service and seamlessly integrated into an NDT-ready system. In this way, a new disruptive business model 
can be created for the development, distribution and deployment of DMaps that extend the capabilities of com-
mercial and industrial 5G networks to support the creation and deployment of emerging vertical services. 

In Section 6.2, we will discuss the application of this innovative concept in a practical use case related to 
energy consumption optimization. In particular, we will emphasize the benefits of approaching this specific 
problem with our proposed architecture instead of the traditional way. 

4. AI Applications in B5GEMINI 
In the following subsections, we describe the innovative AI applications that B5GEMINI, as an NDT plat-

form, will enable to deploy. In particular, we will discuss the potential of B5GEMINI as a platform to provide 
data for ML/DL model training. In addition, we will describe interesting applications related to network exploi-
tation, where B5GEMINI has the potential to revolutionize the network management landscape, providing 
greater value and capability to network operators and service providers over traditional approaches. Next, we 
will explore the capabilities of B5GEMINI as a platform for distributed training of ML/DL models and inference 
tasks over the network. In the same vein, we will discuss the possibility of deploying pre-trained models over 
the NDT to perform arbitrary downstream tasks in an off-the-self fashion, which has the potential to improve 
convenience and enable cost reduction and flexibility for network managers and other stakeholders. 

4.1. NDT for Smart and Robust-by-Design AI/ML-Based Applications 
As it is well known, most ML algorithms need large amounts of real data to be trained. One of the major 

potential applications of an NDT is that it could serve as a platform for data collection that can be later used to 
train algorithms when the real network does not provide enough data, or it is too complex or expensive to 
gather. Moreover, there is an increasing need to design realistic virtual network scenarios in which different 
types of traffic can be generated in a controlled way and ML models can be trained and validated. B5GEMINI 
provides these capabilities, allowing the generation and capture of network traffic in a controlled manner to be 
used for training and testing ML components with realistic data. It should be noted that since the collected 
traffic is generated in a controlled environment, data labeling, which is required for training and testing super-
vised ML components, can be conducted without human intervention. This capability facilitates the labeling of 
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data sets in the big data regime that are required to train and validate complex Deep Learning (DL) models. In 
addition, B5GEMINI replicates physical network elements and therefore, ML and DL components can be de-
ployed and validated in real-time scenarios. Furthermore, using these approaches, different problems and 
faulty behaviors that rarely occur during the real network operation can be easily replicated now without neg-
atively affecting the network. In this way, this approach allows one to train ML components for those situations 
in a more cost-effective and safe manner in order to ensure that they operate accordingly when they occur in 
real-world situations. 

Moreover, recent applications of General Data Protection Regulation (GDPR) imply new challenges for the 
design of robust AI systems in the context of automated decision-making systems [30]. In this regard, interpret-
ability is the key metric for providing reliable explanations of results, which is critical to avoid negative conse-
quences of their use that may harm data subjects. To this end, these systems must provide not only a clear and 
intelligible explanation of their results, but also a way to assess the reliability of the results. At the network 
level, this interpretation capability must be technically accurate with respect to this domain to provide mean-
ingful insight that can successfully explain the underlying decision-making process of the AI/ML system to 
network operators. 

On the other hand, ML models are known to be vulnerable to adversarial attacks, which are attacks per-
formed by adding small perturbations to the input data in a way that is unperceivable to humans but can trick 
a machine learning model into predicting an incorrect label, even with high confidence. To address this prob-
lem, ML resilience has emerged as a new research area that introduces mechanisms that make ML models more 
robust to adversarial attacks. In order to adopt a robustness-by-design approach, both Explainable AI and ML 
Resilience are two methodologies that should be carefully considered from the early stages of the ML/DL model 
design and development pipeline. Both are described in detail in Section 6.2. 

4.2. ML for NDT Deployment, Configuration, and Monitoring 
The dynamism of an NDT allows one to represent multiple realistic situations in a network: network con-

nection topologies variability (e.g., ring or star architectures, redundant paths), location of specific functions 
(e.g., content caching, traffic filtering, hardware accelerators), network links capacity or technologies used, 
nodes and links status change (congestion, drop, or capacity variation), etc. Taking advantage of the NDT soft-
ware configuration flexibility, different problems can be simulated and changes in the NDT instantiation intro-
duced. 

In this context, B5GEMINI ambition is to be able to use AI-based management for orchestration and dy-
namic control of the deployment of instances and components of the NDTs, which allow us to obtain the best 
results regarding the problem posed. In this regard, B5GEMINI can be used to verify SLA requirements in 
advance and adjust the strategy in time to reduce cost and uncover potential problems before the establishment 
of the service. For example, a 5G network slice can first be verified in an NDT by simulating the effects of user 
equipment, traffic, and network functionalities to uncover potential issues that may affect QoS. With this end-
to-end verification process, the NDT can be used to ensure that the 5G service can be provided to the user with 
the expected quality and obtain the optimal strategy to optimize the resource to guarantee the QoS of the net-
work slice throughout its lifecycle. 

