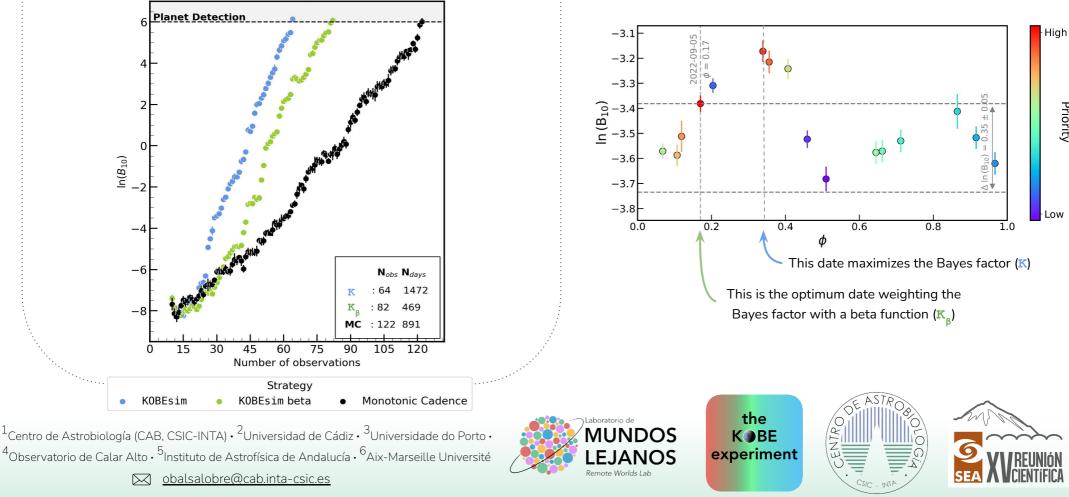

KOBEsim Improving RV detection through efficient scheduling

O. Balsalobre-Ruza¹, J. Lillo-Box¹, A. Berihuete², and the KOBE team¹⁻⁶

The KOBEsim algorithm is a Bayesian-based strategy for the detection of planets in radial velocity (RV) surveys written in Python. It is developed within the KOBE (K-dwarfs Orbited By habitable Exoplanets) experiment, aiming at maximizing the detection of rocky exoplanets potentially habitable orbiting K-dwarfs. After gathering the first data, KOBEsim targets the predominant orbital period and finds the optimum next observing date to maximize the efficiency of confirming or discarding that signal. This new approach has demonstrated to improve nearly 50 % the detection efficiency in comparison with a conventional strategy of monotonic cadence.

The KOBE experiment

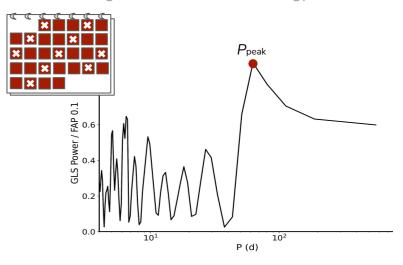
KOBE (Lillo-Box et al. 2022, submitted) is the first exoplanetary hunting devoted to the K-dwarf spectral domain. In spite of being poorly explored to date, they are an excellent astrobiological target. They accomplish a trade-off between G and M stars in terms of detectability-habitability. Furthermore, they are expected to have the greatest occurrence rate within the HZ (Kunimoto & Matthews 2020, AJ Volume 159). Since January 2021 this program is monitoring 50 late K-dwarf stars over five semesters with the CARMENES spectrograph (CAHA observatory, Spain).


Efficiency gain

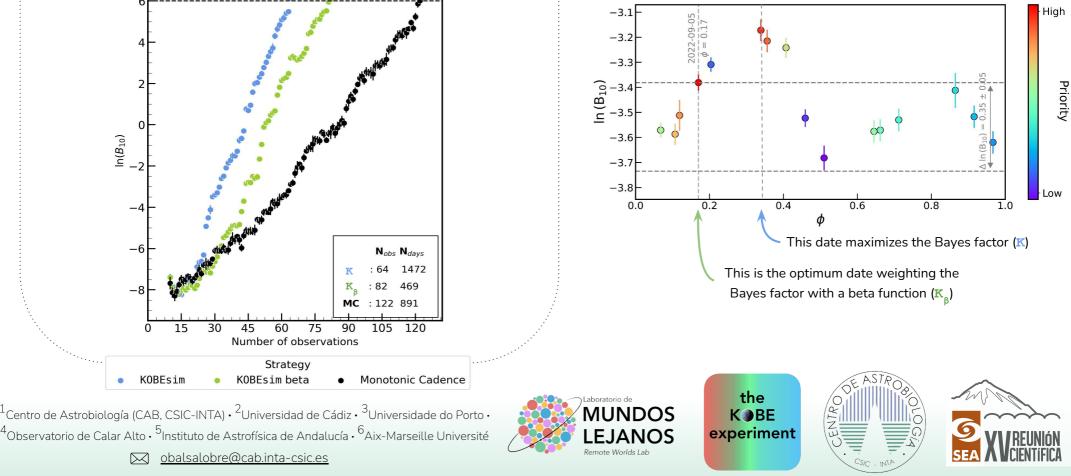
The **Bayes factor** measures how significant one model is compared to the other and intrinsically penalizes the more complex one (Occam's razor). We consider there is a **detection** when the logarithm of the Bayes factor of H_1 over H_0 is higher than 6

– Competing models - –
H₀: null hypothesis (no planet)
H₁: One-planet model

In the figure on the bottom, we simulate the Bayes factor evolution for 3 different observing approaches: KOBEsim (K), KOBEsim with a beta function to favor observing at close dates (K_{a}) , and a Monotonic Cadence strategy (MC). This simulation is for a 5 M_{\odot} planet with a 59-days orbital period inducing a RV-semiamplitude of 1.16 m s⁻¹.


The K strategy improves in 48 % the number of observations needed in comparison with MC. Nonetheless, to find a trade-off with the timespan is necessary to use K_{a} . This approach speeds up the detection 33 % in terms of observations and 47 % in number of days.

Observational Strategy


STEP 1: gather data following a **conventional strategy**

e.g., Monotonic cadence strategy

STEP 2: target the **predominant period** with **KOBEsim** algorithm

KOBEsim ranks the next observing candidate dates (candidate orbital phases ϕ) based on the expected Bayes factor increase