On the other hand, networking solutions have also evolved toward more software-oriented, cloud-based 
deployment. Software-defined networking (SDN), network functions’ virtualization (NFV), and cloud-based 
network management are being used by service providers to deploy new services faster, automate network 
management and operations, and improve network security. However, this has led to an increase in the number 
of software components and the dependencies between them, which in turn has increased the complexity of 
networks, making it difficult for network operators to get an accurate picture of the network. To provide net-
work administrators with a clear understanding of the physical and virtual aspects of the network, B5GEMINI 
can be used to monitor in a dashboard the network in order to quickly identify and diagnose problems and take 
corrective action to improve network security and performance. 

Finally, network operators can also use B5GEMINI as a platform to monitor and assess the impact of dif-
ferent 5G implementation strategies in highly dense and dynamic environments, while providing automated 
recommendations to improve network performance. Exploiting the data collected from the NDT, ML algo-
rithms can be used to fine-tune these strategies to maximize utilization and optimize operational costs, thus 
serving as a valuable tool for network providers to accelerate 5G network rollout. Traditionally, this task has 
been performed by using simulation tools such as OMNET++, NS3, and NS2. However, these simulators require 
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significant effort to create a realistic product environment and are only able to reproduce the 5G environment 
with a low degree of accuracy. In addition, these tools are only capable of one-way communications and there-
fore cannot take into account the dynamic nature of the real environment. This can lead to a significant desyn-
chronization with the gathered data and the current situation of the real network. Moreover, simulation tools 
present a trade-off between complexity and fast response, reducing the potential for rapid iteration, which can 
severely affect the time to market. In contrast, B5GEMINI can provide a real-time assessment of the 5G network 
with little overhead, allowing for faster and more accurate assessment. In addition, with this approach, AI 
methods can be more easily integrated to gain feedback from the network configuration, provide suggestions 
to optimize it and enforce the configuration automatically in the live environment. In this way, B5GEMINI can 
serve as a key tool for network operators to manage the deployment of 5G networks in a closed loop fashion to 
ensure timely and efficient network operations. 

Some other representative use cases in B5GEMINI are network path optimization for a service, network 
growth or reconfiguration based on traffic growth patterns, network problem root cause identification, or opti-
mal mitigation of a network attack. 

The metrics collected and the data generated in the three scenarios described within the NDT can then be 
used to train ML models. In addition, for some cases, such as Reinforcement Learning (RL), the ML model 
proposes changes to the NDT and once completed the result can be evaluated. In addition, the integration of 
ML can be used to forecast the future behavior of the network in order to identify early signs of problems ahead 
of time, which allow for better proactive network management. However, although what we described are the 
most prominent uses of NDT, it should be noted that these are not mandatory, i.e., network operators can use 
this technology to monitor NDT without considering the integration of ML for end-to-end optimization if it is 
not deemed necessary. In any case, the flexibility of the proposed architecture will make it possible to empower 
any NDT component with intelligent capabilities very easily at any time. 

4.3. Distributed Training and Inference on Demand 
We propose to use B5GEMINI as a platform to perform distributed training and inference processes for 

ML and DL models. The approach consists in virtualizing, instantiating, and allocating virtual GPUs on demand 
within the NDT to provision all the required resources to train and evaluate the models. The proposed approach 
can facilitate federated learning schemes and provide increased capabilities for the next-generation edge com-
puting paradigm. It should be noted that to this day the virtualization process relies heavily on proprietary 
technology (see the case of NVIDIA and its industrial-grade GPUs). We consider this situation as the major 
challenge that may hinder the adoption of this technology at scale, and, for this reason, we look forward to the 
development of more open solutions to eventually materialize this concept. 

4.4. NDT for ML as a Service 
In the proposed architecture, it will also be possible to deploy off-the-shelf ML models in the allocated 

resources that are prepared to perform a specific task with a high degree of efficiency. We propose to realize 
this idea providing a catalog of pre-trained models for a wide variety of tasks, the users may select one of these 
models depending on their requirements to perform some downstream task on the NDT. For example, this 
approach will allow classification models to be deployed at specific locations in the network (routers, terminals, 
etc.) to filter traffic coming from certain subnets where congestion has been detected according to certain rules; 
thus, it will be possible to improve network performance by minimizing resource usage. In addition, once de-
ployed, the models can be periodically retrained in a self-learning fashion to improve their overall performance 
and robustness over time. It is worth noting that this approach can be naturally extended to DMap as a Service 
by deploying off-the-shelf DMaps (e.g., Energy optimization for AI components or Synthetic Data Generators) 
instead of plain ML models to provide a more complete solution for network management. 

5. B5GEMINI AI Components 
The key role of the integration of AI components in B5GEMINI is to enable the deployment of smart ap-

plications at scale. In this section, we describe the most promising research opportunities that could help to 
achieve this goal. Additionally, we discuss the most important challenges that need to be addressed in order to 
realize the potential of AI in B5GEMINI. 
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5.1. Synthetic Data Generation 
The generation of synthetic network and user data using Generative Adversarial Networks (GANs) will 

avoid the privacy violations that can be incurred in an NDT when using data collected from a real user and the 
lack of publicly available data for ML training and testing purposes. Moreover, in a current scenario where 
communications are increasingly encrypted, there is a tendency towards a situation where most real data can-
not be used for ML training and NDT tasks because their content cannot be accessed. In this context, GANs will 
make it possible to generate synthetic data of sufficient quality to completely replace real data, improving se-
curity and avoiding privacy leakage. 

Although recent works [31,32] demonstrate that it is possible to replicate the statistical distribution of real 
data features with high quality, future work should investigate new metrics that can (i) guide the convergence 
of the GAN during training toward high-fidelity data generation and (ii) measure data quality not only from a 
statistical perspective, but also considering to what extent synthetic data can completely replace real data in 
different tasks (e.g., to train ML without using real data). Using these distances, efficient stopping criteria for 
GAN training can also be investigated. 

To demonstrate the benefits of this idea, in Section 6.2, we describe a use case that realizes this concept to 
implement and integrate a DMap in the NDT that provides an environment for generating synthetic telemetry 
data (e.g., VM logs, network traffic connections, etc.). This environment can be used as a data augmentation 
technique to increase the data available for training ML/DL models that are integrated into the network to im-
prove their generalization and performance. This reduces reliance on real data, which can be expensive or dif-
ficult to obtain. In addition, it allows data to be exported securely to third parties without compromising the 
privacy of the data subject. Finally, this environment allows the creation of traffic models to better understand 
network behavior without the need to use real data, which may be susceptible to security issues and/or privacy 
regulations that prevent its use for this purpose. 

5.2. Model Optimization 
Deep Neural Networks (DNNs) training is often performed on very expensive hardware accelerators that 

lead to high energy consumption and carbon emissions [33]. This issue has been a growing concern in the AI 
community in recent years and has motivated the development of more efficient algorithms to reduce the en-
vironmental impact of ML/DL models. This set of techniques, which have been commonly referred to as Green 
AI, aims to fulfil this promise by reducing the energy required in the training and inference of ML/DL models. 
On this line, several Green AI techniques have been proposed, such as NAS, Quantization, Pruning, Low-rank 
Factorization (LF), and Knowledge Distillation (KD). 

The development of novel Automated ML (AutoML) techniques in the context of NDTs will provide a 
mechanism to generate optimized AI and ML components that can be considered sustainable from an energy 
consumption point of view (Green AI principles). For example, to generate compact ML-based attack detectors 
to be deployed in resource-limited edge nodes. 

Recently there has been an explosion of research interest in AutoML, with special attention on Neural 
Architecture Search (NAS) [34] that aims to generate a compact but robust and well-performing neural archi-
tecture by selecting and combining different basic components from a predefined search space. Furthermore, 
Google Brain introduced AutoML-Zero, an evolutionary meta-algorithm that generates a wide variety of com-
pact machine learning algorithms for data classification [35]. This algorithm overcomes a well-known limitation 
of NAS, which greatly restricts its search algorithm (by selecting only neural networks).  

Nevertheless, the application of this technology is still in its infancy and several open problems [36,37] 
might limit its adoption in NDTs: (i) the majority of the techniques have been developed for computer vision 
and natural language tasks, (ii) it is not possible to interpret why an AutoML-generated model is better than its 
human-generated counterpart, (iii) robustness against adversarial data that can fool the model, and (iv) the lack 
of a complete AutoML pipeline to integrate these techniques in current ML development pipelines. 

In addition to AutoML, another effective approach to realize Green AI is to use algorithms that allow for 
more power efficient ML/DL model development and deployment, either reducing the number of computations 
required for model training, compressing model representations using more efficient data structures, or finding 
ways to reuse computations. On this line, Pruning is a technique to reduce the size of a DNN by removing 
unnecessary weights [38]. Pruning can be performed manually (using a manually designed heuristic approach 
to remove unnecessary weights) [39] or automatically (using algorithms to automatically remove unnecessary 
weights from a DNN) [38] or a combination of both [40]. 
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Moreover, Quantization is a technique that allows for DNN models to be trained with lower precision, 
which can lead to improved efficiency [41]. Stochastic Quantization has been successfully applied to convert 
gradients to lower bit width representations during the backward pass; this enables the use of bit convolution 
kernels during the backward and forward passes, which further accelerates training times and speeds up infer-
ence times [42]. In addition, Quantization has also been applied in the form of a differentiable non-linear acti-
vation function to reduce training times [43]. In this way, the Quantization is learned in a lossless and end-to-
end fashion during the training. This method is suitable for arbitrary bit width Quantization and can be applied 
to both weights and activations of the DNN. 

On the other hand, LF is a technique for representing a matrix with a smaller number of parameters. This 
can be conducted by decomposing the matrix into a product of two lower-rank matrices. Taking advantage of 
this concept, LF has been applied to reduce weight matrices that represent ML/DL model parameters [44]. LF 
has also been applied to training dataset compression [45,46]. In NN, the number of neurons in the input layer 
depends on the size of the feature space. Reducing the dimensionality of the feature space, the size of the DNN 
is also reduced. To achieve this reduction in dimensionality, input data in the form of matrices are factorized 
into low-rank matrices to adjust to the hardware characteristics in an automated fashion. In this way, both the 
in-memory size of the DNN and the inference time are reduced, while the accuracy is preserved. 

On the other hand, KD is a technique for transferring the knowledge learned by a large DNN into a smaller 
one. This can be conducted by training the smaller DNN to mimic the predictions of the larger one [47]. KD, 
which was first introduced by [48], has been successfully applied to compress large transformer models such 
as BERT (distilBERT) [49]. 

Prior to ML/DL model optimization, it is imperative to first establish accurate methods to estimate the 
energy cost associated with training or inference tasks. Several studies have focused on optimizing ML-specific 
models by adopting general estimation models that characterize energy consumption (either at the software or 
hardware level) to the ML domain. 

In the use case shown in Section 6.2, we apply these techniques to automatically search for an optimal 
model configuration from an energy consumption perspective. Specifically, we propose to introduce the energy 
consumption factor of the model during the NAS procedure. For this purpose, we propose to design a model 
that allows estimating the energy consumption of each model during the inference operations. Thus, by intro-
ducing this variable in the NAS procedure, it is possible to automatically find DNN architectures that satisfy 
arbitrary metrics that jointly consider model performance and energy efficiency. Furthermore, in the presented 
use case, the application of Quantization, Prunning, LF, or KD techniques is also possible in order to compress 
the model representation with the ultimate goal of reducing its memory footprint and power consumption 
while minimizing accuracy loss. 

5.3. Model Robustness: Resilient and Explainable AI 
To achieve a robustness-by-design approach to build safe and reliable ML/DL models for production-ready 

applications that we described in Section 4.1, in this section, we present the concept of explainable AI, which 
encompasses a series of methods to achieve interpretable models or post-hoc explanations that ensure trans-
parency and accountability of the system in its decision-making process. Furthermore, we describe some of the 
ML resilience libraries and toolboxes that have been proposed in the literature to secure ML models against 
adversarial attacks and how they can be applied to B5GEMINI to achieve robust ML models. 

5.3.1. Resilient ML 
Recent findings have demonstrated that ML models, DNNs in particular, are vulnerable to malicious in-

puts, called adversarial examples, that are modified to spoof the ML algorithms and cause them to yield erro-
neous outputs [50]. Therefore, it is crucial that resilience to these sophisticated attacks is added to ML algo-
rithms to minimize the current resistance to the adoption of ML components in industrial environments. For 
this purpose, B5GEMINI will integrate existing adversarial libraries and toolboxes (e.g., CleverHans [51], 
DeepRobust [52], Adversarial Robustness Toolbox [53]) to provide resilience to ML components within the 
NDT. 

Nevertheless, the existing defense mechanisms are limited because robustness against specific attacks 
needs to be provided in specific settings. The design of a robust machine learning model against all types of 
adversarial examples is still an open research problem. 
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5.3.2. Explainable ML 
Another key aspect of network operation is the necessity to understand the intentions and guarantees of 

the applied policies and the possibility to extract knowledge about failure cases when they occur. For this rea-
son, network policy explainability also needs to be considered in order to help with stakeholder buy-in for real-
world applications. Moreover, the ML model interpretability is of extreme significance to explain the results 
obtained from the envisioned models and help to distinguish adversarial from legitimate inputs. 

Several state-of-the-art solutions have been proposed to achieve explainability in ML: 
1. Local Interpretable Model-agnostic Explanations (LIME): is a technique proposed by Ribeiro et al. to pro-

vide local explanations to the predictions made by black-box models [54]. This is performed by approxi-
mating the model prediction with a simpler surrogate model that behaves in a way that is easier to inter-
pret. This technique has proven effective for a variety of ML models, including DNN. 

2. Shapley Values: is a technique that can be used to explain the contribution of each individual input to the 
final prediction of a ML model [55]. They were first proposed by Lloyd Shapley in 1953 as a way of calcu-
lating the contribution of each player to the success of a game [56]. In this way, Shapley Values can be used 
to calculate the contribution of each input to the prediction of a ML model, as well as the contribution of 
each layer in a DNN. 

3. Partial Dependency Plots (PDG): is a technique, first proposed by Friedman et al. in 1990 [57], that can be 
used to visualize the relationship between the inputs and output of a ML model. PDP can be used to visu-
alize the impact of each input on the prediction of a ML model, as well as the impact of the interactions 
between inputs. PDP has been later extended by the technique of Individual Conditional Expectation (ICE), 
proposed by Goldstein et al. [58]. 
However, what all these methods have in common is that they are computationally expensive and are not 

applicable to all models. Explainability remains as a difficult challenge, severely compounded by the need for 
these algorithms to also be accurate and unbiased. Overall, this is an exciting area of research that will undoubt-
edly receive increased attention in the coming years. 

5.4. Novel Deep Learning Architectures 
Graph Neural Networks (GNN) are neural network architectures able to process graphs as inputs to pro-

duce useful embeddings exploiting the concept of message passing between nodes in the graph [59]. GNNs 
have yielded groundbreaking results in many fields where data is fundamentally structured as graphs, such as 
the field of communication networks, where this innovative type of neural networks is deemed as a key tech-
nology to model complex graphs (e.g., traffic routing optimization, resource allocation, anomaly detection). 
Due to their unique capabilities over traditional neural networks, we envision GNN as a key player in the con-
struction of NDT for communication network modeling. Several studies have demonstrated that GNNs are able 
to remain robust to changes in network topology, routing policies and traffic distribution [60], a key advantage 
over alternatives such as traditional neural networks (e.g., recurrent neural networks, convolutional neural net-
works, variational autoencoders) or Deep Reinforcement Learning techniques that are severely deprived of this 
capacity [61]. However, GNNs present a limiting factor due to weak scalability, which inevitably must come as 
a trade-off that sacrifices graph completeness, either losing node neighbors when using a graph sample strategy 
or structural information when opting for a graph clustering method [59], ultimately resulting in lower perfor-
mance in either form. On the other hand, in convolutional graph networks (GCN), one of the most successful 
GNN architectures, the graph convolution operation can be interpreted as a Laplacian smoothing. It has been 
demonstrated that repeated application of Laplacian smoothing on the same graph leads to the convergence of 
all node embeddings to the same value [62]. This result leads to the conclusion that stacking multiple convolu-
tional layers will not always result in a more powerful model; in fact, it has been demonstrated that the perfor-
mance of GCNs significantly decreases as more layers are added [62]. This finding makes scalability of GNNs 
an even more concerning problem. For the above reasons, we consider this issue as the most important chal-
lenge to be solved for the adoption of building NDTs. 

In the field of communication networks, DRL has recently received more attention because it is emerging 
as a natural candidate to effectively address various problems and challenges intrinsic of this domain. Network 
devices need to make autonomous decisions to achieve different objectives or meet QoS requirements. Most of 
the decision-making problems in network optimization scenarios can be formulated using Markov Decision 
Processes (MDP). Reinforcement Learning (RL) techniques have been widely adopted to solve MDP problems 
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[63]. However, RL techniques are not always applicable, especially when the problem is too complex, or the 
state and action spaces are too large. Deep Reinforcement Learning (DRL) has been demonstrated to be prom-
ising in these cases. DRL is a subfield of RL that uses DL techniques to allow machines to learn how to achieve 
a certain goal by trial and error, without the need of labeled data. More precisely, a DRL agent is trained by 
interacting with an environment, and the environment returns a state and a reward after each action. The first 
phase of the training process is composed of two main parts: first, the DRL agent collects all the states and 
rewards from the environment, and second, the DRL agent’s past experiences are used to train the weights of 
a Deep Neural Network (DNN) in a supervised manner. Similar to GNNs, DRL-based algorithms often suffer 
from poor scalability. The reason is that, as stated above, the DRL agent learns from sequential interactions with 
the environment. For that reason, when DRL is applied to large networks or complex optimization problems 
when the interaction with the environment occurs slowly, the problem becomes computationally expensive. 
Solutions have been proposed to accelerate the DNN weight update stage using Evolution Strategies (ES) [64]. 
Nonetheless, solutions to accelerate the interaction with the environment remain unclear. Some proposals, such 
as Distributed RL or asynchronous methods, try to reduce the number of interactions between the agent and 
the environment in order to speed up the learning process, but the problem with these approaches is that the 
agent might not learn as efficiently as with a more traditional synchronous approach. 

From a more pragmatic perspective, we describe below some interesting use cases of GNN in the network-
ing landscape, which can be leveraged to facilitate the deployment and management of 5G and beyond net-
works. To being with, some proposals have focused on modeling complex topological relationships that allow 
for generating useful representations to predict latency parameters such as delay, jitter, and packet loss for the 
different potential routes that can be considered in the transmission of data from one node of the network to 
another [60,65]. The objective is to use this information to apply an optimization process that allows for the 
automatic planning of the routing of traffic in a network considering the different qualities of the service. Fur-
thermore, this technology can also be applied to find the optimal links that should be placed between the dif-
ferent nodes of the network to reduce those latency and loss metrics. 

In addition, one study has used a combination of RDL and GNN to predict the optimal policy for the 
placement of VNFs in a dynamic network topology (i.e., nodes and links that can appear and disappear at any 
time), based on the resources required by the VNFs (e.g., memory and CPU) and certain QoS constraints (e.g., 
latency, bandwidth, packet loss, etc.) imposed for each packet flow [66]. In this context, due to the intrinsic 
dependence on the specific network structure of RDL-based methods, the incorporation of GNN helps to 
achieve generalization across network topologies, which is crucial to address the dynamic and heterogenous 
nature of 5G and beyond networks. 

On the other hand, another study proposed to use a Spatio-Temporal Graph Convolutional Network (ST-
GCN) over the data plane of an SDN to map the network into a graph structure [67]. In this way, the ST-GCN 
can learn from certain features of the packet flows to generate a network representation that is fed to a DNN to 
obtain a classification by flow (normal or attack). The method can also provide information about the path that 
DDoS attacks follow through the network, facilitating DDoS mitigation. 

In another study, a GCN with Gated Recurrent Unit (GRU) cells was used to predict the state of links in a 
network [68]. In particular, the GCN was used to learn features of the network topology, while the GRU was 
used to model the temporal dependencies between link states. The model was trained with a dataset of link 
state characteristics (bandwidth, delay, and packet loss rate) and was able to predict the state of links in the 
network with lower error rates than other state-of-the-art methods such as LSTM-based models. 

Finally, the deployment and chaining of VNFs is a highly complex problem that can be formulated as a 
graph optimization problem. Some studies have proposed using a GNN to model the problem as a graph and 
find the optimal deployment of VNFs and the optimal sequence of VNFs for a given service request chain (SRC), 
while also considering the energy consumption of VNFs in the problem formulation [69–73]. In fact, the com-
plex management and orchestration processes involved in 5G/6G networks are susceptible to being represented 
as graphs, opening up the possibility of applying GNNs to provide a high degree of intelligence to automate 
these processes. 

5.5. Uncertainty Estimation 
In a general sense, Neural Networks (NN) decisions are inherently unreliable because they lack expres-

siveness and transparency. A NN is a stack of continuous geometric transformations that are learned to map 
one vector space into another to minimize some objective functions. In simple terms, a NN cannot understand 
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or resonate about the content of the data being trained on, which leads to their inability to explain its decisions, 
as well as their sensitivity to small changes in the data distribution, making it difficult to rely on their predic-
tions. Additionally, NN are often overconfident in their predictions and vulnerable to adversarial attacks [74]. 
To address network problems, reliable solutions are a fundamental need for network operators, as they can 
have a significant impact on service quality and customer satisfaction. There have been some proposals based 
on ensembling and Bayesian learning to endow this capacity to NN. Using these techniques, probabilistic con-
fidence values can be associated with the NN output. In this way, the reliability of NN predictions can be esti-
mated to provide end users with more realistic decision making. A comprehensive review of these methods is 
provided by Gawlikowski et al. [74]. 

5.6. Intent-Based Networking 
Intent-based networking is an approach to network operation that focuses on user intent rather than net-

work details. In an intent-based network (IBN), operators can define the desired objectives or outcomes in a 
declarative manner and then rely on the network to automatically provision all the required resources and 
configure itself to achieve those objectives, ideally, in an optimal manner. This contrasts with the more tradi-
tional approach of configuring a network by manually specifying all the required configuration parameters.  

Intent-based networking is particularly well suited to manage large, complex networks because it greatly 
simplifies operation tasks by automating highly specialized and time-consuming processes such as network 
configuration and troubleshooting, ultimately reducing the time and resources required to manage the network 
and making it easier and quicker to deploy new applications. In addition, by reducing manual interactions with 
the network, IBNs can also help reduce the risk of human error. IBN is also a valuable tool for NDT manage-
ment, as the same advantages can be transferred to this environment, where the need for manual setup and 
maintenance is greatly reduced, and operational efficiency is increased. 

Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are two key enablers of 
IBN. NFV and SDN are complementary technologies that are often used together to provide a more complete 
IBN solution. NFV decouples network functions from dedicated hardware devices, allowing them to be run on 
standard server hardware. This greatly increases the flexibility of the network, as different functions can be 
quickly and easily deployed, reconfigured, or upgraded as needed. SDN, on the other hand, provides a central-
ized control plane that can be used to manage and configure the network. Together, NFV and SDN allow for 
the creation of virtualized networks that are much more flexible and easier to manage than traditional networks 
[75]. 

IBNs are based on the principle that guides Infrastructure as Code (IaC). In this context, the network is 
treated as a software system, and is configured and managed by code. Driven by this conceptual analogy, one 
approach to achieve an intent-based network is to create a Domain Specific Language (DSL) to formally specify 
network policies. This DSL can be used to define the appropriate configuration of network devices and traffic 
routes. This configuration, often referred to as a “policy” in this context, is defined as a sequence of actions to 
be performed on the network, which can be formulated as a Markov Decision Process (MDP). 

There are still some challenges to be solved before IBN can be fully realized. Chief among them is the need 
for more intelligent algorithms that can automatically and reliably translate high-level user intentions into a 
low-level network configuration policy that copes with the ambiguities and lack of proper context that human 
language often presents. In addition, these algorithms must take into account the subtle conflicts and incom-
patibilities in the execution of each user intent and be able to automatically resolve them or suggest a possible 
resolution to the network operator [76]. Currently, there is no clear consensus on how to solve these problems 
in a scalable and efficient manner. For this reason, although IBNs have been widely recognized as a promising 
paradigm for future network operation, the lack of efficient methods for policy inference limits their applica-
bility. Further research is needed to enable the widespread adoption of this concept. 

6. B5GEMINI Use Cases 
In this section, we describe two use cases to demonstrate the advantages of using the proposed NDT ar-

chitecture. In the first use case, we propose to develop security capabilities that help detect malicious elements 
in the real network in order to prevent or mitigate potential cyber-attacks in a 5G cloud infrastructure. In the 
second use case, we propose the realization of energy optimization mechanisms for NDT integrated AI compo-
nents that can be seamlessly deployed in the real network in a secure and reliable manner. 
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6.1. Cyber-Attack Use Cases on Cloud 5G Infrastructure 
One of the most relevant issues in 5G and beyond is security. The evolution towards distributed solutions 

in the cloud, with multiple providers and hyperscalers, can represent a handicap at the security level for future 
5G services, since the network operators will not have absolute control of the infrastructure. Analyzing the 
capacities and performance of AI-based solutions to address attacks to the cloud environments represents an 
interesting topic. Using an NDT with 5G functionalities, based on NFV and cloud architectures, allows one to 
introduce attacks in the virtual environment without causing harmful situations on the physical system and 
related 5G services. In this way, this approach serves as a foundation to enable advanced AI-based solutions. 

On this basis, some cybersecurity attacks are proposed with an NDT 5G cloud environment with general-
ized encryption (at signaling and data plane levels). A first case to be evaluated in the NDT is an attack on the 
illegal consumption of resources due to the presence of malware. The cryptomining variant of malware (inten-
sive use of CPU and memory resources for cryptocurrency mining) is a lucrative criminal activity today, im-
pacting the performance and cost of certain cloud services. Analyzing and classifying the traffic that is gener-
ated, with AI models in an NDT environment, allows the creation and evaluation of tools to block this activity. 
Another case is the attack to the DNS, a critical service in 5G cloud infrastructure. Today, there is a progressive 
adoption of DoH protocol (RFC 8484), with a secure HTTPS layer for DNS resolution to increase user privacy. 
Precisely, the activation of this protocol variant in an NDT opens the possibility to study how flooding or other 
attacks variants affects the cloud infrastructure and provides a mechanism to detect the attack using AI. 

In terms of Cloud 5G solutions deployment, we can consider several scenarios: native cloud, on-premises, 
or hybrid solutions (i.e., on-premises but integrated into cloud management to address regulatory aspects). In 
relation to the two-way communication capabilities that an NDT provides, and the information exchanged be-
tween the two parties (the NDT and the physical system), it should be noted that management systems support 
templates to automate deployments and simplify replications. These templates can be used as the automatic 
system input feed to the NDT (Section 3.3.1) for initial deployments of the NDT, on a reduced scale. For exam-
ple, the 5G component, such AMF or UPF, can be deployed with few resources to manage reduced user traffic 
volume. Additionally, hyperscalers and on-premise setups have the capacity to deliver rich information based 
on supported API, including telemetry information (activity loads, traffic volume, etc.). This information can 
be understood as part of P2V pipeline input (Section 3.3.4), which will enrich the NDT behavior, such as statis-
tical traffic profiles and behavioral patterns for the traffic generation (Section 3.3.5) and combine with cryp-
tomining and DoH-related attacks. The NDT results will provide a customized AL/ML output (Section 3.3.6) to 
deploy again using the P2V channel.  

Nothing limits a dynamic interaction between real Cloud 5G Core and its NDT over time to improve the 
ML detection. This is possible because most of the workload falls on the side of the NDT (rebalance traffics 
generation types, attacks patterns, and re-train ML models), and avoids affections to production networks loads 
and costs that are focused on providing the 5G service. One potential advantage in the cybersecurity case for 
NDT is that we can limit the P2V data feed to only one direction of communication (from the real network to 
the NDT). The other direction feed (ML model updates), which implies changes in the production cloud, can 
be performed through the secured pre-existing management channels (i.e., through the provisioning system). 
This is also relevant when NDT evaluates different technicalities in the types of attacks selected (e.g., use DoH 
for data extra filtration, for malware control channel communication, or to launch packet flooding) because 
there is no risk to impacting the production network or rendering it inaccessible. 

6.2. Digital Maps for Energy Optimization of Network AI Components’ Use Case 
To demonstrate the advantages provided by the architecture proposed in Section 4.3, we present a use case 

for energy optimization that builds on the DMap concept to optimize the energy consumption of an NDT sys-
tem by managing its resources. The need for energy consumption has been increasing in communication net-
works, as they have become more sophisticated and widespread over the years. To cope with the high energy 
demand, network providers must be able to manage their energy resources more efficiently. ML has proven to 
be a valuable tool to achieve this goal [77]. The same can be applied to an NDT scenario by using ML methods 
to optimize the energy usage of the grid by predicting when and where energy usage is highest. In this way, 
the network can be reconfigured to reduce energy consumption in those specific areas. In this regard, consid-
ering that AI components play an increasingly important role in current networks assisting other components 
in complex decision processes, it can be interesting to use an NDT to optimize their training and inference 
processes to optimize the energy consumption of the network. In this context, these optimizations can be 
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applied first in the NDT and then seamlessly reproduced on the physical system after validation. With this 
innovative approach, optimizations can be performed in a more controlled and safer way. 

In particular, this use case will illustrate how a physical network can be easily attached to a DMap that will 
support the optimization of the power consumption of the AI components of the network in a controlled man-
ner. In addition, this use case will consider the implementation of a complementary DMap for the generation 
of synthetic data that can be used during training processes to boost the performance of ML components in the 
NDT or for exporting such synthetic data to be used by third parties without creating any privacy breach. We 
schematically represent the described use case in Figure 7. 

 
Figure 7. An illustration of the DMap-based NDT solution for the energy optimization use case. 

We will develop EnOp, a DMap responsible for the energy optimization of the AI components integrated 
in the real network. The EnOp DMap will be obtained incorporating an Energy Optimization Component (EOC) 
in the minimal NDT architecture. The EOC component will allow one to optimize ML/DL models in order to 
reduce their power consumption in their training procedure and in downstream inference tasks over the net-
work. The EOC component will be composed of an energy estimation model and an upgradeable collection of 
algorithms for optimizing ML/DL models. The energy estimation model will be in charge of defining the energy 
consumption of the ML/DL models, which can be conducted either by measurements on real hardware or using 
simulated environments [78]. Based on this power state, several algorithms can be applied to optimize the 
ML/DL components to adjust the power consumption of the network with minimal impact on its performance. 
In particular, we consider introducing the energy dimension in the automatic search of efficient DNN architec-
tures using NAS. In addition, other techniques such as Quantization, Pruning, Low-rank Factorization, or 
Knowledge Distillations techniques can be also applied to compact the ML/DL models in order to decrease their 
memory footprint and accelerate training and inference task. 

In addition, this use case proposes Gen, a complementary DMap for the generation of synthetic telemetry 
data (e.g., VM logs, network traffic connections, etc.). The Gen DMap will allow one to generate synthetic data 
that statistically replicate data of the real system with high fidelity. The synthetic data in combination with the 
real data can be highly beneficial for the training of ML/DL models because it can serve as a data augmentation 
technique to improve the performance of these models. Furthermore, the Gen DMap can provide a safe way to 
export data to third parties involved in cross developments without violating the privacy of data or incurring 
data breaches. Finally, the synthetic data could be also used to build realistic traffic models for a better under-
standing of the physical twin behavior in different scenarios without compromising user privacy. 

The creation of a DMap that serves as a data source for the ML/DL model training and behavior modeling 
tasks is a promising way to circumvent the current obstacles to data processing and exploitation in real net-
works. It provides a network-aware and privacy-preserving data collection and management system that is 
critical to the proper operation of the AI/ML models. More importantly, the proposed solution is also easily 
scalable and portable, as it can be deployed in any NDT-ready network in a plug-and-play manner. 
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7. Conclusions 
This article has presented B5GEMINI, an NDT for B5G networks that has the potential to serve as a plat-

form for developing and deploying innovative intelligence-driven network applications, and we have also dis-
cussed the key role of AI in the construction, deployment, and operation of it.  

Current NDT proposals apply AI to optimize network management and orchestration processes in a con-
trolled scenario that replicates the real network without compromising its performance and security. B5GEM-
INI goes one step further, focusing on the design, training, and testing of the AI components deployed in a real 
network. In addition to these two scenarios, distributed training and inference on demand, ML as a service and 
educational applications such as cyber-ranges can benefit from B5GEMNI capabilities. 

To effectively enable all these scenarios in a realistic NDT, we have proposed B5GEMINI as an approach 
for a modular and scalable NDT system that uses DMaps, a novel design abstraction based on the recently 
appeared Digital Map concept. The introduction of the Digital Maps in the NDT architecture is fundamental to 
allow an iterative and incremental development of the same, avoiding a building-from-scratch approach and 
allowing the integration of new functionalities in a continuous and evolutionary way, which reduces the risk 
of errors in the planning process and optimizes the investment of resources throughout the development life 
cycle. 

We have described the architecture of our system and presented all the interconnected modules that com-
prise it, spanning from the infrastructure level to the AI applications. The 5G core functionalities were inte-
grated in B5GEMINI, adapting some of the NFs available in the free5GC project. Importantly, the proposed 
architecture has been designed to enable a plug-and-play experience that allows fast and seamless connection 
of NDTs with existing and new networks. We call this feature NDT-ready and it consists of verifying that a real 
network is compatible with standard NDT interfaces, thus ensuring interoperability with NDTs. In this regard, 
we have proposed, as future work, to promote the standardization of the interfaces of the hardware and soft-
ware components that comprise the described architecture to guarantee interoperability between the NDT and 
the physical networks and thus allow for easier and wider adoption of this technology by the networking in-
dustry.  

Furthermore, we have detailed the main components that will be part of the AI ecosystem in B5GEMINI. 
Synthetic data generation, model optimization, and robustness, to name a few, are some of the key components 
that will enable the implementation of privacy-aware, efficient, reliable, and scalable AI-based solutions for 
end-to-end management of B5G networks in a safe and controlled manner. We envision that the described AI 
components present great potential to shape the NDT landscape in the near future.  

Finally, we have described two prominent use cases that highlight the capabilities of B5GEMINI and 
demonstrate the advantages it offers over traditional network approaches. In the use cases presented, AI com-
ponents play a key role in enabling the efficient use of network resources and improving network performance, 
while reducing operational costs. In particular, we have applied some of the described AI components to solve 
specific problems within the NDT in a safe and controlled manner without compromising the security and 
performance of the real network. The first use case is related to the cybersecurity domain and focuses on the 
training and testing of ML-based cryptomining attack detectors. The second use case proposes the application 
of B5GEMINI to solve the energy optimization problem of ML/DL models deployed in the real network by 
leveraging the DMap concept to implement this functionality in a modular fashion over the proposed architec-
ture, which lays the foundation to incrementally deploy additional layers to design and integrate custom AI-
based applications to solve further specific use cases in the future. 
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